
DISPARATE INFORMATION FUSION IN THE DISSIMILARITY

FRAMEWORK

by

Zhiliang Ma

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2010

c© Zhiliang Ma 2010

All rights reserved



Abstract

We study the problem of combining multiple disparate types of data to improve the per-

formances in various inferential tasks, and we propose the dissimilarity framework, which

contains two steps: (1) calculate one or more dissimilarity matrices for each data source;

and (2) combine all the dissimilarity matrices for the inferential purpose. In the first step,

we take advantage of the knowledge of experts in each area, and unify disparate types of

data into the dissimilarity space. In this dissertation, we focus on developing methods for

combining multiple dissimilarity matrices.

One of the most widely used approach for using dissimilarity data involves converting

the dissimilarity matrix into a configuration of points (called the embedding) through mul-

tidimensional scaling, and then building statistical models based on the embedding. To

use later collected observations, called the out-of-sample data, one could re-do the embed-

ding and modeling process, but it is not efficient. We study the alternative of out-of-sample

embedding, and develop the out-of-sample embedding approach, OOSIM, to insert the out-

of-sample objects into the existing embedding by minimizing sum of squared differences

between dissimilarities and the corresponding Euclidean distances. Iterative majorization
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is used to minimize the criterion function. The simulation experiment suggests that OOSIM

is a natural extension to de Leeuw’s multidimensional scaling procedure, SMACOF, which

minimizes the raw stress.

We develop the J-function approach to combine multiple dissimilarity matrices in the

space of the Cartesian product of the embeddings. Due to the high dimensionality of this

space, we introduce a novel supervised dimensionality reduction method. The simulation

and real data results show that our approach can improve classification accuracy compared

to the alternatives of principal components analysis and no dimensionality reduction at all.

We also consider information fusion from a different perspective. Suppose that objects

are measured under multiple conditions—e.g., indoor lighting versus outdoor lighting for

face recognition, multiple language translation for document matching, etc.—the challeng-

ing task is to perform data fusion and utilize all the available information for inferential

purposes. We consider two exploitation tasks: (1) how to determine whether a set of fea-

ture vectors represent a single object measured under different conditions; and (2) how to

create a classifier based on training data collected under one condition in order to classify

objects measured in other conditions. The key to both problems is to transform all sets of

feature vectors into one commensurate space, where the (transformed) feature vectors are

comparable and would be treated as if they were collected under the same condition. To-

ward this end, we study Procrustes analysis and develop a new approach. We illustrate our

methodology on English and French documents collected from Wikipedia, demonstrating

superior performance compared to that obtained via standard Procrustes transformation.
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We introduce a way to generate a collection of 3D shapes of different groups, and study

the problem of combining multiple dissimilarity matrices derived from the same set of

shapes for classification purpose. Experiment results show that different dissimilarity mea-

sures may capture different aspects of information and consequently combining all the dis-

similarity matrices in an optimal way results in a higher classification accuracy than using

each single dissimilarity matrix alone.

Advisor: Dr. Carey E. Priebe

Readers: Dr. Carey E. Priebe and Dr. David J. Marchette
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Introduction

In the present era, massive amount of data are being generated or collected—especially

on the Internet. Google VP Marissa Mayer mentioned in her presentation at PARC 2009

entitled “The Physics of Data” that there were 5 exabytes of data online in 2002, which

had risen to 281 exabytes in 2009 (1 exabytes = 1018 bytes = 1 billion gigabytes). That’s

a growth rate of 56 times over seven years. These data are of disparate types, such as text,

image, audio and/or video, social network, location (longitude and latitude), etc. The chal-

lenge problem is to fuse all the available information to achieve superior performances in

inferential tasks than using each single source of data alone. Information fusion has been a

hot research field with various applications [1–6].

In general, the most often used information fusion approaches can be summarized into

two categories: feature level fusion and decision level fusion. In the feature level fusion,

feature vectors extracted from different data sources are combined into the Cartesian prod-

uct space [1, 3]. The decision level fusion involves combining results obtained separately

from all data sources. An ensemble of classifiers is one such example, as is track fusion [7].

The advantage of these two types of information fusion stems from the fact that multiple

1
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sets of feature vectors extracted from the same set of objects usually reflect different char-

acteristics of patterns. By fusing multiple data sources, one obtains a more comprehensive

representation of the space in which the objects live, and hence has more information for

inferential tasks such as estimation, hypothesis testing, classification, etc.

Traditional feature level fusion approaches become inadequate in learning from multi-

ple disparate types of data, such as text documents, images and graphs. These complex

data often result in a high-dimensional Cartesian product, which usually suffers from the

“curse of dimensionality,” the phenomenon that the number of data points needed to learn

a classifier increases exponentially with the dimension of the representation space [8, 9].

The decision level fusion approaches are often suboptimal because, at least in principle,

the joint distribution usually provides more information than the product of the marginals.

We propose a novel framework based on the dissimilarity representation for fusing mul-

tiple disparate types of data: (i) compute one or more interpoint dissimilarity matrices for

each source of data; and then (ii) achieve information fusion by combining all resulted

dissimilarity matrices. An obvious advantage of this framework is that we can utilize the

knowledge of the experts in each domain to develop dissimilarity matrices, and achieve

fusion in the unified dissimilarity space. The challenge is how to combine the multiple dis-

similarity matrices in a way that is beneficial for inferential purposes. In this dissertation,

we investigate the dissimilarity representation and introduce some constructive methods to

properly combine multiple dissimilarity matrices.

In Chapter 1, we present definitions and background on the dissimilarity representation,

2



CHAPTER 0. INTRODUCTION

as well as theoretical foundations of dissimilarity analysis for statistical pattern recogni-

tion.

In Chapter 2, we briefly review the multidimensional scaling techniques, which are

widely used to obtain a feature representation from a dissimilarity matrix. We also study

the out-of-sample embedding extension for classical multidimensional scaling and intro-

duce a novel out-of-sample embedding algorithm—OOSIM (out-of-sample embedding by

iterative majorization).

In Chapter 3, we introduce an approach of combining dissimilarity matrices in the Carte-

sian product space, along with a supervised dimensional reduction method.

In Chapter 4, we study information fusion from a different perspective and introduce a

method on fusion and inference from multiple data sources in a commensurate space.

In Chapter 5, we give a case study about fusion in the dissimilarity framework, includ-

ing a method of generating a collection of phantom shapes of multiple groups, procedures

of obtaining multiple dissimilarity matrices from the same set of shapes, and classification

studies based each dissimilarity matrix and fusions of them.

In Chapter 6, we summarize the main achievements of this dissertation, and discus open

problems and directions for future work.

3



Chapter 1

Dissimilarity Representation and

Analysis

1.1 Definitions

Definition 1.1.1. A metric on a set X ⊂ Rp (p ∈ Z+) is a function d : X × X →

R+ ∪ {0}. For all x, y, z ∈ X , this function d, usually called the distance function or

simply distance, is required to satisfy the following conditions:

1. d(x,y) ≥ 0 (non-negativity)

2. d(x,y) = 0 if and only if x = y (identity of indiscernibles)

3. d(x,y) = d(y,x) (symmetry)

4. d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality)

For x,y ∈ Rp, some examples of metrics are:

4
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1. The discrete metric: if x = y then d(x,y) = 0. Otherwise, d(x,y) = 1.

2. The Euclidean distance: d(x,y) = ‖x− y‖2.

3. The Manhattan distance:

d(x,y) =

p∑

i=1

|xi − yi|, (x = [x1, . . . , xp]
t,y = [y1, . . . , yp]

t).

4. The Minkowski metric:

d(x,y) =

(
p∑

i=1

|xi − yi|p
)1/p

, p ≥ 1, p 6= 2.

5. The Mahalanobis distance:

d(x,y) =
√

(x− y)tC−1(x− y), C is positive-semidefinite.

A dissimilarity measure is a metric without the requirement for satisfying the triangle

inequality. Formally,

Definition 1.1.2. a dissimilarity measure on a set X ⊂ Ξ is a function δ : X × X →

R+ ∪ {0}. For all x, y, z ∈ X , the dissimilarity measure δ is required to satisfy the

following conditions:

1. δ(x,y) ≥ 0 (non-negativity)

2. δ(x,y) = 0 if and only if x = y (identity of indiscernibles)

3. δ(x,y) = δ(y,x) (symmetry)

5
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Notice that in most cases Ξ = Rp. However we wish to leave open the possibility for

applications where the original data are infinite dimensional, graph-valued, or occupying

some other nonstandard space. A pseudo-dissimilarity measure is a dissimilarity measure

that allows δ(x,y) = 0 for x 6= y, though we do not make a distinction between pseudo-

dissimilarity and dissimilarity in this dissertation.

For x,y ∈ Rp, some examples of dissimilarity measures are:

1. The cosine dissimilarity:

δ(x,y) = 1− xty

‖x‖‖y‖ .

2. The correlation measure:

δ(x,y) = 1− (x− x̄)t(y − ȳ)

‖x− x̄‖‖y − ȳ‖ .

3. The divergence:

δ(x,y) =
1

p

p∑

i=1

(xi − yi)2

(xi + yi)2
.

4. Soergel:
∑p

i=1 |xi − yi|∑p
i=1 max(xi, yi)

.

In some applications, the dissimilarities between two objects are not necessarily sym-

metric. That is, δ(x,y) 6= δ(y,x). In these scenarios, we can define a new symmetric

dissimilarity measure δ′ from the given dissimilarities. Some potential methods are:

1. δ′(x,y) =
(
δ(x,y) + δ(y,x)

)
/2

6
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2. δ′(x,y) = max{δ(x,y), δ(y,x)}

3. δ′(x,y) = min{δ(x,y), δ(y,x)}

4. δ′(x,y) =
√
δ(x,y)2 + δ(y,x)2

Definition 1.1.3. A dissimilarity representation for a set of n objects is expressed as a

symmetric and non-negative matrix ∆, whose diagonal elements are all equal to zero. The

matrix ∆ is obtained by applying a dissimilarity measure δ on every pair of objects.

Most traditional statistical pattern recognition techniques rely on objects represented by

points in a feature (vector) space. In this space, classifiers are developed to best separate

the objects of different classes. As an alternative to the feature-based representation, the

dissimilarity representation describes objects by their interpoint comparisons. The dissim-

ilarity representation has attracted substantial interest in various areas [10–13].

1.2 Foundations of the Dissimilarity

Representation

Let X,X1, X2 be three multivariate random variables that are independent and identi-

cally distributed as F , and Y, Y1, Y2 be three multivariate random variables that are indepen-

dent and identically distributed as G. For a univariate function h, h : Rp×Rp → R+ ∪{0}

and h(x,y) = 0 if and only if x = y, Maa, Pearl and BartoszyńSki [14] show that

h(X,X1) =L h(Y, Y1) and h(X,X1) =L h(X, Y )

7
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if and only if

F = G,

where the symbol =L stands for the equality of distributions. That is, the equality of the

three interpoint comparison distributions is equivalent to the equality of the two multivari-

ate distributions.

In the next section, we study the foundation of using dissimilarity representation in

statistical pattern recognition. For concreteness, we consider the inferential task to be clas-

sification.

1.3 A Probabilistic Foundation of

Dissimilarity-Based Classification

Let (X, Y ) be a random pair distributed as FXY , where X is Rp-valued and Y is (say)

{0, 1}-valued. More specifically, X is a random vector representing an observation, and Y

is a binary random variable representing its class label. Devroye et al. [15] describes the

framework of statistical pattern recognition based on the feature representation. A classifier

is a function g(·) : Rp → {0, 1}. An error occurs if g(X) 6= Y and the probability of error

for g is defined by L(g) = P{g(X) 6= Y }. The best possible classifier is the Bayes rule,

g∗, which is defined by

g∗ = argmin
g:Rd→{0,1}

P{g(X) 6= Y }.

8
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The corresponding probability of error is called the Bayes error and denoted by L∗. Con-

sider (training) data Tn = {(X1, Y1), . . . , (Xn, Yn)}, a sequence of random pairs that are

independent and identically distributed (i.i.d) as FXY . A classifier constructed on the ba-

sis of Tn is denoted by gn( · ; Tn) and its performance is measured by Ln = L(gn) =

P{gn(X; Tn) 6= Y }.

Suppose one does not have access to the data Tn, but the pairwise dissimilarities of Tn

are available, represented by an n × n dissimilarity matrix ∆n. We are concerned with

constructing a framework to govern pattern classification of data represented only by dis-

similarities. Duin et al. [16] describe a such a framework using the class of polynomial

classifiers. We expand on this work and present a general context for dissimilarity-based

pattern classification.

1.3.1 Dissimilarity Based Classifiers

Consider dissimilarity measure δ : Rp × Rp → R+ ∪ {0} (the set of nonnegative real

numbers). Let D = {[δ(X,X ′)] : X,X ′ ∈ Rp} be the space of dissimilarity matrices. Let

∆ ∈ D, then ∆ is square, the entries of ∆ are real-valued and nonnegative, ∆ = ∆t, and

the diagonal elements of ∆ are all 0s. Notice that in certain applications, some of these

conditions may be relaxed; and in other cases, we may wish to impose more restrictions on

∆(i, j), for example that ∆(i, j) = 0 if and only if i = j. The dissimilarity matrix for the

training data is given by ∆n = [δij = δ(Xi, Xj) : Xi, Xj ∈ Tn] ∈ Dn, where Dn is the

space of n× n dissimilarity matrices. We may think of ∆ as a Dn-valued random variable,

9
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however, because of the dependency between the dissimilarities, the joint distribution of ∆

may be difficult to obtain.

We are concerned with dissimilarity-based classifiers g : D1,n → {0, 1}, where D1,n

denotes the space of the dissimilarities between X and training data Tn. The classification

error of g is then defined by L(g) = P{g(dX) 6= Y }, where dX ∈ D1,n.

The classifiers constructed on the bases of (training) dissimilarity matrix ∆n are of the

form

g : Dn+1 × {0, 1}n → {0, 1}, or

g : D1,n ×
(
Dn × {0, 1}n

)
→ {0, 1}.

Consequently, the classification error L(g) becomes

L (gn(dX)) = P {gn(dX ; ∆n) 6= Y |∆n} .

1.3.1.1 The Best Classifier g∗δ for (FXY , δ) and Its Error L∗
δ

Consider the dissimilarity measure δ and a fixed observation x. Let δ(x,X ′)|Y ′ = j be

the (random) dissimilarities between x and a random observation X ′ of class j, j ∈ {0, 1}.

Let hx,j be the probability density function of the random variable δ(x,X ′)|Y ′ = j, and let

Hj = {hx,j : x ∈ Rp} be the space of all such probability density functions. Then the best

possible classifier g∗ based on dissimilarities is defined by

g∗δ = inf
g∈G

P [g(hX,0, hX,1) 6= Y ], (1.1)

where G = {g : H0 ×H1 → {0, 1}}, Y is the true class label of X . The minimal proba-

bility of error for dissimilarity is defined by L∗δ = P [g∗δ (X) 6= Y ].

