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ABSTRACT

The discrete prolate spheroidal sequences (DPSS’s) provide
an efficient representation for signals that are perfectly time-
limited and nearly bandlimited. Unfortunately, because of the
high computational complexity of projecting onto the DPSS
basis – also known as the Slepian basis – this representation is
often overlooked in favor of the fast Fourier transform (FFT).
In this paper, we show that there exist fast constructions for
computing approximate projections onto the leading Slepian
basis elements. The complexity of the resulting algorithms is
comparable to the FFT, and scales favorably as the quality of
the desired approximation is increased. We demonstrate how
these algorithms allow us to efficiently compute the solution
to certain least-squares problems that arise in signal process-
ing.

Index Terms— Slepian basis, discrete prolate spheroidal
sequences, fast Fourier transform, signal approximation and
compression

1. INTRODUCTION

The fact that many real-world signals are exactly or approx-
imately bandlimited—or can be made bandlimited via low-
pass filtering—is a key enabler of the Digital Signal Process-
ing (DSP) revolution. Thanks to the Shannon-Nyquist sam-
pling theorem, broad classes of signals (namely, bandlimited
ones) can be sampled without loss of information and pro-
cessed digitally on a computer. Thanks also to the fast Fourier
transform (FFT), a fast algorithm for computing a signal’s dis-
crete Fourier transform (DFT), many of these computations
can be performed quickly even for very large signals.

Unfortunately, the DFT suffers certain shortcomings
when used to represent finite-length sample vectors arising
from bandlimited, or nearly bandlimited, signals. Due to the
well-known problem of spectral leakage, well-concentrated
spectra do not remain well-concentrated when a finite set of
samples are analyzed with the DFT. Though techniques such
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as windowing can be used to mitigate spectral leakage to
some degree, an alternative is to analyze signals instead using
a basis of timelimited discrete prolate spheroidal sequences
(DPSS’s). The DPSS’s are a discrete version of the prolate
spheroidal wave functions studied by Landau, Pollak, and
Slepian in the 1960’s and 1970’s [1–5]. In particular, when
limited in time they provide an orthonormal basis that com-
pactly captures the energy in sampled, bandlimited signals;
we refer to this basis as the Slepian basis and expound on its
properties in Section 2.

In this paper, we show that there exist fast construc-
tions for computing approximate projections onto the lead-
ing Slepian basis elements. For a signal vector of length
N , the computational complexity of these algorithms is
O
(
N logN log 1

ε

)
, where ε represents the accuracy of the

approximation with respect to the ideal Slepian basis. This
compares favorably with the complexity of the FFT, which
is O (N logN). In contrast, the complexity of straightfor-
ward projections onto the exact Slepian basis would scale
with O

(
WN2

)
, where 0 < W < 1

2 represents the digital
bandwidth of the signal of interest. Our algorithms are based
on low-rank approximations to the so-called prolate matrix,
which corresponds to an operator that alternatively time- and
bandlimits a signal. We define this matrix and discuss the
low-rank approximations in Section 3. We also present a new
non-asymptotic bound on the width of the transition region
where the eigenvalues of the prolate matrix transition from 1
to 0. Section 4 then presents the resulting fast algorithms for
(i) projecting a signal onto the span of the relevant Slepian ba-
sis functions, (ii) compressing a signal to the corresponding
low dimension, and (iii) solving systems of linear equations
involving the prolate matrix. In Section 5 below, we show
how this construction can be used to solve least-squares prob-
lems that naturally arise in array processing and other signal
processing applications. In Section 6, we perform an exper-
iment to demonstrate that this construction is faster than the
exact projection.

