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ABSTRACT 
Linear representations and linear dimension reduction techniques 
are very common in signal and image processing. Many such ap- 
plications reduce to solving problems of stochastic optimizations 
or statistical inferences on the set of all subspaces, i.e. a Grass- 
mann manifold. Central to solving them is the computation of an 
"exponential" map (for constructing geodesics) and its inverse on a 
Grassmannian. Here we suggest efficient techniques for these two 
steps and illustrate two applications: (i) For image-based object 
recognition, we define and seek an optimal linear representation 
using a Metropolis-Hastings type, stochastic search algorithm on 
a Grassmann manifold. (ii) For statistical inferences, we illustrate 
computation of sample statistics. such as mean and variances, on a 
Grassmann manifold. 

1. INTRODUCTION 

Studies of linear systems is very common in all branches of sci- 
enwand engineering. Linear systems are both easier to design and 
analyze, and hence, linear approximations of more general sys- 
tems are quite popular. High dimensional systems are commonly 
studied after undergoing linear dimension reduction. Examples in- 
clude image component analysis where images are projected onto 
low-dimensional (linear) subspaces, such as principal subspaces 
or independent component subspaces, before statistical algorithms 
are applied. In signal processing, the problems of transmitter de- 
tection and tracking using sensor array data are intimately related 
to estimatiodtracking of principal subspaces of the observed data. 
Such problems, and many others, are now being viewed as those 
of optimization or inferences on Grassmann manifolds, the sets of 
linear subspaces of a vector space. 

Consider. the Grassmann manifold of all k-dimensional sub- 
spaces of W", denoted by &+. Several textbooks describe the 
structure of &,k with a focus on its geometry and CaIcuIUs. Edel- 
man et al. I1 1 use the differential geometry of Grassman and other 
orthogonally constrained manifolds in order to provide gradient 
solutions to optimization problems. Srivastava et al. derived the 
geodesics and analyzed the associated structure via Lie group the- 
ory [Z, 31 for addressing the problem of subspace tracking as that 
of nonlinear filtering on G , , , k .  Liu et al. (41 have described a 
stochastic gradient technique for solving an optimization problem 
on G,,,k relating linear representations of images. 

In this paper we focus on deriving efficient algorithms for use 
in above-mentioned applications. Towards that goal, a convenient 
approach is to view A,* as the quotient space SO(n) / (SO(k)  x 
SO(n - I;)) where SO(n) is the Lie group of R x n real-valued 
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rotation matrices. A Lie group is a differentiable manifold with 
a group structure. SO(n) forms a group with matrix multiplica- 
tion as the group operation. If subspaces by represented by their 
orthonormal bases in W n X k ,  then the equivalence with respect to 
the subgroup SO(n - k) is already accounted for and only the 
subgroup SO(k)  needs to be removed. In other words, for an 
orthonormal basis S E W " x k ,  all the bases conrained in the set 
{SO : O E SO(k)},  called the orbit of S, span the same subspace 
and should be treated as equivalent Figure 1 pictorially illustrates 
this idea where each subspace, corresponding to an equivalence 
class of bases, is denoted by a vertical line. 

An advantage of this approach is to utilize well-known results 
from Lie group theory in deriving algorithms on SO(n). It is well 
known that geodesic paths on SO(n) are given by one-parameter 
exponential flows, i.e. t c exp(tB), where B E W"'" is a skew- 
symmetric matrix. Viewing &k as a quotient space of SO(n) 
one can specify geodesics on !&.k as well. Geodesics in SO(n) 
are also geodesics in G,.,k as long as they are perpendicular to 
the orbits generated by the subgroup SO(k)  X SO(n - k). This 
implies that geodesics in g , , k - a r e  given by one-parameter expo- 
nential flows t c exp(tB) where skew-symmetric B is further 
restricted to be of the form 

Please refer to 131 for details. Superscript T denotes the matrix 
transpose. The sub-matrix A specifies the direction and the speed 
of geodesic flow. In Figure I ,  the flows should be horizontal, or 
perpendicular to the vertical orbits, to be geodesics in &,k.  

Geodesics are central to solving several problems on 4 , r .  For 
instance, the solution of an optimization problem can be achieved 
using a piecewise-geodesic flow driven by a gradient vector field 
[I]. Gn,r becomes a memc space using the geodesic lengths as 
a metric, or one can define means and covariances of probabil- 
ity distributions on G.,k using geodesic paths. There are two key 
computations that are needed in evaluating geodesics on &,k.  Let 
SO, S,  be two k-dimensional subspaces of W", represented by 
the bases So and SI, respectively, and let A E W ( n - k ) x k  be 
any matrix. The process generated by the one-parameter flow 
e(t) = Q e x p ( t B ) J ,  where Q E SO(n) such that.QTSo = J 

and J = [ Ik , 1, is a geodesic flow in Fn,k that starts from 

SO. Here, B is the skew-symmetric, block-diagonal mamx given 
inEqn. 1.  