10
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1.3.2 Relation Between L∗δ and L∗

1.3.2.1 L∗δ ≥ L∗

It is known that data processing destroys information [15, Problem 2.1]. Applying a

dissimilarity measure on observations to generate a dissimilarity representation is a data

processing procedure. Hence

L∗δ ≥ L∗.

1.3.2.2 L∗δ = L∗ + ε(FXY , δ)

It is clear that the probability of classification error L∗δ depends on the dissimilarity

measure δ, because two different dissimilarity measures—e.g. the discrete distance and

the Euclidean distance—result in different dissimilarity representations and hence leads to

different performance in classification.

We illustrate by an example that L∗δ depends on the distribution FXY , too. Consider a

two-class classification problem. Consider a family of joint distributions of (X, Y ):

F = {FXY : Y ∼ Bernoulli(π); Fj = FX|Y=j = Uniform
(
B((−1)j+1, r)

)
},

where B(c, r) denotes the ball in R2 centered at (c, 0) with radius r. Let

S = {X : P [g∗(X) 6= Y ] =
1

2
},

which is the dark gray area in Figure 1.1. Consider a dissimilarity measure δ. Let

S∗δ = {X : P [g∗δ (X) 6= Y ] =
1

2
},

11
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Class 0 Class 1

Figure 1.1: F = {FXY : Y ∼ Bernoulli(1/2); fj = fX|Y=j = Uniform (B((−1)j+1, r))}

which is the light and dark gray area in Figure 1.1.

Let

F ′ = {FXY : FXY ∈ F , X ∈ S; the rest mass of X is uniformly distributed on Sδ − S}.

Then

L∗(F) = L∗(F ′) = L∗,

where L∗(F) denotes the Bayes error associated with a distribution FXY ∈ F . However,

L∗δ(F1) = L∗ + ε(δ,F) <
1

2
,

while

L∗δ(F ′) = L∗ + ε(δ,F ′) =
1

2
.

1.3.3 A Special Case of (FXY , δ) : L∗
δ = L∗

In this section, we investigate a special case where the best classifier based on a dissim-

ilarity representation and the Bayes classifier lead to the same classification errors. That

12
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is, L∗δ = L∗. We hope to shed some light on when and why a dissimilarity representation

is useful in statistical pattern recognition. In the rest of the section, for concreteness we

assume that X is a discrete random variable.

Theorem 1.3.1. Let {(Xi, Yi)}ni=1 be independent observation and class label pairs so that

the Xi’s are discrete random variables with class conditional probability mass functions

pkj = P [X1 = ak|Y = j], and marginal probability mass function pk = P [X1 = ak], j =

0, 1; k = 1, 2, . . ., where ak ∈ Rd. And let D = {δ : P [δ(X1|Y1 = j1, X2|Y1 = j2) = 0] =

0, j1 6= j2}.

(a) If D 6= ∅, then the Bayes error L∗ = 0,

(b) For every δ ∈ D,

lim
n→∞

inf
gn
L(gn(∆) = 0.

Proof. It is not hard to see that (b) implies (a), because L∗ ≤ L(gn(∆)) for any n and gn.

If (b) is true, i.e., L(g(∆))→ 0, then L∗ = 0.

The proof for part (b) is exceptionally straightforward. It suffices to show that there

exists a classifier g̃n such that L(g̃n(∆)) → 0. We define such a classifier as follows. For

any new observation, Xn+1 calculate the dXn+1 = [δ(Xi, Xn+1)]ni=1. If δ(Xi, Xn+1) = 0

then assign to Xn+1 class Yi—notice that when there are multiple such i’s, by the property

ofD, all corresponding Yi’s are the same; if there is no such i, then assign a class randomly.

Hence for finite n the probability of error is at most the probability that we have not seen

13
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Xn+1 before. That is,

L(g̃n(∆)) ≤P [δ(Xi, Xn+1) 6= 0, i = 1, . . . , n]

≤P [X1 6= Xn+1, . . . , Xn 6= Xn+1]

=
∑

k

P [X1 6= ak, . . . , Xn 6= ak|Xn+1 = ak]P [Xn+1 = ak]

=
∑

k

(
P [Xn+1 = ak]

n∏

i=1

P [Xi 6= ak]

)

=
∑

k

pk(1− pk)n

Now, we claim that as n → ∞,
∑

k pk(1 − pk)n → 0 which implies that L(g̃n(∆)) →

0.

Proof of claim: Since 0 < pk ≤ 1,
∑

k pk = 1 and for every n,

0 ≤ P [X1 6= Xn+1, . . . , Xn 6= Xn+1] =
∑

k

pk(1− pk)n ≤ 1,

for any ε > 0, there exists M > 0 such that

∑

k>M

pk(1− pk) < ε/2

and hence
∑

k>M

pk(1− pk)n < ε/2, for any n.

In addition, there exists N > 0 such that when n > N ,

M∑

k=1

pk(1− pk)n < ε/2.

Hence for n > N ,

∑

k

pk(1− pk)n =
M∑

k=1

pk(1− pk)n +
∑

k>M

pk(1− pk)n ≤ ε/2 + ε/2 = ε.
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Therefore
∑

k pk(1− pk)n → 0 as n→∞.

Theorem 1.3.2. Let {(Xi, Yi)}ni=1 be independent observation and class label pairs so that

the Xi’s are discrete random variables with class conditional probability mass functions

pkj = P [X1 = ak|Y = j], and marginal probability mass function pk = P [X1 = ak], j =

0, 1; k = 1, 2, . . ., where ak ∈ Rd, the sample space. And let D = {δ : δ(a, b) =

0 if and only if a = b}. For every δ ∈ D, let ∆ = [δ(Xi, Xj)]n×n, then

lim
n→∞

inf
gn
L(gn(∆)) = L∗.

Proof. It suffices to show that there exists a classifier g̃n such that L(g̃n(∆)) → L∗. We

define such a classifier as follows. For any new observation, Xn+1 calculate the dXn+1 =

[δ(Xi, Xn+1)]ni=1. Let A = {i ∈ [n] : δ(Xi, Xn+1) = 0}. If |A| > 0 then assign to Xn+1

class

Ŷn+1 = I

{∑n
i=1 Yi
n

∑
i∈A Yi∑n
i=1 Yi

>

(
n−∑n

i=1 Yi
n

) |A| −∑i∈A Yi
n−∑n

i=1 Yi

}
(1.2)

= I

{
1

|A|
∑

i∈A
Yi >

1

2

}
, (1.3)

if |A| = 0, then randomly assign Xn+1 a class. Then,

L(g(∆)) = P [Yn+1 6= Ŷn+1||A| > 0]P{|A| > 0}+ PeP{|A| = 0}, (1.4)

where Pe is the probability of misclassification when P [|A| = 0]. By the proof of theo-

rem 1.3.1, we know that

P{|A| = 0} → 0, as n→∞. (1.5)
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Therefore

P{|A| > 0} → 1, as n→∞. (1.6)

Let p1(x) = P [X = x|Y = 1] and p0(x) = P [X = x|Y = 0]. The Bayes classifier is

g∗(x) =





1 if πp1(x) > (1− π)p0(x)

0 otherwise,

and the corresponding plug-in decision function is given by (1.2). By [15, theorem 2.1, 2.2;

Problem 2.11]. we can show that

P [Ŷn+1 6= Yn+1]→ L∗. (1.7)

Hence, (1.4 – 1.7) together imply that

L(g(∆))→ L∗.
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Chapter 2

Multidimensional Scaling and

Out-of-Sample Embedding

When using a dissimilarity representation, the most widely used approach in statistical

pattern recognition is the k-nearest neighbors rule. The k-nearest neighbors rule (k-NN) is

a method for classifying objects based on the closest training examples in the training data

set.

Let (X1, Y1), . . . , (Xn, Yn) be the n training observation and label pairs—we assume

that the class labels Yi are {0,1}-valued; let X be the new observation to be classified; and

let dX = [δ(X,X1), . . . , δ(X,Xn)] be the vector of distances/dissimilarities between X

and the training observations. Then the k-NN rule is defined by

gn(X) =





1 if
∑n

i=1 wiI{Yi = 1} >∑n
i=1wiI{Yi = 0},

0 otherwise,
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where wi = 1/k if Xi is among the k nearest neighbors of X—δ(X,Xi) is less than or

equal to the k smallest dissimilarities among dX ; wi = 0 elsewhere. That is, X is classified

by a majority vote of its neighbors, with the object being assigned to the class most common

amongst its k nearest neighbors.

We notice that the k-NN rule does not make use of the dissimilarities among training

observations, which usually contain useful information about the space where X lives.

Figure 2.1 depicts the phenomenon.

δ11 δ12 δ13 · · · δ1n
δ21 δ22 δ23 · · · δ2n
δ31 δ32 δ33 · · · δ3n
...

...
...

. . .
...

δn1 δn2 δn3 · · · δnn
dX = δ1 δ2 δ3 · · · δn







[ ]

Figure 2.1: Give n training observations and their class labels, the k-NN rule classifies a

new observation X by a majority vote of its neighbors. Only the distances/dissimilarities

between X and the training observations are used by k-NN. The interpoint dissimilarities

among the training observations are not used.

2.1 Multidimensional Scaling

One way to take advantage of the information contained by the dissimilarities among

training observations is by means of multidimensional scaling. Consider the dissimilarity

matrix ∆n = [δij]n×n, obtained by measuring the pairwise dissimilarities of n objects
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On = {o1, . . . , on}. Suppose we do not have the access to the feature representation of On.

The techniques collectively known as multidimensional scaling (MDS) attempt to construct

a configuration of points X = [x1, . . . ,xn]t in a normed linear space (typically Euclidean

space) such that the interpoint distances ‖xi−xj‖ approximate the dissimilarities δij . The

configuration of points X is usually referred to as an embedding of ∆n (or On).

2.1.1 Criterion Function

Mathematically, a multidimensional scaling procedure aims to find

X = arg min c(∆, DX),

where DX = [dij(X) = ‖xi − yj‖]n×n and c is a criterion function. Usually,

dij(X) =

√∑

k

(xik − xjk)2,

and consequently DX is the Euclidean distance matrix. Examples of widely used criterion

functions include:

1. raw Stress:
∑

i<j

(δij − dij(X))2

2. Stress:
∑

i<j(δij − dij(X))2

∑
i<j δ

2
ij

3. SStress:
∑

i<j(δ
2
ij − d2

ij(X))2

∑
i<j δ

2
ij
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4. Stress-1: √∑
i<j(δij − dij(X))2

∑
i<j d

2
ij(X)

5. Sammon:

1∑
i<j δij

∑

i<j

(δij − dij(X))2

δij

2.1.2 Classical Multidimensional Scaling

One of the mostly widely used multidimensional scaling techniques, the Classical Mul-

tidimensional Scaling (CMDS) [17–19], uses a very different criterion function, which is

sometimes called Strain:

‖XXt −B∆‖,

where B∆ = τ(∆(2)) = −J∆(2)J/2 and J = I − 11t. The ∆(2) is the entry-wise square

of the dissimilarity matrix ∆. The operation τ(·) is usually called double centering. Notice

that if the provided dissimilarity matrix ∆ is indeed a Euclidean distance matrix derived

from X̃ ∈ Rn×p, then B∆ = X̃cX̃
t
c, where X̃c is column-centered X̃. Factoring B∆ by

eigen-decomposition

B∆ = QΛQt = (QΛ1/2)(QΛ1/2)t,

yields X̃c = QΛ1/2. We recover the original feature representation (up to rotation and

translation). In case that the original feature is high-dimensional and one wants to find a

low-dimensional representation, one can just take the first d columns of Q and first d × d

block of Λ, and the resulting embedding does in fact minimize the Strain.
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If the given dissimilarity matrix ∆ is not a Euclidean distance matrix, one can still use

a similar procedure to obtain an embedding that minimizes the Strain. The procedure can

be summarized in the following steps.

1. Calculate ∆(2).

2. Apply double centering to this matrix to obtain B∆ = τ(∆(2)).

3. Perform eigen-decomposition on B∆ = QΛQt.

4. Choose positive eigenvalues in Λ and corresponding columns in Q, yielding Λ+ and

Q+. Then the embedding is given by Q+Λ+.

The classical multidimensional scaling has two nice properties: (1) it is closed-form and

hence very fast; (2) the dimensions of the resulting embedding are nested—if one embeds

∆ respectively into X1 ∈ Rn×d and X2 ∈ Rn×(d+l), l > 0, then the first d-dimensions of

X2 are of the same as those of X1.

2.1.3 Out-of-Sample Extension for Classical

Multidimensional Scaling

Suppose that inference methodologies (testing, estimation, etc.) are based on the em-

bedding configuration X as well as objects observed in future Õm = {õ1, . . . , õm}, which

are referred to as the out-of-sample objects. Analogously, On are called the within-sample
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objects. Assume that we have access only to the dissimilarities from each of the m out-

of-sample objects to each of the n original objects, ∆mn = [δ̇ij]m×n, and the pairwise

dissimilarities among the out-of-sample objects, ∆mm = [δ̈ij]m×m. In this dissertation,

when necessary we use δ̇ij to denote the dissimilarity between an out-of-sample object and

a within-sample object, and use δ̈ij to denote the dissimilarity between two out-of-sample

objects. In order to use the out-of-sample objects in the inference, we need to find a config-

uration of points Y = [y1, . . . ,ym]t in relation to the representation space specified by X.

We could, of course, (re-)embed On and Õm together. However, for large n, re-embedding

On and Õm together will be computationally prohibitive in many applications.

Assuming the within-sample embedding was obtained through the classical multidimen-

sional scaling, Trosset and Priebe [20] formulate the out-of-sample extension (hereafter

referred to as T&P) as an unconstrained nonlinear least-squares problem:

min

∥∥∥∥∥∥∥∥
B−




X

Y


 [Xt Yt] =

∥∥∥∥∥∥∥∥

2

= min 2‖Bxy −XYt‖2 + ‖Byy −YYt‖2. (2.1)

The matrix

B = τw(∆(2)) =




τ(∆
(2)
n ) Bxy

Bt
xy Byy


 ,

where

∆(2) =




∆
(2)
n ∆

(2)
nm

∆
(2)
mn ∆

(2)
m


 ,

τw(∆(2)) = −1

2

(
I− ewt

etw

)
∆(2)

(
I− wet

etw

)
,
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and w is the vector whose first n entries are all 1’s and the rest are all 0’s, e = (1, . . . , 1)t ∈

Rn+m. Equation (2.1) is solved numerically by standard gradient-based methods.