2. BACKGROUND ON THE SLEPIAN BASIS

To begin, we provide a formal definition of the Slepian basis
and briefly describe some of the key results from Slepian’s



1978 paper on DPSS’s [5]. Given any N ∈ N and W ∈
(0, 12 ), the DPSS’s are a collection of N discrete-time se-
quences that are strictly bandlimited to the digital frequency
range |f | ≤ W yet highly concentrated in time to the index
range n = 0, 1, . . . , N − 1. The DPSS’s are defined to be the
eigenvectors of a two-step procedure in which one first time-
limits the sequence and then bandlimits the sequence. Before
we can state a more formal definition, let us note that for a
given discrete-time signal x[n], we let

X(f) =

∞∑
n=−∞

x[n]e−j2πfn

denote the discrete-time Fourier transform (DTFT) of x[n].
Next, we let BW denote an operator that takes a discrete-time
signal, bandlimits its DTFT to the frequency range |f | ≤ W ,
and returns the corresponding signal in the time domain. Ad-
ditionally, we let TN denote an operator that takes an infinite-
length discrete-time signal and zeros out all entries outside
the index range {0, 1, . . . , N−1} (but still returns an infinite-
length signal). With these definitions, the DPSS’s are defined
in [5] as follows.

Definition 1. Given any N ∈ N and W ∈ (0, 12 ), the DPSS’s
are a collection of N real-valued discrete-time sequences
s
(0)
N,W , s

(1)
N,W , . . . , s

(N−1)
N,W that, along with the corresponding

scalar eigenvalues 1 > λ
(0)
N,W > λ

(1)
N,W > · · · > λ

(N−1)
N,W > 0,

satisfy
BW (TN (s

(`)
N,W )) = λ

(`)
N,W s

(`)
N,W (1)

for all ` ∈ {0, 1, . . . , N − 1}. The DPSS’s are normalized so
that

‖TN (s
(`)
N,W )‖2 = 1 (2)

for all ` ∈ {0, 1, . . . , N − 1}.

One of the central contributions of [5] was to examine
the behavior of the eigenvalues λ(0)N,W , λ

(1)
N,W , . . . , λ

(N−1)
N,W . In

particular, [5] shows that the first 2NW eigenvalues tend to
cluster extremely close to 1, while the remaining eigenvalues
tend to cluster similarly close to 0. This is made more precise
in the following lemma from [5].

Lemma 1. Suppose that W is fixed, and let ρ ∈ (0, 1) be
fixed. Then there exist constants C0 and N0 (which may de-
pend on W and ρ) such that

λ
(`)
N,W ≥ 1− e−C0N (3)

for all ` ≤ 2NW (1− ρ) and all N ≥ N0. Similarly, for any
fixed ρ ∈ (0, 1

2W −1) there exist constants C1 and N1 (which
may depend on W and ρ) such that

λ
(`)
N,W ≤ e

−C1N (4)

for all ` ≥ 2NW (1 + ρ) and all N ≥ N1.

This tells us that the range of the operator BWTN has an
effective dimension of ≈ 2NW . Moreover, with only a few
exceptions near the “transition region” at ` ≈ 2NW , we can
reasonably approximate the eigenvalues λ(`)N,W to be either 1
or 0. This will play a central role throughout our analysis.

Finally, we also note that while each DPSS actually has
infinite support in time, several very useful properties hold
for the collection of signals one obtains by time-limiting the
DPSS’s to the index range n = 0, 1, . . . , N − 1. First, it can
be shown that [5]

‖BW (TN (s
(`)
N,W ))‖2 =

√
λ
(`)
N,W . (5)

Comparing (2) with (5), we see that for values of ` where
λ
(`)
N,W ≈ 1, nearly all of the energy in TN (s

(`)
N,W ) is contained

in the frequencies |f | ≤W . While by construction the DTFT
of any DPSS is perfectly bandlimited, the DTFT of the cor-
responding time-limited DPSS will only be concentrated in
the bandwidth of interest for the first ≈ 2NW DPSS’s. As
a result, we will frequently be primarily interested in roughly
the first 2NW DPSS’s. Second, the time-limited DPSS’s are
orthogonal [5] so that for any `, `′ ∈ {0, 1, . . . , N − 1} with
` 6= `′,

〈TN (s
(`)
N,W ), TN (s

(`′)
N,W )〉 = 0. (6)

Finally, like the DPSS’s, the time-limited DPSS’s have a spe-
cial eigenvalue relationship with the time-limiting and ban-
dlimiting operators. In particular, if we apply the operator TN
to both sides of (1), we see that the sequences TN (s

(`)
N,W ) are

actually eigenfunctions of the two-step procedure in which
one first bandlimits a sequence and then time-limits the se-
quence.