We outline three specific tasks for which we provide.efficient 
algorithms. These tasks are required in any problem of optimiza- 
tion or statistical inferences on G n , k .  

n-k k 

' 

1. Task 1: Given the skew-symmetric and block-diagonal sUuc- 
ture of B (Eqn. 1). we are interested in a technique for effi- 
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Fig. 1. A pictorial illustration of Grassmann manifold as a quo- 
tient space. So and SI are bases of two different k-dimensional 
subspaces of W". Geodesics in  &,k flow perpendicular to the or- 
bits. 

cient computation of Q ( t ) ,  for several values o f t ,  without 
resorting to the full O(n3)  exponentiation of B. In Figure 
I,  this task amounts to computing the horizontal (broken) 
line starting from SO. 

2. Task 2: Given SO and SI, one is often interested in finding 
an appropriate direction manix A such that geodesic along 
that direction, and starting at So,  reaches SI in unit time . 
In Figure 1 the goal is to find the direction B (and hence A) 
of geodesic flow from one orbit to another. 

3. Task 3: Given SO and SI, find the geodesic path * that 
starts from So and passes through the orbit of SI in unit 
time. This can be accomplished using the first two tasks but 
in cases where we do not need to make explicit the direction 
A of the geodesic flow, it can be done mom efficiently. 

The first computation is for exponentiation while the second one is 
for its inverse or "logarithm" on Gn.k. In this papzr, we utilize the 
geometry of Gn,k and some past results from linear algebra, the 
CS decomposition in particular, to derix efficient algorithms for 
these two computations. Then, we demonsudte these ideas in the 
context of two applications, one in image component analysis and 
image-based object recognition and other in computing statistics 
from sample points on & , k ,  

on 5 n , k  and uses standard results from linear algebra to address the 
three tasks outlined earlier. Section 4 presents two applications of 
these ideas in image analysis and sample statistics. 

This paper is organized as follows: Section 2 analyzes geodesics 

2. ALGORITHMS FOR EFFICIENT COMPUTATIONS 

Let So and SI be two matrices in RnXk whose columns are or- 
thogonal bases for the k-dimensional spaces SO and SI and Q = 
( s o  CO) be an n. x n orthogonal completion of So. The com- 
putation of Q. given SO, is discussed later in Section 2.1. Let 
UTV? be a singular value decomposition (SVD) of the k x k 
matrix STS1. This decomposition is important for several rea- 
sons. First, it helps in finding the nearest elements on the orbit of 
SI given any element on the orbit of So. For instance, the element 
nearest to So is S,fiUT while the element nearest to SOUIVF is 

SI itself as shown in Figure 1.  Secondly, elements of r relate to 
the angles of rotation from So to S1. 

As Figure 1 suggests, the geodesic connecting So and SI can 
be stated in several similar ways dependingJpon the starting Eoint. 
A convenient way is to connect the bases S o  = SOU, and SI = 
SIVI, the so-calledcan~~nlcolboses. ThegeodesicQ(t) = Q e x p ( t B ) J  
can k re-written in terms of the canonical bases by multiplying on 
right by Ul:  

" ( t )  = Qexp(tB)QTgo 
- 

= QUR(t)UTQTSo (2) 

where exp(tB) = UR(t)UT. The matrix U E SO(n) is block 

diagonal U = ( :2 ) , where U1 is as defined earlier and 

U2 E SO(n - k ) .  The mattix R(t) E W""" takes the form: 

The matrices r(t), C ( f )  E R k x k  are diagonal and nonnegative 
with elements 7, = cas(t0,) and U. = sin(t0,) for 0 5 8, 5 
. . . 5 8 k  5 1rJ2 respectively. These 0,s from the angles of rota- 
tion from SO to SI. A similar characterization of this geodesic flow 
can also be reached using the ideas presented in 151. Substituting 
for R(t)  in Eqn. 2, we obtain: 