Notice that if On is embedded through a procedure other than CMDS, T&P may not be

appropriate. Ma and Priebe [21] introduce another out-of-sample embedding procedure—

Out-of-Sample Embedding by Iterative Majorization (OOSIM), which we review in Sec-

tion 2.2. OOSIM is developed as an extension to the multidimensional scaling procedure

that uses the raw Stress.

2.2 Out-of-Sample Embedding by Iterative

Majorization

The out-of-sample problem arises in various ways. Distance and dissimilarity measures

are often the observed values in psychology experiments in which subjects are asked ques-

tions about which stimuli are closest [22]. In studying the hippocampus, diffeomorphic

distances are measured in [23] to distinguish between certain types of disorder. Applica-

tions such as these, wherein the observations take the form of dissimilarities rather than

features, are often attacked via embedding into a space in which inference is performed.

Subsequent observations then require either an out-of-sample embedding approach or a

full re-analysis of the original data. Out-of-sample embedding also arises as an artifact

of the computational complexity of some statistical approaches, such as in using V -fold

cross-validation to estimate a classifier’s error rate [20]. Gower [24] provides a method to
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embed only one out-of-sample object, given its Euclidean distances to previously specified

configuration of fixed points. Trosset and Priebe [20] develop the out-of-sample extension

for classical multidimensional scaling (CMDS) [17–19].

In this work, we consider the following out-of-sample problem: find a configuration of

points Y to minimize the sum of squared differences, specified by the criterion function

σX(Y) =
m∑

i=1

n∑

j=1

(
δ̇ij − dij(Y,X)

)2

+
∑

1≤i<j≤m
(δ̈ij − dij(Y))2, (2.2)

where

dij(Y,X) = ‖yi − xj‖2 and dij(Y) = ‖yi − yj‖2.

Following de Leeuw’s lead, we minimize σX(Y) by Iterative Majorization (IM). IM is an

elegant method to minimize a function, and it is based on the work of [25].

2.3 Minimizing Stress via Iterative Majorization

The Iterative Majorization method finds a minimizer of the original complicated func-

tion f(x) by means of iteratively minimizing an auxiliary function h(x, z), which is always

greater than or equal to f(x) and is easier to minimize. The z in h(x, z) is some fixed value

called the supporting point, at which the auxiliary function h should touch the surface of

f . That is, f(z) = h(z, z). To see how IM works, consider a sequence of supporting points

{z1, . . .} defined as follows. Given zt, let zt+1 := arg minx h(x, zt). Then,

f(zt) = h(zt, zt) ≥ h(zt+1, zt) ≥ f(zt+1).
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Performing this procedure repeatedly yields a monotonically non-increasing sequence of

function values. Since (by assumption) the optimization of h is easier than that of f , the

sequence of supporting points can be found relatively quickly. This is the general concept

of IM.

Borg and Groenen [19, Section 8.6], Leeuw and Mair [26] elaborate using IM to min-

imize the stress function in MDS. We briefly review their work in the remainder of this

section.

Let ∆n = [δij] be the n × n dissimilarity matrix, and X be the n × d configuration

matrix. Consider the raw stress [27]

σr(X) =
∑

i<j

wij (δij − dij(X))2

=
∑

i<j

wijδ
2
ij +

∑

i<j

wijd
2
ij(X)− 2

∑

i<j

wijδijdij(X)

= η2
δ + η2(X)− 2ρ(X), (2.3)

where W = [wij] is an n × n weight matrix, which is symmetric and non-negative. Let

x·k = [xik, . . . , xnk] be the kth column of X. Let ei and ej be the ith and jth columns of

the identity matrix In. Then

d2
ij(X) =

d∑

k=1

(xik − xjk)2

=
d∑

k=1

xt·k(ei − ej)(ei − ej)tx·k

=
d∑

k=1

xt·kAijx·k, (2.4)
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where Aij is simply a matrix with all 0 elements, except these four entries: aii = ajj = 1,

aij = aji = −1. Hence η2(X) is a weighted sum of d2
ij(X) :

η2(X) =
∑

i<j

wijd
2
ij(X) = tr Xt

(∑

i<j

wijAij

)
X = tr XtVX, (2.5)

where V =
∑

i<j

wijAij . In general, the (i, j)th element of V is given by

vij =





−wij i 6= j,
n∑

j=1,j 6=i
wij i = j.

The matrix V has all non-negative eigenvalues by the Geršgorim disc theorem, and hence

it is positive-semidefinite.

Let Z = [z1, . . . ,zn]t be another n× d matrix. The Cauchy-Schwarz inequality implies

d∑

k=1

(xik − xjk)(zik − zjk) ≤
(

d∑

k=1

(xik − xjk)2

)1/2( d∑

k=1

(zik − zjk)2

)1/2

.

In matrix notation, this inequality becomes

tr XtAijZ ≤ dij(X)dij(Z), (2.6)

with equality if Z = X. Inequality (2.6) implies

−dij(X) ≤





− tr XtAijZ

dij(Z)
dij(Z) 6= 0,

0 otherwise.

(2.7)

Multiplying both sides of (2.7) by wijδij and summing over all i < j gives

−ρ(X) = −
∑

i<j

wijδijdij(X) ≤ −tr Xt

(∑

i<j

bijAij

)
Z = −tr XtB(Z)Z,
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where B(Z) has elements

bij =





−wijδij
dij(Z)

i 6= j, dij(Z) 6= 0,

0 i 6= j, dij(Z) = 0,

−
n∑

j=1,j 6=i
bij i = j.

Because equality occurs if Z = X, we have obtained the majorization inequality

−ρ(X) = −tr XtB(X)X ≤ −tr XtB(Z)Z. (2.8)

Combining (2.3), (2.5) and (2.8) gives the majorization inequality for the stress function

σr(X) = η2
δ + tr XtVX− 2tr XtB(X)X

≤ η2
δ + tr XtVX− 2tr XtB(Z)Z

def.
= τ(X,Z). (2.9)

The function τ(X,Z) is a simple quadratic function in X. It is also convex, for the Hessian

matrix V is positive-semidefinite. Hence first-order conditions are necessary and sufficient.

Moreover, because τ(X,Z) ≥ σr(X) ≥ 0, the Frank-Wolfe Theorem [28] guarantees the

existence of a solution. Therefore, the minimum of τ(X,Z) can be obtained analytically

by solving the equation system

∇τ(X,Z) =
∂

∂X
τ(X,Z) = 2VX− 2B(Z)Z = 0. (2.10)

Because V is not of full rank, the Moore-Penrose inverse V+ is used in the solution of

(2.10), which is

X = V+B(Z)Z. (2.11)
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In fact, any 1-generalized inverse matrix V− such that VV−V = V will suffice. The

choice of the Moore-Penrose inverse in particular is for uniqueness. In summary, the IM

procedure for MDS can be described as:

1. Set Z := X(0) where X(0) is a (random) start configuration.

2. Find an update X(t) by (2.11) and compute σr(X(t)).

3. Stop iterating if σr(X(t−1)) − σr(X
(t)) < ε or a certain iteration limit is reached.

Otherwise, update Z := X(t) and go to step 2.

2.4 Out-of-sample Embedding

Having obtained a configuration X based on the n×n dissimilarity matrix ∆n, we shall

now develop the IM procedure to find a configuration Y for the m out-of-sample objects

according to the criterion function (2.2). Let

∆ = [δij](n+m)×(n+m) =




∆n ∆t
mn

∆mn ∆m




and

W = [wij](n+m)×(n+m) =




0n Wt
mn

Wmn Wm


 ,

where 0n is the n×nmatrix with all 0 entries, and Wmn and Wm are them×n andm×m

matrices with all 1 entries, respectively. In the case of missing dissimilarities in ∆mn and
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∆m, set the corresponding weights wij in Wmn and Wm to 0. Then the out-of-sample

criterion function (2.2) becomes

σX(Y) =
∑

1≤i<j≤n+m

wij


δij − dij







X

Y










2

. (2.12)

Using the matrix notation of raw stress introduced in Section 2.3, the criterion function

(2.12) can be written as

σX(Y) = η2
δ + η2







X

Y





− 2ρ







X

Y







= η2
δ + tr




X

Y




t

V




X

Y


− 2tr




X

Y




t

B







X

Y










X

Y




≤ η2
δ + tr




X

Y




t

V




X

Y


− 2tr




X

Y




t

B







X

Z










X

Z


 , (2.13)

where the inequality in (2.13) is by (2.9). As the decomposition of W, V and B have the

following block structure

V =




Vn Vt
mn

Vmn Vm


 , B =




Bn Bt
mn

Bmn Bm


 . (2.14)
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Combining (2.13) and (2.14) gives

σX(Y) ≤ η2
δ + tr

{
XtVnX− 2XtBnX− 2XtBt

mnZ
}

+

tr YtVmY+

2 tr
{
YtVmnX−YtBmnX−YtBmZ

}

def.
= τX(Y,Z). (2.15)

Obviously, τX(Y,Z) is a quadratic function in Y which majorizes σX(Y). It is also con-

vex, for the Hessian matrix Vm is positive-semidefinite. Hence first-order conditions are

necessary and sufficient. Moreover, because τX(Y,Z) ≥ σX(Y) ≥ 0, the Frank-Wolfe

Theorem guarantees the existence of a solution. Its minimum can be obtained analytically

by solving the equation system

∇τX(Y,Z) =
∂

∂Y
τX(Y,Z) = 2VmY + 2VmnX− 2BmnX− 2BmZ = 0. (2.16)

By using the Moore-Penrose inverse of V+
m, the solution of (2.16) is given by

Y = V+
m(Bmn −Vmn)X + V+

mBmZ. (2.17)

In summary, the IM procedure for out-of-sample embedding can be described as:

1. Set Z := Y(0) where Y(0) is a (random) start configuration.

2. Find an update Y(t) by (2.17) and compute σX(Y(t)).

3. Stop iterating if σX(Y(t−1)) − σX(Y(t)) < ε or a certain iteration limit is reached.

Otherwise, update Z := Y(t) and go to step 2.

We call this procedure OOSIM (Out-Of-Sample embedding by Iterative Majorization).
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2.5 Example: Simulated Dissimilarity Data

When using out-of-sample objects in conjunction with a configuration derived from

within-sample embedding, it is implicitly assumed that the embedding of out-of-sample

objects has the same distribution as the embedding of the original objects. In this section,

we shall examine this assumption via simulation.

Let u1, . . . ,un be a sample from the multivariate Gaussian distribution with mean

µ = [0, 0, 0, 0]t and covariance/variance matrix I4. The interpoint dissimilarity matrix

is calculated as

∆n = [δij = 1− cos(ui,uj)], (2.18)

where cos(ui,uj) = ui · uj/(‖ui‖2‖uj‖2), the cosine of the angle between ui and uj .

Cosine similarity is often used to compare documents in text mining [29].

Let X (X ∈ R) be the embedding of ∆n. Suppose later out-of-sample ũ1, . . . , ũm are

observed, and their dissimilarities to the original objects ∆mn and the dissimilarities among

themselves ∆m are computed. Out-of-sample embedding is then performed to obtain Y.

We use the Kolmogorov-Smirnov test to determine whether Y has the same distribution

as X. To illustrate the potential difference between the two out-of-sample embedding ap-

proaches, OOSIM and T&P, we use three different multidimensional scaling techniques to

obtain the within-sample embedding X—the classical multidimensional scaling (CMDS),

Sammon’s non-metric multidimensional scaling [30] (Sammon), and multidimensional

scaling by minimizing raw stress (SMACOF). OOSIM and T&P are separately used to
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embed out-of-sample objects. Notice that T&P is consistent with CMDS, and OOSIM is

consistent with SMACOF, while neither is consistent with Sammon. The following exper-

iments are for illustration and comparison purposes.

Let n = m = 100 and consider 1000 Monte Carlo replicates. For each replicate, the

Kolmogorov-Smirnov test is applied to test the hypotheses

H0 : FY = FX vs. HA : FY 6= FX.

Table 2.1 shows the average of p-values of the tests for various within-sample and out-of-

sample embedding combinations. Notice that: when CMDS is used to obtain the within-

sample configuration X, T&P’s out-of-sample approach leads to large p-values, indicating

no evidence to reject the null hypothesis, while OOSIM leads to small p-values, suggest-

ing OOSIM is not an appropriate out-of-sample embedding extension to CMDS; on the

other hand, if X is obtained by SMACOF, the opposite is true for T&P and OOSIM; when

Sammon is used to obtain X, both T&P and OOSIM result in average p-values > 0.05, al-

though OOSIM’s p-values are larger giving some indication that this method may be more

appropriate. For more information, consider examining the distribution of the correspond-

ing p-values. It is known that under the null hypothesis, the p-value should be uniformly

distributed on [0, 1]. An appropriate out-of-sample approach should result in p-values dis-

tributed approximately uniformly. Figure 2.2 gives the histograms of the p-values resulting

from using the two different out-of-sample embedding approaches when within-sample

embedding is obtained via Sammon. It is clear that the histogram of the p-values associ-

ated with T&P’s approach skews strongly to the left, while the OOSIM histogram suggests
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approximately uniformly distributed p-values. We conclude that OOSIM is more appropri-

ate than T&P for this particular setting. A general theory indicating which out-of-sample

embedding method is more appropriate (more robust) remains to be developed.

Within-sample CMDS Sammon SMACOF
Out-of-Sample T&P OOSIM T&P OOSIM T&P OOSIM
p-value 0.467 0.031 0.200 0.439 0.022 0.698

Table 2.1: Average p-values from the Kolmogorov-Smirnov test resulting from various

within-sample and out-of-sample embedding combinations. When CMDS is used to obtain

the within-sample configuration X, T&P yields large p-values suggesting (correctly) that

this method is appropriate, while OOSIM leads to small p-values. On the other hand, if

X is obtained by SMACOF, the opposite is (correctly) true. When Sammon non-metric

multidimensional scaling is used to obtain X, both T&P and OOSIM result in large p-

values, but Figure 2.2 suggests that OOSIM is more appropriate.

2.6 Conclusion

We have presented an out-of-sample embedding approach (OOSIM) to insert additional

points into existing configurations by minimizing sum of squared differences between dis-

similarities and the corresponding Euclidean distances. Iterative Majorization is used to

minimize the criterion function. The simulation experiment suggests that OOSIM is a nat-

ural extension to de Leeuw’s multidimensional scaling procedure, SMACOF, which mini-

mizes raw stress. Moreover, we have compared two out-of-sample embedding approaches,
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Histogram of p−values (sammon)

Figure 2.2: Histograms of p-values from using T&P and OOSIM for out-of-sample em-

bedding respectively, when Sammon’s non-metric multidimensional scaling is used to ob-

tained within-sample embedding X. OOSIM yields approximately uniformly distributed

p-values, suggesting that this method is more appropriate for Sammon within-sample

embedding.
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OOSIM and T&P, in conjunction with different within-sample procedures. The results

show T&P is consistent with CMDS, OOSIM is consistent with SMACOF; both T&P and

OOSIM could be used to embed out-of-sample objects even when the within-sample em-

bedding was not obtained by CMDS or SMACOF, and we present an example for which

OOSIM is more appropriate than T&P.