These properties, together with the fact that our focus is
primarily on providing computational tools for finite-length
vectors, motivate our definition of the Slepian basis to be the
restriction of the (time-limited) DPSS’s to the index range
n = 0, 1, . . . , N − 1 (discarding the zeros outside this range).

Definition 2. Given any N ∈ N and W ∈ (0, 12 ), the Slepian
basis is given by the vectors s(0)N,W , s

(1)
N,W , . . . , s

(N−1)
N,W ∈ RN

which are defined by restricting the time-limited DPSS’s to
the index range n = 0, 1, . . . , N − 1:

s
(`)
N,W [n] := TN (s

(`)
N,W )[n] = s

(`)
N,W [n]

for all `, n ∈ {0, 1, . . . , N − 1}. For simplicity, we will often
use the notation SN,W to denote the N ×N matrix given by

SN,W =
[
s
(0)
N,W · · · s

(N−1)
N,W

]
.

Observe that combining (2) and (6), it follows that SN,W
does indeed form an orthonormal basis for CN (or for RN ).
However, following from our discussion above, the partial
Slepian basis constructed using just the first≈ 2NW basis el-
ements will play a special role and can be shown to be remark-
ably effective for capturing the energy in a length-N window



of samples of a bandlimited signal (see [6] for further discus-
sion). In such situations, we will also use the notation SK
to denote the first K columns of SN,W (where N and W are
clear from the context and typically K ≈ 2NW ).

3. ANALYSIS AND APPROXIMATIONS OF THE
SLEPIAN BASIS

In our discussion above we derived the Slepian basis by
following the same approach as in [5] and considering the
time-limitations of the eigenfunctions of the operator given
by BWTN . It is easy to show that an alternative way to derive
SN,W is to consider the eigenvectors of the N × N prolate
matrix BN,W [7], which is the matrix with entries given by

BN,W [m,n] :=
sin 2πW (m− n)

π(m− n)
(7)

for all m,n ∈ {0, 1, . . . , N − 1}. Indeed, BN,W can be un-
derstood as the finite truncation of the infinite matrix repre-
sentation of BWTN . Thus, SN,W contains the eigenvectors
of BN,W and we can write BN,W as

BN,W = SN,WΛN,WS∗N,W

where ΛN,W is an N × N diagonal matrix with the eigen-
values λ(0)N,W , . . . , λ

(N−1)
N,W , along the main diagonal (sorted in

descending order).
Our primary goal is to develop fast algorithms for working

with SN,W (or BN,W , which also arises in many practical
applications). Towards this end, we will begin by examining
the relationship between BN,W and the matrix obtained by
projecting onto the lowest ≈ 2NW Fourier coefficients. To
be more precise, for any f ∈ [− 1

2 ,
1
2 ] we will let

ef :=


ej2πf0

ej2πf1

...
ej2πf(N−1)


denote a length-N vector of samples from a discrete-time
complex exponential signal with digital frequency f . We
then define W ′ such that 2NW ′ is the nearest odd integer to
2NW , and we let FN,W denote the partial Fourier matrix
with the lowest 2NW ′ frequency DFT vectors of length N ,
i.e.,

FN,W =
[
e−(2NW ′−1)/2N · · · e(2NW ′−1)/2N

]
.

Note that the projection onto the span of FN,W is given by
the matrix FN,WF ∗N,W , which has entries given by

[FN,WF ∗N,W ][m,n] =

NW ′− 1
2∑

k=−NW ′+ 1
2

ej2π(m−n)k/N

=
sin(2πW ′(m− n))
N sin(πm−nN )

(8)

for m,n ∈ {0, 1, . . . , N − 1}. Comparing (7) with (8) we see
that BN,W and FN,WF ∗N,W share a somewhat similar struc-
ture, where BN,W is a Toeplitz matrix with rows (or columns)
given by the sinc function, whereas FN,WF ∗N,W is a circu-
lant matrix with rows (or columns) given by the digital sinc or
Dirichlet function. In Theorem 1, we show that up to a small
approximation error ε, the difference between these two ma-
trices has a rank of O(logN log 1

ε ).