We believe that these results motivate the development of a general robustness theory

indicating which out-of-sample embedding method is more appropriate in cases where nei-

ther CMDS nor SMACOF is the within-sample embedding methodology.

Finally, we note that the SMACOF/OOSIM has a practical advantage over CMDS/T&P,

in that SMACOF/OOSIM can easily handle missing dissimilarity values while CMDS/T&P

is not directly applicable in such cases.
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Chapter 3

Combining Dissimilarity Matrices In

Cartesian Product Space

In this chapter, we consider the problem of combining multiple dissimilarity represen-

tations via the Cartesian product of their embeddings. For concreteness, we choose the

inferential task at hand to be classification. The high dimensionality of this Cartesian prod-

uct space implies the necessity of dimensionality reduction before training a classifier. We

propose a supervised dimensionality reduction method, which utilizes the class label in-

formation, to help achieve a favorable combination. The simulation and real data results

show that our approach can improve classification accuracy compared to the alternatives of

principal components analysis and no dimensionality reduction at all.

36



CHAPTER 3. COMBINING DISSIMILARITIES IN CARTESIAN PRODUCT SPACE

3.1 Background

Most traditional statistical pattern recognition techniques rely on objects represented by

points in a feature (vector) space. In this space, classifiers are developed to best separate

the objects of different classes. As an alternative to the feature-based representation, the

dissimilarity representation describes objects by their interpoint comparisons. The dissim-

ilarity representation has attracted substantial interest in various areas [10–14].

Because there are many ways to compare two objects—for example, the Lp-distances—

it is possible to construct many dissimilarity representations. Ideally, each dissimilarity

representation captures different aspects of the underlying patterns. Consequently, combin-

ing multiple dissimilarity representations can be beneficial. One way to combine multiple

dissimilarity representations is via the Cartesian product of their embeddings. The high

dimensionality of this embedding product space implies the necessity of dimensionality

reduction before training a classifier. Let X ∈ Rn×p denote the original (or transformed)

p-dimensional data matrix and let XA denote a submatrix that contains only the columns of

X with indices in A ⊆ {1, . . . , p}. The problem of dimensionality reduction is to find an

index setA of size d ≡ |A| < p such that the classification error based on the d-dimensional

data XA is small.

Principal component analysis (PCA) is the most widely used method for dimensionality

reduction, but it does not take into account the class label information, which is crucial

for extracting discriminative features. Linear discriminant analysis (LDA) is also broadly

used for dimensionality reduction (or as a classifier), and it uses class label information.
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However relatively small sample size (compared to dimensionality p) may cause LDA’s

performance to decrease when adding more dimensions, even though the extra dimensions

contain discriminative information. Trunk [31] affirmed this phenomenon by investigating

an illuminating simple example. Chang [32], Dillon et al. [33], Kshirsagar et al. [34] all es-

tablished a statistic θk for the kth principal component (PC) and use θk to decide which PCs

should be used in discrimination. Jolliffe et al. [35] observed that, for two-class problem,

the sample estimate θ̂k is equivalent to a t-statistic and the hypothesis test based on θk to

decide whether or not to include the kth PC is equivalent to the t-test with null hypothesis

H0k that there is no difference between the two class means. The statistic θk is useful in

determining the order of importance of PCs in separating the two populations. However,

the best d individual PCs do not necessarily constitute the best subset of d PCs [36]. Take-

mura [37] proposed a decomposition of the Hotelling’s T 2 statistic by projecting data onto

the principal axes of the pooled covariance matrix, then calculating t-statistic tk for the kth

PC. Takemura suggested using the first d PCs (“. . . to look at t21, t
2
1 + t22, . . .”) and briefly

mentioned “If one has a prior idea about the importance of various axes, a weighted sum

of t2k, T
2
w =

∑d
k=1wkt

2
k, might be considered.” Following Takemura’s framework for de-

composing Hotelling’s T 2, we propose choosing the d PCs that correspond to the d largest

values of Jk ≡ |tk|. We show that, under the assumption of mixture of two multivariate

Gaussian distributions with equal covariance matrices, the best d individual PCs coincide

with the best subset of d PCs. We demonstrate the use of this approach with simulation,

image and caption data. The results show that, for classification, our approach outperforms

38



CHAPTER 3. COMBINING DISSIMILARITIES IN CARTESIAN PRODUCT SPACE

both PCA and no dimensionality reduction.

In Section 3.2, we describe the background of combining multiple dissimilarity repre-

sentations, in particular, via the Cartesian product of their embeddings. Section 3.3 details

the proposed supervised dimensionality reduction method. Simulation and real data exam-

ples are presented in Section 3.4. Section 3.5 provides conclusions and how to extend our

approach to suit a problem with more than two classes.

3.2 Combining Multiple Dissimilarity

Representations

As defined in 1.1.2, a dissimilarity measure is a function δ : Ξ × Ξ → R+ ∪ {0}

with δ(z1, z2) ≥ 0, δ(z1, z2) = δ(z2, z1) and δ(z1, z2) = 0 if and only if z1 = z2. It

measures the magnitude of difference between two objects. Asymmetric functions are

also of interest, but this is beyond the scope of the this work. Notice that in most cases

Ξ = Rd. However we wish to leave open the possibility for applications where the original

data are infinite dimensional, graph-valued, or occupying some other nonstandard space.

In cases where we observe only the dissimilarities, it will still be useful to imagine that

they are computed from a set of Ξ-valued vectors—the “measurements” of objects. The

dissimilarity representation of a set of objects is obtained by computing δ on each pair of

objects. It is expressed as a nonnegative and symmetric matrix ∆ with all zero diagonal

entries.
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Let δ1, . . . , δK denote K dissimilarity measures. Given n object-label pairs (zi, yi) ∈

Ξ× {0, 1}, i = 1, . . . , n, let

∆k = [δk (zi, zj)] , k = 1, . . . , K,

be the corresponding K dissimilarity matrices. The task is to combine these K dissimilar-

ity matrices in order to obtain superior (compared to any one of the ∆k alone) performance

in classification.

As illustrated in Figure 3.1, there are (at least) three possible ways to combine dis-

similarities: (1) “classifier ensemble” combines separate classifiers that were trained on

individual dissimilarity matrices; (2) “dissimilarity combination” trains one classifier from

a single combined dissimilarity matrix; (3) “embedding product” embeds each dissimilarity

matrix first, then combines the embeddings to build a classifier. The process of embedding

an n × n dissimilarity matrix, ∆ = [δ(zi, zj)], involves finding a configuration of points,

x1, . . . , xn, in a normed linear space, such that the interpoint distances, ‖xi − xj‖, ap-

proximate the δ(zi, zj). When the normed linear space is Euclidean, embedding is widely

known as multidimensional scaling. The configuration of points, here denoted X, is called

the embedding of ∆. (In this work, we use the bold X to denote an n × d data matrix,

where each row corresponds to a d-dimensional observation; and we use X to denote a

d-dimensional random vector.) The “classifier ensemble” is the most straightforward con-

ceptually, and the easiest to implement. It is necessarily suboptimal, at least in principle,

because the joint distribution usually provides more information than the product of the

marginals. The “dissimilarity combination” seems as if it should be more natural but is the

40



CHAPTER 3. COMBINING DISSIMILARITIES IN CARTESIAN PRODUCT SPACE

hardest of these to implement. To combine dissimilarity matrices directly and beneficially,

one has to explore the underlying dissimilarity measures. For example, if all the dissimilar-

ity measures are the squared Euclidean distances, then the summation of all dissimilarity

matrices makes perfect sense, because it is a squared Euclidean distance matrix in the joint

space. However, this kind of phenomenon will not hold for most pairs of dissimilarity mea-

sures, for the dissimilarity measures used to generate the dissimilarity matrices are usually

complicated and quite different from each other. These issues make the “dissimilarity com-

bination” decidedly nontrivial. Nevertheless, a naïve, but possibly effective, overview of

this method can be found in [13, Equation 10.1]. The “embedding product” approach, on

the other hand, not only considers the joint distribution by means of the Cartesian product

of the embeddings, but also requires no specific knowledge of the underlying dissimilarity

measures. In this work, we focus on the “embedding product” approach and discuss in

depth how to perform dimensionality reduction in the Cartesian product space.

The key to the “embedding product” approach is to determine the “right” embedding di-

mensionality dk of each ∆k and the dimensionality of the Cartesian product space. Miller

et al. [23] gave an example in the K = 2 case. They embedded ∆1 and ∆2 into Rd1 and

Rd2 , ranging d1 and d2 from 0 to some maximum dmax1 and dmax2 , respectively. (In their

case, dmax1 = dmax2 = 15.) They then built a classifier for each possible combination of

(d1, d2), and obtained an estimate of the classification error Ld1,d2 . In the end, they chose

(d̂1, d̂2) = arg minLd1,d2 . This method is necessarily suboptimal as it includes all the first

d̂1 and d̂2 PCs, but ignores higher rank PCs, which may contain discriminative information.
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Classifier Ensemble





∆1 −→ g1

↘
...

... g∗

↗

∆K −→ gK

Dissimilarity Combination





∆1

↘
... ∆∗ −→ g∗

↗

∆K

Embedding Product





∆1 −→ X1

↘
...

... X∗ −→ g∗

↗

∆K −→ XK

Figure 3.1: ∆1, · · · ,∆K are K dissimilarity matrices. “Classifier ensemble” combines

separate classifiers gk that were trained on individual dissimilarity matrices ∆k; “dissimi-

larity combination” trains one classifier g∗ from a single combined dissimilarity matrix ∆∗;

“embedding product” embeds each ∆k into Xk and combines those embeddings to obtain

X∗, and then a classifier is trained.
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It also becomes unwieldy for K > 2.

An alternative way to implement the “embedding product” approach is to embed each

∆k into Xk ∈ Rn×dk , and construct a classifier in the Cartesian product space [X1, . . . ,XK ].

The dimensionality of the product space could be very high, especially when K is large.

Dimensionality reduction is needed to alleviate the “curse of dimensionality,” the phe-

nomenon that the number of data points needed to learn a classifier increases exponentially

with the dimension of the representation space [8, 9].

3.3 Dimensionality Reduction

PCA is widely used to create low-dimensional representations of high-dimensional data.

PCA constructs a new coordinate system in such a way that the span of the first k principal

components (PCs) is the k-dimensional linear subspace that best summarizes (in the sense

of squared error) the data. PCA is unsupervised, so applying PCA within classes may result

in different PCs than applying PCA to the entire data set. Furthermore, the PCs that best

summarize variation in the data may not be the dimensions that best discriminate between

classes, as in the case of “parallel cigars.” In contrast to PCA, LDA uses the class labels

to find the best dimensions for class discrimination. Unfortunately, LDA may perform

badly in high-dimensional spaces (cf. Trunk, 1979). To address this difficulty, Belhumeur,

Hespanha and Kriegman [38] proposed a two-step procedure (LDA ◦ PCA) in which PCA

is first used to reduce dimensionality, after which LDA is used to train a linear classifier;

43



CHAPTER 3. COMBINING DISSIMILARITIES IN CARTESIAN PRODUCT SPACE

however, if the PCA step discards dimensions that are important for discrimination, then

LDA ◦ PCA may also perform badly. To remedy this failing, we develop an alternative

PCA step that we call the J-function procedure. The essential idea is to extract (class-

conditional uncorrelated) PCs based on their ability to discriminate rather based on how

much variation they contain. As explained in Figure 3.2, LDA ◦J improves on LDA ◦

PCA.

3.3.1 J-function

Consider data matrix X̃ ∈ Rn×p and class vector y = (y1, . . . , yn)T with {0, 1} entries.

The goal is to find a d-dimensional (d < p) representation of X̃ that contains the most class

information. The J-function procedure can be described via the following steps:

1. Compute the pooled sample covariance matrix S = πS1 + (1 − π)S0, where π =

∑n
i=1 yi/n and Sj is the sample covariance matrix for class j.

2. Perform eigenvalue decomposition on S = UΛUT and transform X̃ to X = X̃U.

(Assume that the columns of X̃ have been centered to have mean zero.)

3. Compute the J value for the ith dimension of X

Ji =





|m1i
−m0i

|/
√
λi, λi > 0,

0, λi = 0,

where m0 and m1 are the sample means of classes 0 and 1, respectively, and λi is

the ith largest eigenvalue of S.
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PC ′
1

PC ′
2

PC 1

PC 2

Figure 3.2: The solid ellipses represent the data from the two classes. The dashed ellipse

represents the entire dataset, on which performing PCA reports PC ′1 and PC ′2 as the 1st

and 2nd principal components, respectively. The J-function approach first finds the prin-

cipal components PC1 and PC2 by performing eigenvalue decomposition on the pooled

covariance matrix. It then computes the J value, a measure of discriminative power, for

each PC and reorders the PCs by the J values associated with them. PCs with larger J

values will have higher rank in the order. For this dataset J1 < J2 (Ji is the J value of the

PCi). Therefore the final first and second PCs generated by the J-function approach are

PC2 and PC1, respectively. Notice that for low dimensional data, the J-function approach

is essentially the same as LDA. For high dimensional data, where LDA has problems, one

can use the two-step approach, LDA ◦ J .
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4. Obtain XJ by reordering the dimensions of X according to the J values—dimensions

with larger values have higher rank in the order. Let XJ
d be the first d dimensions of

XJ .

Then XJ
d is the d-dimensional representation of X̃ obtained by the J-function approach.

In summary, this approach first projects data onto the principal axes of the pooled covari-

ance matrix to obtain conditionally uncorrelated (given class label Y ) PCs, then ranks them

by a quantity J , which is the absolute value of a t-statistic, and finally includes only these

PCs with large J values. Devroye et al. [39, p. 566] sketched a similar idea to rank (class)

independent Gaussian distributed features. We show in the following theorem that, under

the assumption of mixture of two multivariate Gaussian distributions with equal covariance

matrices, XJ
d contains the most class information among a collection of p-dimensional pro-

jections of X̃. That is, for the transformed data X, the best d individual PCs constitute the

best subset of d PCs.