Theorem 1. Let N ∈ N and W ∈ (0, 12 ) be given. Then for
any ε ∈ (0, 12 ), there exist N × RL matrices L1,L2 and an
N ×N matrix EF such that

BN,W = FN,WF ∗N,W +L1L
∗
2 +EF ,

where

RL ≤
(

4

π2
log(8N) + 6

)
log

(
15

ε

)
and ‖EF ‖ ≤ ε.

Due to space limitations, the proof of this and the remain-
ing results will be deferred to an upcoming publication. We
also note that the proof of Theorem 1 provides an explicit con-
struction of the matrices L1 and L2, which could be of use in
practice.

An important consequence of Theorem 1 which will be
useful to us, and which is also of independent interest, is that
it can be used to establish a nonasymptotic bound on the num-
ber of eigenvalues λ(`)N,W of BN,W in the “transition region”
between ε and 1−ε. In particular, Lemma 1 tells as that in the
limit asN →∞ we will have that the first≈ 2NW eigenval-
ues will approach 1 while the last ≈ N(1− 2W ) eigenvalues
will approach 0. However, this does not address precisely how
many eigenvalues we can expect to find between ε and 1− ε.
One can show that for any fixed ε ∈ (0, 12 ) and W ∈ (0, 12 ),
the number of eigenvalues such that ε ≤ λ

(`)
N,W ≤ 1 − ε is

O(logN log 1
ε ) as N → ∞. In [5], it is shown that for any

constant b, if we fix k =
⌊
2NW + b

π logN
⌋

and letN →∞,
then λ(k)N,W → (1 + eπb)−1. By setting b = 1

π log( 1ε − 1), we

get λ(k)N,W → ε. Similarly, setting b = − 1
π log( 1ε − 1) yields

λ
(k)
N,W → 1− ε. This gives the following asymptotic result:

#{` : ε ≤ λ(`)N,W ≤ 1− ε} ∼ 2

π2
logN log

(
1

ε
− 1

)
.

A nonasymptotic bound on the width of this transition
region is given in [8], which shows that for any N ∈ N,
W ∈ (0, 12 ), and ε ∈ (0, 12 ),

#{` : ε ≤ λ(`)N,W ≤ 1− ε} ≤
2
π2 log(N − 1) + 2

π2
2N−1
N−1

ε(1− ε)
.

This bound correctly highlights the logarithmic dependence
on N , but can be quite poor when ε is very small (O(1/ε)
as opposed to the O(log(1/ε)) dependence in the asymptotic



result). In the following corollary of Theorem 1, we signifi-
cantly sharpen this bound in terms of its dependence on ε to
within a constant factor of the optimal asymptotic result. The
intuition behind this result is that Theorem 1 demonstrates
that BN,W can be approximated as FN,WF ∗N,W (a matrix
whose eigenvalues are all either equal to 1 or 0) plus a low-
rank correction, and the rank of this correction limits the num-
ber of possible eigenvalues in the transition region.

Corollary 1. For any N ∈ N, W ∈ (0, 12 ), and ε ∈ (0, 12 ),

#{` : ε < λ
(`)
N,W < 1−ε} ≤

(
8

π2
log(8N) + 12

)
log

(
15

ε

)
.

Finally, we describe one additional consequence of these
results. Recall that BN,W = SN,WΛN,WS∗N,W . From
Corollary 1 we have that the diagonal entries of the matrix
ΛN,W are mostly very close to 1 or 0, with only a small num-
ber of eigenvalues lying in between. Thus, recalling that SK
denotes the N × K matrix containing the first K elements
of the Slepian basis SN,W , it is reasonable to expect that
BN,W and SKS∗K (the matrix obtained by setting the top
K eigenvalues to 1 and the remainder to 0) should be within
a low-rank correction when K ≈ 2NW . The following
corollary shows that this is indeed the case.