Theorem 3.3.1. Suppose that (X, Y ) is distributed as FXY , where X : Ω → Rp, Y is

Bernoulli distributed with parameter π, and that the conditional distribution of X|Y = j

is N(µj,Σ). Let f : Rp → Rd be the function that projects X onto the space spanned

by any d of the p eigenvectors of Σ, where d < p, and let f ∗ be the projection function

deduced from the above J-function procedure. If L∗f(X) and L∗f∗(X) denote the Bayes error

probabilities for (f(X), Y ) and (f ∗(X), Y ) respectively, then

L∗f∗(X) ≤ L∗f(X). (3.1)
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Proof. We assume that Σ = Ip, where the dimensions of X are ordered (from largest to

smallest) by the magnitudes of the elements of µ1−µ0. To see that this assumption entails

no loss of generality, first note that if Σ is of less than full rank, then X can be projected

into a lower dimensional space in which the covariance matrix is of full rank. Second,

we can assume that Σ = Ip because there exists a matrix A for which (AX|Y = j) ≡

(XA|Y = j) ∼ N(Aµj, Ip). Hence, any linear projection function of X can be written as

f(X) = f(A−1XA) , fA(XA). Third, assuming that Σ = Ip, we can further assume that

the dimensions are in any prescribed order—we simply apply the same argument with A

chosen to be a suitable permutation matrix.

Then the projection f ∗(X) = T ∗X chooses the first d dimensions of X . That is, T ∗ is a

d× p matrix with all 1’s on the diagonal of its leftmost d× d block and 0’s elsewhere; and

the projection f(X) = TX chooses any d dimensions of X . That is, T has same columns

as T ∗ does, but with different order. By the previous assumptions, we have

‖T ∗µ1 − T ∗µ0‖ ≥ ‖Tµ1 − Tµ0‖,

which implies

L∗T ∗X ≤ L∗TX

and

L∗f∗(X) ≤ L∗f(X).
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In practice, the sample covariance matrix Sj usually is not an accurate and reliable esti-

mator of the population covariance matrix, especially when the data have a large number of

dimensions but contain comparatively few samples. This will decrease J-function’s power

in determining discriminative dimensions. To alleviate this problem, in the following ex-

periments section, we used Schäfer and Strimmer’s [40] shrinkage estimation of covariance

matrix to obtain Sj .

3.4 Experiments

3.4.1 Simulation Experiment

To illustrate the J-function approach and its advantages, we conduct a simple simulation

experiment. Let FXY = πN(µ,Σ) + (1− π)N(−µ,Σ), where

π =
1

2
, µ =



µa

µb


 , µa = µb = (1, 1, 1, 1, 1, 0, · · · , 0)T ∈ R40,

Σ =




Σa 0

0 Σb


 , Σa = diag(1, . . . , 40), Σb(i, j) =

√
ij

2|i−j|
, i, j = 1, . . . , 40.

Notice that the two multivariate Gaussian distributions have the same covariance matrix Σ,

and the only difference is in the means. The reason we construct Σ in this special form is

that we try to simulate two different data sources, analogous to the Cartesian product of

embeddings of K = 2 dissimilarity matrices.

We randomly draw 2n samples X = [x1, . . . , x2n]T from FXY , with the first n samples
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as training data and the rest as testing data. We then perform dimensionality reduction,

build LDA based on the training data and then classify the testing observations. For com-

parison, we consider PCA and the J-function method in the dimensionality reduction step.

In addition, we let p, the reduced dimensionality, range from 1 to 80 (p = 80 means no

dimensionality reduction). Notice that the J-function approach is a supervised dimension-

ality reduction method. That is, it utilizes the class label information. We perform two

experiments: in the first one we use only the class labels of the training observations, and

in the second one we use the class labels of both the training and the testing observations.

The following LDA step remains the same for both experiments. Because the dimension-

ality reduction step (although not the LDA step) in the second experiment uses the testing

class labels, this experiment leads to an overly optimistic classification error. It provides

a (meaningful) lower bound on the error from the first (valid) experiment. We call the di-

mensionality reduction method used in the first experiment the J-function approach and

that used in the second experiment the J-function approach. We use LJ and LJ to denote

the classification errors corresponding to the J-function and J-function.

We repeat the above process 100 times each for three different sample sizes: n = 100,

n = 200 and n = 400. Let L̄P (d), L̄J(d) and L̄J(d) denote the means of the estimated clas-

sification errors resulting from the d-dimensional data, which are obtained through PCA,

the J-function and J-function procedures, respectively. Let L̄∅ denote the mean of the

estimated classification error when using LDA only, that is, no dimensionality reduction.

This simulation experiment shows that (1) for classification, for fixed reduced dimension-
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ality d < 80, the J-function procedure outperforms PCA and no dimensionality reduction:

L̄J(d) < L̄J(d) < L̄∅ ≤ L̄P (d), for all d < 80; (2) the J-function procedure works bet-

ter than PCA, when both use optimal reduced dimensionalities: mind L̄J < mind L̄J <

mind L̄P ; (3) for classification, the J-function procedure provides a lower bound on the

error, and the difference between the J- and J-procedure, L̄J(d)− L̄J(d), decreases as the

sample size increases. We plot the results in Figure 3.3.
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Figure 3.3: Let L̄P (d), L̄J(d) and L̄J(d) denote the mean of the estimated classification

errors resulting from the d-dimensional data, which are obtained through PCA, the J- and

J-function procedure, respectively. Let L̄∅ denote the mean of the estimated classification

error when using LDA only, that is no dimensionality reduction. These plots depict that (1)

L̄J(d) < L̄J(d) < L̄∅ ≤ L̄P (d), for all d < 80; (2) mind L̄J < mind L̄J < mind L̄P ; (3)

L̄J(d)− L̄J(d) decreases as the sample size increases.
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3.4.2 The Tiger Data

In this section, we present an example of combining image and caption data. The data

are 140,577 images and captions collected from the Yahoo! Photos website. We selected

1,600 pairs by using the query word “tiger” on captions. The “tiger” data were manually la-

beled into 6 classes based only on captions (see Figure 3.4). For simplicity we consider the

problem of discriminating between the two classes of “Tiger Woods” and “Tamil Tigers”.

The image, text, and joint image-text spaces are rather complicated, so there is no

Images Captions!I !C

This undated 

picture shows 

Sri Lankan 

troops looking 

at weapons 

seized from the 

Tiger Woods 

lets go of his 

club after 

hitting a 

wayward shot 

on the 7th tee  

Detroit Tigers 

shortstop 

Carlos Guillen 

throws the ball 

to first in a 

double play 

A two-month-

old 

Indochinese 

tiger cub is 

seen inside its 

cage at the ...

Label #
Animal tiger 148
Detroit Tigers baseball team 145
Tiger Woods the golfer 897
Tamil Tigers soldiers of Sri Lanka 330
Leicester Tigers rugby team 48
Others 32

Figure 3.4: The “tiger” data. Each observation consists of an image/caption pair.

simple way to combine them directly. We use the first and second order pixel deriva-

tives [41, 42] on the images, and the mutual information [43] on the captions to extract

features from each space. We then compute Rij , the random forest proximity [44], for each

pair of observations and use 1 − Rij as the dissimilarity measure to generate two dissimi-

larity matrices, ∆C and ∆I . Classical multidimensional scaling (CMDS) [17–19] is used

to embed ∆C into X̃C ∈ Rn×p(n) and ∆I into X̃I ∈ Rn×p(n). We used p(n) = 1000.

Because the coordinates of the embedding constructed by CMDS are its PCs, it is easy to

perform PCA. Figure 3.5 displays a scree plot of variances. The automatic dimensionality
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selection of [45] was used to determine reduced dimensionalities of dC = 473 for cap-

tion and dI = 152 for image. These choices err on the side of anti-parsimony, but further

dimensionality reduction in the Cartesian product space will follow. For comparison, we

considered also the J-function on X̃C and X̃I (Zhu and Ghodsi’s approach was used also

to determine reduced dimensionality). For the Cartesian product, we separately performed

PCA, the J-function and J-function to reduce the dimensionality. A linear classifier was

built on caption alone, image alone and their combination, respectively. Leave-one-out

cross-validation was used to estimate classification errors. Figure 3.4.2 shows the above

procedures.
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Figure 3.5: “Tiger” data. Using the classical multidimensional scaling to embed both ∆C

and ∆I into 1000-dimensional Euclidean space. The scree plot depicts the variance for

each dimension.
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Image space ΞI

δI

∆I

CMDS

X̃I ∈ Rn×p(n)

R̃

XI ∈ Rn×dI

Caption space ΞC

δC

∆C

CMDS

X̃C ∈ Rn×p(n)

R̃

XC ∈ Rn×dC

⊗
[XI XC ] ∈ Rn×(dI+dC)

R

X ∈ Rn×d

LDA

Ŷ

Figure 3.6: “Tiger” data. We combined image and caption data using dissimilarity rep-

resentation: image and caption data were transformed into dissimilarity matrices ∆I and

∆C , which were then embedded into p(n)-dimensional Euclidean space. Dimensional-

ity reduction procedures R̃ and R were performed on each embedding and then on the

Cartesian product, respectively. Finally, a linear classifier was trained. We considered

R̃ ∈ {PCA , J-function} and R ∈ {PCA, J , J , ∅}, where ∅ means no dimensionality

reduction.
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Table 3.1 reports classification errors for several procedures. The results suggest that (i)

the two step procedure LDA ◦ J works better than LDA only (no dimensionality reduction)

and than LDA ◦ PCA; (ii) LDA ◦ J is better than LDA ◦ PCA′, which is the same as LDA

◦ PCA, except using the reduced dimensionalities determined by the J-function; (iii) LDA

◦ J is apparently better than the other procedures, but recall that J uses testing class labels

(the error rate for LDA ◦ J

We used McNemar’s test to validate these statements and show the results in Table 3.2.

We also applied the two-step procedure LDA◦R (R ∈ {∅,PCA, J-function}) on the two

classes of “animal” versus “baseball”. The resulted leave-one-out cross-validation classi-

fication errors are: L(∅(X)) = 0.0751, L(PCA(X)) = 0.0648 and L(J(X)) = 0.0444.

At level of significance α = 0.05, McNemar’s test shows that PCA is not statistically

significantly different from no dimensionality reduction (p-value = 0.2249); J-function is

statistically significantly better than no dimensionality reduction (p-value = 0.0038); J-

function is not statistically significantly better than PCA (p-value = 0.0745).

3.5 Conclusion

The main obstacles to combining multiple dissimilarity matrices via the Cartesian prod-

uct of their embeddings are the curse of dimensionality and the parallel cigars phenomenon.

We have proposed a new supervised dimensionality reduction approach and show by theo-
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Data R Low-dim. Data Dimensionality Error

Image: X̃I ∈ Rn×1000 PCA XP
I 152 0.1491

J-function XJ
I 62 0.1133

Caption: X̃C ∈ Rn×1000 PCA XP
C 473 0.1883

J-function XJ
C 384 0.1345

Combination: XP = [XP
I XP

C ]

∅ 625 0.1557
PCA 160 0.1125
PCA′ 205 0.1182
J-function 205 0.0815
J-function 71 0.0171

Combination: XJ = [XJ
I XJ

C ] J-function 186 0.0864

Table 3.1: “Tiger” data. We use the two-step approach LDA ◦ R—perform dimension-

ality reduction procedure R and then train linear classifier on the low-dimensional data—

together with leave-one-out cross validation to estimate classification error. The notation

∅ means no dimensionality reduction and PCA′ is PCA but using the dimensionalities de-

termined by the J-function procedure. The bar on dimensionality means that the corre-

sponding number is the average of dimensionalities used in leave-one-out cross validation

by J-function.
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HA p-value
L(J(X̃I)) < L(PCA(X̃I)) 4.803e-07
L(J(X̃C)) < L(PCA(X̃C)) 5.215e-04
L(PCA(XP )) < L(∅(XP )) 4.643e-05
L(J(XP )) < L(PCA(XP )) 8.095e-05

Table 3.2: “Tiger” data. McNemar’s test is used to compare the dimensionality reduction

proceduresR ∈ {∅, PCA, J, J}. The alternative hypothesis HA is listed in the first column

and the corresponding null hypothesis replaces “<” with “≥”. We use L(X) to denote the

LDA leave-one-out cross validation classification error based on data X, and use R(X) to

denote the low-dimensional data obtained by the procedure R. The definitions of various

forms of X can be found in Table 3.1. These p-values, together with Table 3.1, show that

(i) LDA ◦ J works better than LDA only (i.e., no dimensionality reduction) and better than

LDA ◦ PCA; (ii) LDA ◦ J is better than LDA ◦ PCA′, which is the same as LDA ◦ PCA

except using the reduced dimensionalities determined by the J-function; (iii) LDA ◦ J is

apparently better than the other procedures, but recall that J uses testing class labels (the

error rate for LDA ◦ J is a meaningful lower bound on the error rate of LDA ◦ J).

rem, simulation and real data experiments that the J-function approach can improve clas-

sification performance compared to the alternatives of principal components analysis and

no dimensionality reduction at all. The proposed approach is not specific to this type of

data and can serve as a general dimensionality reduction technique. It is particularly useful

when (1) the data is high-dimensional and (2) many dimensions of the data have similar

variances and PCA is liable to fail in extracting discriminative dimensions.

The proposed dimensionality reduction approach has been developed for the simple
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two-class problem. One way to extend it to K (K > 2) classes is the following: (1) project

data onto the principal axises of the pooled sample covariance matrix; (2) calculate the ab-

solute differences between each class mean and the overall mean; (3) normalize and weight

them by corresponding eigenvalues and class proportions, respectively, to obtain a K × p

matrix J ; (4) finally use the column sums of J to rank and choose principal components.

Alternatively, the two-step LDA ◦ J approach for K > 2 classes can be addressed in two

other ways: (1) perform LDA ◦ J on each pair of classes and combine the
(
K
2

)
classifiers

in the end [46, 47]; or (2) perform LDA ◦ J on each pair of “class i versus not class i” and

combine the K classifiers in the end.
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Chapter 4

Fusion and Inference from Multiple

Data Sources in a Commensurate Space

Given objects measured under multiple conditions—e.g., indoor lighting versus outdoor

lighting for face recognition, multiple language translation for document matching, etc.—

the challenging task is to perform data fusion and utilize all the available information for

inferential purposes. We consider two exploitation tasks: (1) how to determine whether a

set of feature vectors represent a single object measured under different conditions; and (2)

how to create a classifier based on training data collected under one condition in order to

classify objects measured in other conditions. The key to both problems is to transform

all sets of feature vectors into one commensurate space, where the (transformed) feature

vectors are comparable and would be treated as if they were collected under the same con-

dition. Toward this end, we study Procrustes analysis and develop a new approach, which
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uses the interpoint dissimilarities for each condition. We impute the dissimilarities between

measurements of different conditions to create one omnibus dissimilarity matrix, which is

then embedded into Euclidean space. We illustrate our methodology on English and French

documents collected from Wikipedia, demonstrating superior performance compared to

that obtained via standard Procrustes transformation.

4.1 Introduction

Information fusion techniques aim to merge information from multiple data sources in

order to achieve more accurate inferences than using each single source alone. Information

fusion has been a hot research field with various applications [1–4].

In general, the most often used information fusion approaches can be summarized into

two categories: feature level fusion and decision level fusion. In feature level fusion, fea-

ture vectors extracted from different data sources are combined into the Cartesian product

space, directly [5] or via some data transformation procedures [3]. Decision level fusion

involves combining results obtained separately from all data sources. An ensemble of clas-

sifiers is one such example, as is track fusion [7]. The advantage of these two types of

information fusion stems from the fact that multiple sets of feature vectors extracted from

the same set of objects usually reflect different characteristics of patterns. By fusing mul-

tiple disparate data sources, one generates a more complete representation of the space in

which the objects live, and hence has more power for inferential tasks such as hypothesis
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testing, classification, etc.

In this work, we consider information fusion from a different perspective. Suppose that

objects are measured under multiple conditions—e.g. indoor lighting versus outdoor light-

ing for face recognition, multiple language translation for document matching, etc. The

challenging questions are: (1) how to determine whether a set of feature vectors represent

a single object measured under different conditions? For example, whether pictures taken

under different lighting conditions are the photos of the same individual or not; and (2)

how to create a classifier based on training data measured under one condition, and use it

to classify objects measured in other conditions? We refer the two problems as the implicit

translation problem and the classification problem, respectively. A direct approach would

involve finding the underlying mappings among all the spaces of measurements and trans-

form all these measurements into one commensurate space through the derived mappings.

In this commensurate space, all transformed feature vectors are treated as if they were from

the same data source. The solutions to both questions will then be straightforward. In real

applications, finding the mappings among all spaces of measurements is usually difficult.

In fact, it is possible to fuse multiple spaces into one commensurate space without using the

mappings among these spaces. (Generalized) Procrustes analysis is one potential solution.

Consider a set of objects, each of which is measured underK (K ≥ 2) conditions, yielding

K feature vectors. Assuming all the feature vectors have been column centered, Procrustes

solution rotates (possibly with dilation) the feature vectors to best match each other, and

thereby defines a commensurate space.
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The raw data in text or image analysis are usually high-dimensional. Dissimilarity anal-

ysis is one of the commonly applied approaches for finding low-dimensional representation

of such data. Usually in dissimilarity analysis, one first calculates interpoint dissimilari-

ties to obtain a dissimilarity matrix, and then embeds it into a low dimensional space via

multidimensional scaling. We use a collection of Wikipedia documents to illustrate the

two problems (implicit translation and classification) and the solutions. The two step ap-

proach, which we refer to as the P-approach, first embeds dissimilarity matrices derived

from different data sources and then utilizes a Procrustes transformation on the embed-

dings to make them commensurate. We propose an approach that simultaneously embeds

all dissimilarity matrices and finds the commensurate space. In this approach, dissimilarity

matrices from different data sources are put onto the diagonal of an omnibus matrix, whose

off-diagonal entries are imputed. Embedding this omnibus matrix results in feature vectors

in one commensurate space. We refer this approach as the W-approach. Both approaches

are studied in this work, and the results on Wikipedia example show that the W-approach

leads to larger powers in testing and higher accuracy in classification, compared to the P-

approach.

In Section 4.2, we describe the Wikipedia data set, the derivation of dissimilarity ma-

trices, and the implicit transformation and classification problems. Section 4.3 details the

traditional Procrustes solution and the proposed W-approach. The results are given in Sec-

tion 4.4. Section 4.5 provides conclusions.
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4.2 Data

Wikipedia is an open-source Encyclopedia that is written by a large community of users

(everyone who wants to, basically). There are versions in over 200 languages, with various

amounts of content. The full data for the Wikipediae are freely available for download.

A Wikipedia document has one or more of: title, unique ID number, text—the content of

the document, images, internal links—links to other documents, external links—links to

other content elsewhere on the web, and language links—links to “the same” document

in other languages. Figure 4.1 shows an English Wikipedia document titled “Geometry”.

The multilingual Wikipediae provide a good testbed for developing methods for analysis

of text, implicit translation, and fusion of text and graph information.

Figure 4.1: “Geometry”, an example of English Wikipedia documents. In general, a

Wikipedia document has one or more of: title, unique ID number, text, images, internal

links, external links, and language links.
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4.2.1 Dissimilarities from Graph Structure and Textual

Content

Let G = (V,E) be a (directed) graph, where V is the set of nodes—Wikipedia doc-

uments, and E is the set of edges—the links within the documents. We consider two

Wikipediae, English and French. A subset of the English and French Wikipediae is ex-

tracted such that there is an 1-1 correspondence between English documents and French

documents. From the English subset, we take the (directed) 2-neighborhood of the doc-

ument “Algebraic Geometry”, yielding set E = {x1,0, . . . ,xn,0} (n = 1382). The asso-

ciated documents in French constitute set F = {x1,1, . . . ,xn,1}. Thus, the English graph

with nodes in E is connected by construction, but the French graph with nodes in F need

not be connected (and in fact it is not). We consider two types of data, both of which are

given in the form of dissimilarity matrices denoted generically as D0 and D1: (1) dissimi-

larity matrices G0 and G1, developed from the graph structures of E and F respectively;

(2) dissimilarity matrices T0 and T1, obtained from the textual contents of E and F re-

spectively.

To get dissimilarity matrices from graph structure, the adjacency matrices A0 and A1

are first created from E and F . An adjacency matrix is a square binary matrix, with 1 in

position (i, j) only when the ith document contains an link to the jth document. Dissimi-

larity matrices G0 and G1 are then derived from A0 and A1, with (i, j) entry as the number

of steps it takes to reach node j from node i. By the nature of the graphs, the elements of
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G0 take values in {0, . . . , 4}, while the elements of G1 take values in {0, . . . , 1384}, with

1384 meaning no directed path between two nodes. Because it is computationally expen-

sive to develop G1, in practice we assign the value 6 to G1(i, j) if it takes more than 4

steps to reach node j from node i. Finally, G0 and G1 are symmetrized by averaging the

corresponding lower- and upper-triangle entries, respectively.

For dissimilarity matrices of textual content, we use Lin & Pantel’s approach [43,48] on

Wikipedia documents E and F to obtain two mutual information feature matrices. Rare-

word discounting [43] is then applied to reduce the impact of infrequent words. Given

feature vectors of two documents a, b ∈ Rd, a dissimilarity function ρ is defined as

ρ(a, b) = 1 − (a · b)/(‖a‖2‖b‖2). Employing ρ on the two feature matrices of E and

F separately results in two dissimilarity matrices T0 and T1.

When a new English document y0 and a new French y1 are provided, we have access to

the dissimilarities (for both graph structure and textual content) between y0 and xi,0, and

those between y1 and xi,1, i = 1, . . . , n. Therefore the Wikipeida data set contains four

dissimilarity matrices G0,G1, T0 and T1, and each new document yk will be represented

by a dissimilarity vector {δ(yk,xi,k)}ni=1, k = 0, 1. (δ is a dissimilarity function.)

4.2.2 Implicit Translation and Classification

An implicit translation of a document, unlike a word-level or a real translation in any

normal sense, is an association with another document in a different language that is on

the same topic. In our framework, we treat each topic as an object with measurements
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(documents) taken under different conditions (languages). That is, topics are represented

by documents of different languages. Consider the two collections of matched Wikipedia

documents E = {x1,0, . . . ,xn,0} and F = {x1,1, . . . ,xn,1}. Let xi,0 ∼ xi,1 denote that

the English document xi,0 and the French document xi,1 are matched—they are the mea-

surements (under K = 2 conditions) of the same topic. The goal of implicit translation is

to determine whether a match is present between two new documents y0 and y1. That is,

we consider the hypothesis testing:

H0 : y0 ∼ y1 versus HA : y0 � y1

Notice that we assume the two new documents represent a matched pair under H0. This

allows us to control the probability of missing a true match. This is practical in many

applications where computer algorithms are used to eliminate easily rejected pairs and the

remaining possibly matched pairs will be manually examined.

The second problem is to classify French documents by a classifier trained on English

documents. Formally, consider two manifolds, Ξ0 and Ξ1. Let

(X,C,Z) ∼ FX,C,Z ,

C : Ω→ C ∪ C̃,

Z : Ω→ {0, 1},

X|Z = z : Ω→ Ξz,
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where C and C̃ are two disjoint sets of class labels. Suppose the following training data are

available

T0 = {(xi, ci ∈ C, zi = 0), i = 1, . . . , n0},

T1 = {(xi, ci ∈ C, zi = 1), i = 1, . . . , n1},

T̃0 = {(xi, ci ∈ C̃, zi = 0), i = 1, . . . ,m0}.

That is, there are training data from all the classes C ∪ C̃ in space Ξ0, but in space Ξ1 only

training data from classes C are available. We are interested in creating a classifer g based

on the training data and use it to classify future observations in Ξ1 into one of the classes

in C̃. Figure 4.2 depicts the classification problem.

manifold
matching

ϕ

Ξ0 Ξ1

X|Z = 1, C ∈ C̃
to be classified

g

Figure 4.2: Classification problem. In space Ξ0 training data from classes C (red) and C̃

(blue) are available, while in space Ξ1 only training data from classes C are available. We

are interested in training a rule g to classify objects of classes C̃ in space Ξ1. It is impossible

to directly create such a classifier in Ξ1 due to lack of training data.

We consider Ξ0 and Ξ1 to be the English and French Wikipedia document space, respec-
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tively. The 1382 Wikipedia documents are labeled into 5 groups. The two disjoint sets of

class labels are C = {0, 1, 2} and C̃ = {3, 4}. We are interested in finding a way to create

a classifier based on English documents and use it to classify French documents.

4.3 Methods

For the implicit translation problem, suppose that there is a way to embed E ∈ Ξ0 and

F ∈ Ξ1 into a commensurate space Ξc, where the embeddings of English and French docu-

ments would be treated equally, as if they were collected under the same condition. We can

embed the two new documents y0 and y1, referred to as the out-of-sample documents, into

the space Ξc. Whether a match is present is then determined by examining the distance be-

tween the embeddings of y0 and y1, with a large distance being evidence againstH0. There

are two ways to determine critical values. The naïve way is to treat the distances between

the embeddings of matched pairs in E and F as the ground truth, and use the 100(1− α)th

percentile as the critical value for a level α test. However, this method does not always

lead to large powers, because the distribution of the distances between out-of-sample em-

beddings is usually slightly different from that of the original embeddings, even under the

matched assumption H0. Another way of obtaining critical values is by means of Monte

Carlo simulation: (i) randomly choose a pair of matched documents xi,0 and xi,1 from

E and F , and treat them as out-of-sample documents; (ii) embed the selected documents

into the space Ξc, and compute their distance; and (iii) repeat (i—ii) to obtain an empirical
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distribution of such distances. The critical value for a level α test is then calculated as the

100(1−α)th percentile of this empirical distribution. We use the latter method in this work

and get larger powers than using the naïve approach.

For the classification problem, suppose a commensurate space Ξc could be obtained

through T0 and T1—English and French documents of classes C. We can embed the train-

ing English documents T̃0 and the new French documents into the space Ξc. In the com-

mensurate space Ξc, building classifier g based on English documents with labels in C̃ and

using it to classify new French documents are then straightforward.

Therefore the key to both problems is: how shall we determine the commensurate space

Ξc and how shall we embed new documents into this space?

4.3.1 Procrustes Transformation

Procrustes analysis [49, and references contained therein] is to transform a configura-

tion of points (source) to another (target) as closely as possible in the least-square sense.

The permitted transformations are any combination of dilation (uniform scaling), rotation,

reflection, and translation. We define the space where the target and the transformed source

live as the commensurate space.

For the implicit translation problem, we embed D0 and D1 through multidimensional

scaling to obtain n× d configurations X0 and X1 in the space Rd separately. The two new

documents y0 and y1 are then embedded to ỹ0 and ỹ1 in Rd respectively via out-of-sample

embedding [20]. Notice that the coordinates in X0 and X1 may be given in different sys-
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tems. Procrustes analysis is performed to transform one of the embeddings—e.g., X1—to

best match the other one—e.g., X0. The resulting transformation function t is then applied

to the corresponding out-of-sample embedding ỹ1 so that t(ỹ1) and ỹ0 are commensurate.

For the classification problem, a similar procedure is performed. Let DC0 and DC1 denote

the dissimilarity matrices among documents in T0 and T1. We embed DC0 and DC1 to XC0

and XC1 in Rd respectively. Then the English documents in T̃0 and the new French docu-

ments, whose class labels belong to C̃, are embedded toX C̃0 andX C̃1 in Rd respectively via

out-of-sample embedding. Procrustes transformation function tC learned from XC0 and XC1

is then applied toX C̃1 so that tC(X C̃1 ) andX C̃0 are commensurate.

We refer this approach as the P-approach.

4.3.2 Our Approach

The P-approach creates the commensurate space in two steps, namely embedding and

Procrustes transformation. In this section, we introduce a novel method, which defines the

commensurate space in one step.

Suppose that we have access to a 2n × 2n dissimilarity matrix, which consists of the

pairwise dissimilarities among documents in E ∪ F = {x1,0, . . . ,xn,0, x1,1, . . . ,xn,1}.

Then the embedding of this dissimilarity matrix is a 2n × d data matrix, with the first

n rows being the embedding of E and the rest the embedding of F . In addition, the

embeddings of E and F are in the same space—the commensurate space. The question

is how we obtain the 2n × 2n omnibus dissimilarity matrix. In implicit translation, we
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impute W, the dissimilarities between E and F , by the entrywise average of D0 and D1.

That is, the dissimilarity between the English document xi,0 and the French document xj,1

is imputed as the average of the two dissimilarities: the dissimilarity between the English

documents xi,0 and xj,0, and the dissimilarity between the French documents xi,1 and

xj,1. An omnibus dissimilarity matrix M is then constructed by putting D0 and D1 on the

diagonal, and putting W on the off-diagonal. We embed M to obtain a configuration of

2n points X in Rd. We take the first n points and the remaining n points as embeddings of

D0 and D1, respectively. Notice that X0 and X1 are already in the same space Ξc, because

the distances between matched English and French document pairs have been taken into

account when embedding M—the imputed matrix W has all zeros on its diagonal. For any

two additional documents y0 and y1, let u0 and v1 denote the dissimilarity vector between

y0 andE, y1 andF , respectively. Under the null hypothesis that y0 and y1 are matched, we

impute the dissimilarities between y0 andF (denoted by v0), and dissimilarities between y1

andE (denoted by u1) by entrywise average of u0 and v1. That is, v0 = u1 = (u0+v1)/2.

Out-of-sample embedding is used to embed (ut0,v
t
0)t and (ut1,v

t
1)t into Ξc. Figure 4.3

depicts the construction of the omnibus dissimilarity matrix M.