Corollary 2. Let N ∈ N and W ∈ (0, 12 ) be given. For any
ε ∈ (0, 12 ), fix K to be such that λ(K−1)N,W > ε and λ(K)

N,W <
1 − ε. Then there exist N × RU matrices U1,U2 and an
N ×N matrix ES such that

SKS∗K = BN,W +U1U
∗
2 +ES ,

where

RU ≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
and ‖ES‖ ≤ ε.

4. FAST COMPUTATIONS WITH THE
APPROXIMATE SLEPIAN BASIS

Suppose we wish to compress a vector x ∈ CN of N uni-
formly spaced samples of a signal down to a vector of K ≈
2NW elements in such a way that best preserves the DTFT
of the signal over |f | ≤ W . We can do this by storing S∗Kx,
which is a vector of K < N elements, and then later recov-
ering SKS∗Kx, which contains nearly all of the energy of
the signal in the frequency band |f | ≤ W . However, naı̈ve
multiplication of SK or S∗K takes O(NK) = O(2WN2)
operations. For certain applications, this may be intractable.

The following theorem gives us a way to approximate this
method of data compression/recovery usingO(N logN log 1

ε )
operations.

Theorem 2. Let N ∈ N and W ∈ (0, 12 ) be given. Fix an
integer K and a tolerance ε ∈ (0, 12 ) such that λ(K−1)N,W > ε

and λ(K)
N,W < 1−ε. Then there existN×K ′ matrices T 1,T 2,

where

K ′ ≤ d2NW e+
(
12

π2
log(8N) + 18

)
log

(
15

ε

)
,

such that ‖T 1T
∗
2 − SKS∗K‖ ≤ 2ε, and T 1 and T ∗2 can be

applied to a vector in O
(
N logN log 1

ε

)
operations.

The proof of Theorem 2 follows by combining The-
orem 1 and Corollary 2. Specifically, we can set T 1 =[
FN,W L1 U1

]
and T 2 =

[
FN,W L2 U2

]
. The

matrices FN,W and F ∗N,W can be applied in O(N logN)
operations via the FFT. Also, the matrices L1,L2,U1,U2

are of size N ×O(logN log 1
ε ), and so, L1,L

∗
2,U1,U

∗
2 can

be applied in O(N logN log 1
ε ) operations.

Alternatively, if we only require computing the projected
vector SKS∗Kx, and compression is not required, then there
is a simpler solution, given by the following theorem.

Theorem 3. Let N ∈ N and W ∈ (0, 12 ) be given. Fix an
integer K and a tolerance ε ∈ (0, 12 ) such that λ(K−1)N,W > ε

and λ(K)
N,W < 1− ε. Then, there exists an N ×N matrix P̂K

such that ‖P̂K − SKS∗K‖ ≤ ε, and P̂K can be applied to a
vector in O

(
N logN log 1

ε

)
operations.

The proof of Theorem 3 follows almost immediately from
Corollary 2. Specifically, we let P̂K = BN,W + U1U

∗
2.

This matrix can be applied to a vector in O(N logN log 1
ε )

operations because it is the sum of a Toeplitz matrix and a
factored low rank matrix. The low rank update simply adjusts
the eigenvalues of BN,W which are not within ε of 1 or 0.

A closely related problem to working with the matrix
SKS∗K concerns the task of solving a linear system of the
form y = BN,Wx. Since the prolate matrix has several
eigenvalues that are close to 0, the system is often solved by
using the rank-K truncated pseudoinverse of BN,W where
K ≈ 2NW . Even if the pseudoinverse is precomputed and
factored ahead of time, it still takes O(NK) = O(2WN2)
operations to apply to a vector y. The following theorem
gives us a way to approximately apply the truncated pseu-
doinverse of BN,W using O(N logN log 1

ε ) operations.

Theorem 4. Let N ∈ N and W ∈ (0, 12 ) be given. Fix an
integer K and a tolerance ε ∈ (0, 12 ) such that λ(K−1)N,W > ε

and λ
(K)
N,W < 1 − ε. Let B†N,W be the rank-K truncated

pseudoinverse of BN,W . Then, there exists an N ×N matrix

B̂
†
N,W such that ‖B̂

†
N,W −B†N,W ‖ ≤ 3ε, and B̂

†
N,W can be

applied to a vector in O
(
N logN log 1

ε

)
operations.