In the classification problem, similarly we create omnibus matrix MC from DC0 , DC1 and

the imputed matrix WC = (DC0 +DC1)/2. The omnibus matrix MC is then embedded into a

commensurate space Ξc. To embed out-of-sample English documents in T̃0, we first impute

the dissimilarity between xi,0 ∈ T̃0 and xj,1 ∈ T1 by the average of the dissimilarities

between xj,1 and xi,0’s 3 nearest neighbors in T0. (These dissimilarities can be found
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Figure 4.3: We impute W, the dissimilarities between E and F , by (D0 + D1)/2 to

construct M, which is then embedded into the space Ξc. We impute u1 and v0 by (u0 +

v1)/2. Finally, out-of-sample embedding is used to embed (ut0,v
t
0)t and (ut1,v

t
1)t into Ξc.

in WC .) All the imputed dissimilarities are stored in DC̃C01 . The dissimilarities between

documents in T̃0 and T0 are given by DC̃C0 , and the dissimilarities among T̃0 are given by

DC̃0 . Trosset and Priebe’s out-of-sample embedding approach [20] is then used to embed

T̃0 into the space Ξc. Similarly, new French documents of classes C̃ are embedded into

Ξc. Figure 4.4 depicts the construction of the omnibus dissimilarity matrix MC and how to

out-of-sample embed documents in T̃0.

We refer this approach as the W-approach.

4.3.3 Fusion

We consider one additional step, to combine the data of textual content and graph struc-

ture. Ideally both sources of data contain complementary information so that their fusion

leads to larger power in testing and higher accuracy in classification than using either tex-

tual content data or graph structure data alone. We achieve the fusion by combining the
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Figure 4.4: We impute WC , the dissimilarities between documents in T0 and T1, by (DC0 +

DC1)/2 to construct MC , which is then embedded into the space Ξc. The dissimilarities

between documents in T̃0 and T0 are given by DC̃C0 (DCC̃0 is the transpose of DC̃C0 ). The

dissimilarity between xi,0 ∈ T̃0 and xj,1 ∈ T1 are imputed by the average of the WC

entries that are corresponding to xi,1 and xi,0’s 3 nearest neighbors in T0. All the imputed

dissimilarities are stored in DC̃C01 (DCC̃10 is the transpose of DC̃C01 ).
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embeddings obtained in the P- or W-approach via the Cartesian product [5].

4.4 Results

To compute critical values and estimate powers in hypothesis testing, we randomly se-

lect two pairs of matched documents fromE and F . That is, we leave out four documents,

two from each language, and they result in two matched pairs and two non-matched pairs.

(Notice that in a real problem we only need to leave one matched pair out to get critical

values; leaving two matched pairs out makes it also possible to estimate testing powers.)

The approaches introduced in Section 4.3 are then applied to obtain the distances between

the two matched pairs (denoted by d0), and the distances between the two non-matched

pairs (denoted by dA). We use Classical Multidimensional Scaling (CMDS) [17, 50] in the

embedding. Embedding dimension d = 6 is determined by Zhu and Ghodsi’s automatic

dimensionality selection [45]. We use ranks of the distances dA based on 200 Monte Carlo

simulations to estimate the powers for different levels of α, where the power βα is the prob-

ability of rejecting the null hypothesis when rejection is in fact the correct decision and α

is the probability of missing a true match. That is, for each α ∈ [0, 1], the critical value cα

is defined as the (100α)th percentile of d0, and the corresponding power is the percentage

of distances in dA that are larger than the critical value cα. The power at level α is our

performance in determining that a non-match is in fact a non-match. The β against α ROC

curves are shown in Figure 4.5. For example, at α = 0.05 (missing 5% of the true matches),
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we obtain a power of β̂W -fusion = 0.560 (correctly eliminating 56% of the false matches)

via W-fusion. This is a statistical significant improvement over the results obtained sans

fusion (β̂P -G = 0.135, β̂P -T = 0.379, β̂W -G = 0.403, β̂W -T = 0.468. See Figure 4.5).
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Figure 4.5: The ROC curve depicts that W-approach is generally superior to P-approach; T

is generally superior to G; Fusion is generally superior to either G or T alone.

As mentioned in Section 4.3, the commensurate space Ξc in the classification problem

is determined by DC0 and DC1 . Training English documents in T̃0 and new French docu-

ments are then embedded into Ξc. We consider two types of association relations between

T0 and T1, 1-to-1 association and group association. When assuming 1-to-1 association,

we use the information of 1-to-1 correspondence between the training English and French

documents with classes in C; while for group association, we use only the class label infor-

mation between English and French documents, but not use the 1-to-1 relationship between

them. Introducing group association between T0 and T1 makes it possible to define a com-
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mensurate space through non-matched English and French documents. When assuming

group association, in P-approach we learn transformation matrix through the group means

of embeddings, while in W-approach we impute the dissimilarities among same group by

0s and those between different groups by the dissimilarities between group means.

In the commensurate space, we train a linear classifier g based on the embedding of T̃0.

We then apply g to the embeddings of new French documents. Classification errors are

given in Table 4.1. It is clear that W-approach results in smaller classification errors than

P-approach. But combining data from graph structure and text content does not, in general,

improve performance.

Assocation P-G P-T P-fusion W-G W-T W-fusion
1 – 1 0.417 0.496 0.493 0.300 0.285 0.282

Group 0.404 0.470 0.470 0.301 0.069 0.122

Table 4.1: Given the association between the training data T0 and T1, one-to-one or group-

to-group, we transform Ξ0 and Ξ1 into one commensurate space by P- or W-approach.

A linear disscriminant classifier is then created based on T̃0 and then tested on T̃1. The

symbols G and T indicate that the Graph and Text data, respectively.

4.5 Conclusion and Discussion

We have discussed two problems regarding fusion from multiple data sources in a com-

mensurate space:

1. how to determine whether a set of feature vectors represent a single object measured
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under different conditions?

2. how to create a classifier based on training data measured under one condition in

order to classify objects measured in other conditions?

The key to both problems is to construct a commensurate space, where the (transformed)

feature vectors of different sources are comparable and would be treated as if they were col-

lected under the same condition. Two approaches were studied. In P-approach, embedding

dissimilarity matrices and defining a commensurate space are performed separately. W-

approach achieves the two procedures simultaneously, by constructing an omnibus dissim-

ilarity matrix. Applying both approaches on Wikipedia data set showed that W-approach

leads to higher hypothesis testing powers in the implicit translation problem and smaller

errors in the classification problem, compared to P-approach.

4.5.1 Procrustes Transformation and Embedding with Raw

Stress

In the P- and W-approaches, we have used classical multidimensional scaling to em-

bed dissimilarity matrices. In this section, we investigate the relation between the two-step

P-approach—embedding dissimilarity matrices and performing Procrustes translation to

best match the embeddings—and the one-step W-approach—performing embedding and

matching simultaneously—in conjunction with raw Stress as the criterion function for em-

bedding. We show that the two-step approach and the one-step approach result in same
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embeddings in the limit, and the one-step approach has an advantage—-by managing a

weight parameter of the criterion function, one has more flexibility in determining the op-

timization problem: as the weight goes to 0, one gets embeddings the same as what he/she

would get via the P-approach; as the weight increases, one put more penalty on the non-

matchness of the two embeddings. We hope to shed some light on why the W-approach in

conjunction with classical multidimensional scaling leads to better performances than the

P-approach in the inferential tasks we introduced in this chapter.

Consider two n× n dissimilarity matrices ∆1 = [δ
(1)
ij ] and ∆2 = [δ

(2)
ij ]. Let X1 and X2

denote the two corresponding n × p configuration matrices obtained by separately mini-

mizing raw Stress (4.1) and (4.2) with the constraint that X1 and X2 have column means

equal to 0,

σr(X1) =
∑

i<j

[
dij(X1)− δ(1)

ij

]2

, (4.1)

σr(X2) =
∑

i<j

[
dij(X2)− δ(2)

ij

]2

. (4.2)

Let

Q = arg min
PtP=PPt=I

‖X1 −X2P‖2, (4.3)

X̃2 = X2Q, (4.4)

X =
[
Xt

1 X̃t
2

]t
∈ R2n×p. (4.5)
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For ε > 0, let Yε = [Yt
1 Yt

2]
t ∈ R2n×p be a configuration obtained by minimizing

L(Y, ε) =
∑

i<j

[
dij(Y1)− δ(1)

ij

]2

+
∑

i<j

[
dij(Y2)− δ(2)

ij

]2

+ ε‖Y1 −Y2‖2 (4.6)

= σr(Y1) + σr(Y2) + ε · s(Y) (4.7)

with the constraint that Y1 and Y2 have column means equal to 0. Let Y0 = limε→0 Yε.

Theorem 4.5.1. Y0 is equal to X, up to rotation and reflection.1

Proof. Let A denote the set of Y = [Yt
1 Yt

2]
t ∈ R2n×p that minimizes

σr(Y)
def.
= σr(Y1) + σr(Y2)

with Y1 and Y2 having column means equal to 0.

Let Ỹ = arg min
Y∈A

s(Y) = arg min
Y∈A

‖Y1 −Y2‖2. Notice that because X is equal to Ỹ

up to rotation and reflection, it is sufficient to show that Y0 is equal to Ỹ, up to rotation

and reflection.

To show that Y0 is the same as Ỹ, up to rotation and reflection, it is sufficient to show

that

lim
ε→0

L(Ỹ, ε)− L(Yε, ε) = 0, (4.8)

and

lim
ε→0

σr(Yε)− σr(Ỹ) = 0. (4.9)

1In case that more than one global minimum configuration exist [19, 13.4], after taking into account
rotation and reflection, the two sets of minimum configurations should be the same.
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Consider (4.8), L(Ỹ, ε) − L(Y, ε) ≥ 0, because Yε minimizes L(Y, ε). On the other

hand,

L(Ỹ, ε)− L(Y, ε) (4.10)

= σr(Ỹ) + ε · s(Ỹ)− [σr(Yε) + ε · s(Yε)] (4.11)

= ε[s(Ỹ)− s(Yε)] + [σr(Ỹ)− σr(Yε)] (4.12)

≤ ε[s(Ỹ)− s(Yε)] (4.13)

≤ ε · s(Ỹ). (4.14)

Notice that in (4.12), σr(Ỹ)− σr(Yε) ≤ 0. This is because Ỹ minimizes σr(Y). Hence,

0 ≤ L(Ỹ, ε)− L(Y, ε) ≤ ε · s(Ỹ).

Taking the limit as ε→ 0, we have

0 ≤ lim
ε→0

L(Ỹ, ε)− L(Yε, ε) ≤ lim ε · s(Ỹ) = 0.

Therefore,

lim
ε→0

L(Ỹ, ε)− L(Yε, ε) = 0.

Consider (4.9), because

0 = lim
ε→0

L(Ỹ, ε)− L(Yε, ε) = lim
ε→0

ε[s(Ỹ)− s(Yε)] + lim
ε→0

[σr(Ỹ)− σr(Yε)],

and

lim
ε→0

ε[s(Ỹ)− s(Yε)] = 0,
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we have

lim
ε→0

[σr(Ỹ)− σr(Yε)] = 0.
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Chapter 5

Combining Multiple Dissimilarity

Matrices in Shape Analysis

Among other areas, dissimilarity representation is widely used in shape analysis. In this

chapter, we study the problem of combining multiple dissimilarity matrices derived from

the same set of shapes for classification purpose.

5.1 Introduction

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) techniques [51–53]

compare and quantize morphometric changes in shapes. They assign dissimilarities on the

space of anatomical images in Computational Anatomy. Thereby they provide a way to

analyze shapes—by performing statistical analysis on the LDDMM dissimilarities. For a
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set of shapes, there are three types of LDDMM dissimilarity measures, namely LDDMM-

Volume, LDDMM-Surface and LDDMM-Landmark. From the names we can tell that

these measures focus on different aspects of the shapes—they aim to perform a non-rigid

deformation between two shapes by representation of their volume (all voxels), surface (all

voxels on the surface) and a set of landmarks, respectively. Applying the three LDDMM

dissimilarity measures on a set of shapes results in three dissimilarity matrices. In this

chapter, we compare and combine the three dissimilarity matrices in the context of classi-

fication. Toward this end, we simulate 3 groups of 3D phantom shapes with 100 shapes in

each group. A main advantage of using computer-generated phantom shapes rather than

real Magnetic Resonance Imaging (MRI) images in studying LDDMM dissimilarities is

that the exact anatomy and class membership of the phantom are known, thus providing a

gold standard from which to evaluate the various LDDMM procedures. Other advantages

include (1) phantom shapes can be quickly obtained with low cost, while to prepare a set

of real (segmented) MRI images typically take months, if not years and is very expensive;

(2) phantom shapes are constructed to be independent and identically distributed (i.i.d.).

However, real data are messy. They could be collected or pre-processed under different

conditions. This fact does not satisfy most statistical procedures that require i.i.d. data; (3)

real shapes are usually not of the same scale/size. They need to be re-scaled and aligned

before applying LDDMM procedures. This step could introduce additional variance to the

LDDMM dissimilarities.
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5.2 Data

5.2.1 3 Classes of 3D Phantom Shapes

Consider the unit cube Ω = [0, 1]3 as the 3D background space. We first generate

3 base shapes with the resolution 32 × 32 × 32: an ellipsoid, a broken ellipsoid and an

elliptic cylinder. Random noises are then added to these base shapes. We finally smooth

out the isolate points to obtain the phantom shapes that we shall apply the various LDDMM

procedures on. Notice that all the 3-class objects are generated based on the first 3 base

shapes.

The 3 base shapes are generated within Ω and centered at (1
2
, 1

2
, 1

2
). The ellipsoid is

parametrized by a, c, the equatorial radii along the x and z axes, and b, the polar radius

along y axis. The broken ellipsoid is obtained by excluding from the ellipsoid the points that

are inside a ball centering at (0, 1
2
, 1

2
) with radius r. And the elliptic cylinder is constructed

by belting the ellipsoid. That is, the elliptic cylinder consists of all the points that are within

both the ellipsoid and an elliptic column, whose major and minor radii are proportional to a

and c. Figure 5.1 shows a sketch of the three base shapes. Notice that the three base shapes

are of the same position, scale and orientation. The random phantom shapes generated

based on them should retain same properties. Equations (5.1–5.3) are the mathematical

formulas we use to generate the 3 base shapes. The specific parameters we use are

a =
1

6
, b =

2

5
, c =

1

10
; r =

11

30
; h =

3

10
.
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Figure 5.1: The three base shapes are all within the unit cube Ω = [0, 1]3 and centered at

(1
2
, 1

2
, 1

2
). The ellipsoid (left) is parametrized by a, c, the equatorial radii along the x and

z axes, and b, the polar radius along the y axis; the broken ellipsoid (middle) is obtained

by excluding from the ellipsoid the points that are inside a ball centered at (0, 1
2
, 1

2
) with

radius r; and the elliptic cylinder (right) consists of all the points that are within both the

ellipsoid and an elliptic column, whose major and minor radii are proportional to a and c

(ã/a = c̃/c =
√

1− (h/2b)2).

Ellipsoid:
(x− 1

2
)2

a2
+

(y − 1
2
)2

b2
+

(z − 1
2
)2

c2
≤ 1. (5.1)

Broken Ellipsoid:





(x− 1
2
)2

a2
+

(y − 1
2
)2

b2
+

(z − 1
2
)2

c2
≤ 1,

(x+
1

2
)2 + (y − 1

2
)2 + (z − 1

2
)2 ≥ r2.

(5.2)
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Elliptic Cylinder:





(x− 1
2
)2

a2
+

(y − 1
2
)2

b2
+

(z − 1
2
)2

c2
≤ 1,

(x− 1
2
)2

a2
(
1− ( h

2b
)2
) +

(z − 1
2
)2

c2
(
1− ( h

2b
)2
) ≤ 1.

(5.3)

We then add random noises to the 3 base shapes to obtain n 3-class shapes (n = 300),

with 100 objects in each class. Conventionally this is achieved by randomly moving each

point on the shapes generated basing on the formulas (5.1–5.3) toward any direction by ε

voxels (ε ∈ {0, 1}). Alternatively, we directly add random noises to the coordinates of grid

points to obtain (x+ εx, y+ εy, z+ εz), which are then used to generate shapes according to

the mathematical formulas (5.1–5.3). The three random variables εx, εy, εz are independent

and uniformly distributed on {− 1
32
, 0

32
, 1

32
}.

To avoid isolate points and harsh surfaces, a finial smoothing step is performed. We

determine whether to keep a point v (e.g. the center point in Figure 5.2) by the number of

points that are within the 26 nearest neighbors of v and are also on the shape. We keep the

point v only if that number is greater than a threshold, which we choose to be 20. Figure 5.3

shows some of the final phantom shape examples.

5.2.2 LDDMM Dissimilarity Matrices

The essential idea of the LDDMM approaches aims to model the space of shapes as a

Riemmannian manifold with metric structure, which results from the assumption that the
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v

Figure 5.2: We determine whether to keep the center point v on the shape by examining

the surrounding 26 black points. The point v is retained only if 20 or more out of its 26

neighbors are on the shape.

(a) Ellipsoid (b) Broken ellipsoid (c) Elliptic cylinder

Figure 5.3: An example of smoothed shapes from the three classes.
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shapes are an orbit under a group of diffeomorphisms (1-1 and onto transformations with

inverses that are smooth) [23, and references therein]. For any pair of shapes I and J , there

exists a flow of diffeomorphisms gt, t ∈ [0, 1] transforming one shape to the other g ·I = J .

The diffeomorphisms are solutions of ordinary differential equations ġt = vt(gt), t ∈ [0, 1]

with g0 = id the identity map, and associated vector fields vt, t ∈ [0, 1]. The dissimilarity

between I and J is given by the length of the shortest or geodesic curve through the space

of shapes generated from I connecting to J . The dissimilarity takes the form

ρ(I, J)2 = inf
v: ġt=vt(gt), g0=id

∫ 1

0

‖vt‖2
V dt, (5.4)

such that g · I = J . In practice, a cost function, c(g · I, J)
def.
= ‖g · I − J‖2

L2 , measuring

the difference between the mapped anatomical shape I and the target shape J is introduced

in calculating the diffeomorphic mapping g between I and J . The variational problem

becomes

arg min
v: ġt=vt(gt)

(∫ 1

0

‖vt‖2
V dt+ ‖g · I − J‖2

L2

)
, (5.5)

and the dissimilarity is still given by (5.4). More detailed references for different versions

of LDDMM procedures can be found from [53] for LDDMM-Volume, [54] for LDDMM-

Surface, and [55, 56] for LDDMM-Landmark.

The landmark points on a 3D shape are defined as following: we select the head and the

tail (the two points corresponding to ymax and ymin), then five slices between them, with four

landmarks at four quadrants of each slice. The five slices are cut at y = (10, 30, 50, 70, 90)th

percentiles of (ymin, ymax).
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5.3 Statistical Analysis of LDDMM

Dissimilarity Matrices

5.3.1 Obtain Dissimilarity Matrices

Applying three LDDMM procedures (LDDMM-Volume, LDDMM-Surface and LDDMM-

Landmark) on the n (n = 300) phantom shapes, respectively, generates three n×n dissim-

ilarity matrices ∆V , ∆S and ∆L. Figures 5.4 shows the density estimates of the dissimilar-

ities within and between different classes (only upper-triangle of the dissimilarity matrices

are used for within-class density estimates).

5.3.2 Classification

We consider the task of classification based on dissimilarities.

For each dissimilarity matrix ∆, we consider constructing classifiers in three differ-

ent ways: (1) applying 3-nearest neighbors rule on dissimilarities directly; (2) embedding

∆ into X ∈ Rn×d and creating 3-nearest neighbors rule using X; and (3) embedding ∆

into X ∈ Rn×d and using the Linear Discriminant Analysis (LDA). Leave-one-out cross-

validation is used to compare the performance of these classifiers. We embed ∆V , ∆S and

∆L to obtain XV ∈ Rn×100, XS ∈ Rn×100 and XL ∈ Rn×50 via classical multidimensional

scaling. To alleviate the curse of dimensionality, we use the automatic dimensionality se-

lection introduced in [45] to reduce the dimensionality of X before creating classifiers. The
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Figure 5.4: Density estimates of dissimilarities within and between different classes.
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classification errors are shown in Table 5.1. We can see that (i) LDA on embeddings results

in smaller errors than the other two classifiers; (ii) LDDMM-Surface dissimilarity data has

more class information than LDDMM-Volume and LDDMM-Landmark dissimilarity data.

We note that the two findings are based on our particular experiment settings and they may

not be generally true.

3-NN 3-NN (d) LDA (d)
Volume 0.517 0.680 (42) 0.467 (42)
Surface 0.513 0.510 (32) 0.300 (32)
Landmark 0.603 0.627 (21) 0.490 (21)

Table 5.1: Classification errors for 3-class problem. The first column corresponds the 3-

NN applied directly on dissimilarities, the second and third columns correspond to the

3-NN and LDA applied on the embeddings of dissimilarity matrices. The dimensionali-

ties d used in building classifiers (3-NN or LDA) in the embedding space are provided in

parenthesis. We can see that (i) LDA on embeddings results in smaller errors than the other

two classifiers; (ii) LDDMM-Surface dissimilarity data has more class information than

LDDMM-Volume and LDDMM-Landmark dissimilarity data.

5.3.2.1 Fusion

Using the approach introduced in Chapter 3, we combine ∆S and ∆L, as well as all the

three matrices—∆V , ∆S and ∆L. The classification error from using surface and landmark

data is 0.15, and the classification error from using all three matrices is 0.17. Both errors

are smaller than the errors from each single data alone. However, adding volume data to
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the combination of surface and landmark data clearly is not helpful.
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Chapter 6

Conclusions and Future Work

This dissertation has introduced the dissimilarity framework for combining multiple

disparate sources of data. This framework has the following advantages over traditional

feature-level fusion techniques:

• For some types of data, such as hyperspectral images, text data, contours or shapes,

data represented by trees or graphs, it is hard to extract meaningful features, while it

is natural or probable to compute pairwise dissimilarities. In these scenarios, feature-

level fusion techniques are not applicable, while combining in the dissimilarity space

has no such problem.

• Features extracted from disparate data sources are of different types and character-

istics. The resulting Cartesian product space is complicated and hence difficult to

model. Combining such features for statistical inferential purposes is usually not

feasible.
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• Feature-level fusion techniques usually contain two steps: (1) extract meaningful

features from every data source, and (2) combine all the features into a Cartesian

product space. A favorable feature-level fusion technique should consider and op-

timize the two steps together, because combining most informative features in each

space may not lead to an optimal Cartesian product. However, it is usually hard to

consider feature extraction procedure and feature fusion procedure simultaneously.

• Combining in the dissimilarity space also consists of two steps: (1) calculate one or

more dissimilarity matrices for every data source; and (2) combine all the dissimi-

larity matrices. In the first step, one takes advantage of the knowledge of experts in

each area, and unifies disparate types of data into the dissimilarity space. When com-

bining all the dissimilarity matrices, usually one does not need to know the original

data spaces. In other words, the two steps can be optimized separately.

• Feature-level fusion techniques are usually developed specifically for the given prob-

lems and particular types of data, and hence are not generally applicable. While

methods for combining dissimilarity matrices are usually generally applicable for all

problems.

Decision-level fusion techniques combine results separately obtained from each single data

source. They are simple but suboptimal in principle, because joint distribution usually

contains more information than the product of the marginals. Fusion in the dissimilar-

ity framework considers joint distribution to some extent, and therefore is favorable over
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decision-level fusion in many cases.

Despite all the virtues of fusion in the dissimilarity framework, there are many chal-

lenges, too. We have investigated some of them and provided sound solutions.

In Chapter 1, we gave a theoretical foundation for using dissimilarity representations

in statistical pattern recognition. We showed that the probability of error for the best

dissimilarity-based classifier is greater or equal to the Bayes error. That is, L∗δ ≥ L∗.

Moreover, L∗δ depends on both the joint distribution of observations and class labels, and

the dissimilarity measure. That is, L∗δ = L∗ + ε(FXY , δ). We also showed that for discrete

X and a collection of δ’s, the best dissimilarity-based classifier result in same classification

error as the Bayes rule. With the explorations and findings, we wish to shed some light on

why the dissimilarity representation is useful in statistical pattern recognition.

One of the most widely used methods for the dissimilarity representation is to embed

the dissimilarity matrix into a configuration of points (called the embedding) in the Eu-

clidean space via multidimensional scaling. Statistical inferences or classifiers are then

created based on the embedding. Once new data (or the out-of-sample data) are observed,

one can calculate the overall dissimilarity matrix and then embed it. The alternative, and

arguably better, way is to utilize the out-of-sample embedding, which inserts out-of-sample

observations into the space represented by the original embedding in an optimal manner. In

Chapter 2, we introduced the OOSIM (out-of-sample embedding by iterative majorization)

procedure. OOSIM was developed as an natural extension to the multidimensional scaling

technique with the raw stress (SMACOF). We compared OOSIM with Trosset and Priebe’s
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out-of-sample method, an extension to classical multidimensional scaling (CMDS), and

found that T&P’s method is consistent with CMDS, OOSIM is consistent with SMACOF;

both T&P and OOSIM could be used to embed out-of-sample objects even when the within-

sample embedding was not obtained by CMDS or SMACOF. We presented an example for

which OOSIM is more appropriate than T&P.

In Chapter 3, we introduced a method of combining dissimilarity matrices in Carte-

sian product space. The main obstacles in this method are the curse of dimensionality—

due to the high dimensionality of the Cartesian product space—and the parallel cigars

phenomenon—the most discriminative dimensions are not necessarily the dimensions with

largest variances. We developed a new supervised dimensionality reduction approach for

projecting the Cartesian product into a low dimensional space. We applied this approach

on simulation, as well as image and caption data. The results showed that our approach im-

proved classification accuracy compared to the alternatives of principal components analy-

sis and no dimensionality reduction at all.

In Chapter 4, we considered information fusion from a different perspective and dis-

cussed two problems regarding fusion from multiple data sources in a commensurate space:

(1) how to determine whether a set of feature vectors represent a single object measured

under different conditions? (2) how to create a classifier based on training data measured

under one condition in order to classify objects measured in other conditions? The key

to both problems is to construct a commensurate space, where the (transformed) feature

vectors of different sources are comparable and would be treated as if they were collected
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under the same condition. We studied two approaches. The P-approach embeds dissimi-

larity matrices and defines commensurate space separately, while the W-approach achieves

the two procedures simultaneously, by constructing an omnibus dissimilarity matrix. We

applied both approaches on Wikipedia data set and the results showed that the W-approach

led to higher hypothesis testing powers and smaller classification errors, compared to the

P-approach.

The two problems that we considered when studying fusion in a commensurate space

necessarily require data from multiple sources. Hence, fusion in a commensurate space

is sensible while combining in the Cartesian product space is not. In fact, there are cases

where both approaches are applicable. In such cases, which method is more appropriate

is based on the nature of the data. If the multiple data sources are disparate and capture

different aspects of pattern, combining in the Cartesian product space should be expected

to work better. On the other hand, if the multiple data sources intrinsically contain the same

information, fusion in the commensurate space denoises, hence is usually preferred.

Dissimilarity representation is widely used in shape analysis. In Chapter 5, we stud-

ied the problem of combining multiple dissimilarity matrices derived from the same set

of shapes for classification purpose. We introduced a way to generate a collection of 3D

shapes of different groups. Three versions of the Large Deformation Diffeomorphic Met-

ric Mapping (LDDMM) were applied onto the generated shapes, yielding 3 dissimilarity

matrices. Classification results showed that, for the given data, (1) LDDMM-Surface cap-

tures most class information, compared to the other two dissimilarity measures, namely
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LDDMM-Volume and LDDMM-Landmark; (2) a linear classifier trained the embedding

of a dissimilarity matrix performs better than a 3-nearest neighbors classifier trained on

dissimilarities or the embedding; and (3) combining LDDMM-Surface and LDDMM-

Landmark dissimilarity matrices results in more accurate classifiers, but introducing LDDMM-

Volume into the fusion is not beneficial.

Many challenges in combining multiple data in the dissimilarity framework still lie open

for future work.

In Chapter 1, we study the relation between L∗ and L∗δ , and especially focused on dis-

cretely distributed X . We wish to investigate this relation for continuously distributed X

in the future.

In Chapter 2, motivated by the results of the two out-of-sample embedding methods,

OOSIM and T&P, we wish to the develop a general robustness theory indicating which

out-of-sample embedding method is more appropriate in cases where neither CMDS nor

SMACOF is the within-sample embedding methodology.

The J-function approach we introduced in Chapter 3 was developed for the simple two-

class problem. We briefly recommended the possible ways to extend it to C > 2 classes.

But there are still some nontrivial challenges left for future investigation.

Also in Chapter 3, we mentioned that there are three possible ways to combine multiple

dissimilarity matrices and we studied one of them. We wish to study the other two methods

and investigate when and why one method works better than the other two.

Multiple kernel learning has recently been widely studied [57–59]. Kernels are often
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referred to as symmetric, positive definite functions of two variables. They express simi-

larity between objects represented in a feature space, and thereby kernel methods are very

related to the methods we have studied and developed for dissimilarity representation in

this dissertation. We wish to investigate on combining multiple dissimilarity matrices in

context of multiple kernel learning.
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