The proof of this theorem is similar to the proof of Theo-

rem 3. Specifically, we let B̂
†
N,W = BN,W + V 1V

∗
2, where

V 1V
∗
2 is a low rank correction which adjusts the eigenvalues

of BN,W which are not within ε of 1 or 0. Note that V 1,V 2

are the same size as U1,U2.



5. SOLVING LEAST-SQUARES PROBLEMS
The fast projection techniques discussed above give us an ef-
ficient way to manipulate a set of consecutive samples of a
bandlimited function. We first consider the prototype prob-
lem of estimating a continuous-time signal xc(t) from a finite
number of equally spaced samples. If xc(t) is bandlimited
to F Hz, it can be represented without loss from the samples
xd[n] = xc(nT ) for all n ∈ Z, when TF =: W < 1/2. Let
IN : `2(Z) → CN denote the index-limiting operator that
restricts a sequence to its entries on n = 0, 1, . . . , N − 1 (and
produces a vector of length N ). If we observe N of these
samples, at n = 0, . . . , N − 1, then our observations can be
written as

y = IN (xd) = IN (BW (xd)) = A(xd),

where we have combined the bandlimiting and index-limiting
operators into one linear operator A : `2(Z) → CN . Given
y, we would like the least-squares estimate of xd:

minimize
x∈`2(Z)

∞∑
n=−∞

|x[n]|2 subject to A(x) = y.

The solution to this problem is given by the pseudo-inverse
of A, x̂ = A†y. It is easy to check that x̂ = A†y =
A∗(B†N,Wy), where A∗ is the adjoint of A:

[A∗(v)][m] =

N−1∑
k=0

v[k]
sin(2πW (m− k))

2πW (m− k)
.

So the N -vector B†N,Wy completely defines the infinite-
length sequence that is least-squares optimal; with B†N,Wy
in hand, we can use the expression above to compute as
many samples of x̂ as we like. Furthermore, for any v, the
mapping from v to M samples of A∗(v) itself specified
by a partial Toeplitz matrix, and can be implemented effi-
ciently. Theorem 4 above shows us that the key computation
of B†N,Wy can be computed (to a very good approximation)
in O(N logN log 1

ε ) time.
A key application of the least-squares problem comes

from imaging a reflectivity field z(θ), θ ∈ [−π/2, π/2] us-
ing a linear array with N elements that are equally spaced.
If the scene is probed by emitting a narrow-band sinusoid
from a fixed point (the array origin, say), the response at
array element n, for n = 0, . . . , N − 1 can be interpreted
as a sample of the continuous-time Fourier transform of
z′(τ) = z(arcsin(2τ))/

√
1− 4τ2, τ ∈ [−1/2, 1/2]. Since

this function is supported only on [−1/2, 1/2], its Fourier
transform is “bandlimited”, and can be estimated in its en-
tirety by solving the least-squares problem above.

6. NUMERICS
To test our fast projection method, we fix the half-bandwidth
W = 1

4 and the tolerance ε = 10−3, and vary the sig-
nal length N over several values between 64 and 4096.
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Fig. 1. Average time needed for the naı̈ve exact and fast ap-
proximate Slepian projections.

For each value of N we randomly generate several length-
N vectors and project each one onto the span of the first
K = round(2NW ) elements of the Slepian basis using
both the exact projection matrix SKS∗K and the fast pro-
jection matrix P̂K = BN,W + U1U

∗
2. The prolate matrix

is applied to x via an FFT whose length is the smallest
power of 2 that is at least 2N . Over all values of N , and all
randomly generated vectors x, the maximum relative error
‖P̂Kx−SKS∗Kx‖2/‖x‖2 was less than 4.2× 10−4. A plot
of the average time needed to project a vector onto the span of
SK using both the exact projection and the fast projection is
shown in Figure 1. The time required by the exact projection
grows quadratically with N , while the time required by the
fast projection grows a bit faster than linearly in N .
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