- 
Q ( t )  = QUR(t)UrJUi = Q U R ( t ) J  

where Oz is an (n - k) x k matrix made up of the first k columns 
of U2. In this notation, it can be shown that the sub-matfix A E 

where Q is a diagonal matrix with elements given by 0;s. 
From a practical viewpoint, computation of geodesics in Gn,k 

must have cpmplexity far below the O(n3) implied by the expres- 
sion exp(tB).  Rotating from one k-dimensional space or basis to 
another can involve at most 2k directions since, in the worst case, 
all 5 original directions must be replaced by k new ones. The form 
of R(t)  and the fact that B can have a rank of at most 2k (Eqn. 1) 
also support that idea. Therefore, we seek an algorithm that uses 
O(nkz) computations for computing geodesics and related terms. 
Furthermore, if it is necessary to evaluate the geodesic at many 
values o f t ,  the cost per point must be kept to O(nk). Fdelman et 
al. [ 11 sugest  a form of geodesic that satisfies these computational 
constraints when the initial basis Q(0)  is given along with a direc- 
tion * ( O )  E W n x k .  We seek computationally efficient algorithms 
for use in related situations. 

Now we return to the three tasks laid out in the introduction. 
In all these cases we are given SO and need to determine a comple- 
tion Q such that QTSo = J .  This computation can be performed 
in  O(nk2) computations as described later in Section 2.1. 

Task 1: Here we are given: (i) a basis SO for the initial subspace 
So on &,k and (ii) a matrix A E R("-k) x k that determines 
direction of geodesic flow. The goal is to be sample the resulting 
geodesic at v c o u s  values of t including t = 1. 

Let A = U2QUT be the compact SVD of the direction matrix. 
From this decomposition, we can determine r(t) and C( t ) ,  and 
along with 0 2 ,  UI substitute them back in Eqn. 3 to evaluate Q(t).  

B ( " - k ) X k .  insidethemanixB(Eqn. 1)hastheSVDA = U20UT, 
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This idea is computationally feasible for evaluating only a small 
number of pints  on the geodesic due to the O(nkz)  cost of apply- 
ing Q. If the number of p i n t s  to be evaluated is l i y e ,  the follow- 
ing approach can be utilized. Since F(t) = Q exp(tB)JU,,  we 
have 

i ( 0 )  = Q ( -5 ) Ut = - C o h 0  = -DQ 
- 

(4) 

For D 5 CO& Therefore, 
- 
a(t)  = soulr(t) - (cOOz)c(t) = soulr(t) - D q t ) .  (5) 

To compute B(t), first compute D using Q, A, 0, and Ut (Eqn. 
4), and then substitute them in Eqn. 5.  An important advantage of 
using the geodesic between the canonical bases, as opposed to any 
other bases, is that the two matrices T(t) and C ( t )  are diagonal 
only for this representation. In the interest of numerical stability 
one can combine the two steps to obtain the second term in Eqn. 5 
as F(O)(Q-'E(t)) more reliably. 

The matrix D can be computed titst in O(nkz)  operations and 
then the cost of evaluating B(t) at each v d u e  o f t  follows with 
O(nk) operations. 

Task 2: Here we are given two bases, S o  and S1, for the initial 
and tinal subspaces on the gecdesic, and the goal is to find the 
direction matrix A E W ( " - k ) x k  of the reodesic connecting the - - 
two subspaces. 

We first compute QTSl and then compute its thin CS decom- 
position, i.e., 

This decomposition costs O(nkz) and may also be viewed (and 
computed) as a generalized SVD 161. Now A is easily recovered 
by determining 0 via the arcsin or arccos that is numerically re- 
liable given the size of the angle, and evaluating A = U20UF. 
A can be also computed via a numerically more sensitive form 
A = -YV11C-'BUT. Note that if we have E; = 0 (or close to 
it) then the i-th diagonal element of C-'Q is set to 1 in order to 
compute the correct values in A. 

Task 3 Here we are given bases, SO and SI, for the initial-and 
final spaces on the geodesic, and the goal is to be sample B(t )  
For several values o f t  without explicitly computing the direction 
matrix A. 
- From the SVD of $SI = UJVT and Eqn. 2, B(t) = 
Sor(t) - DC( t )  where D is as defined earlier. Clealy, we cannot 
afford to compute all of the large matrix D but as before we need 
the direction D in order to have a cost per t value of O(nk) .  We 
do not have AJO may not use the technique of Task 1. We do, 
however, have SI = SIVI. Evaluating the flow at time t = 1, we 
have SI = Sor(1) - DC(l), and 

D 
- 

-DC(l) = SI - zoSor(1) . 
- Now the gecdesic flow can be written as: T(t) = $r(t) + 
Dn(t) ,  where n(t) f E(l)-'C(t). If Ei is small we set w,(t) = 
sin(t&)/sin(E;) t in order to improve numerical reliability. 
The computation of requires O(nk) and the recurring cost is 
also O(nk). 

2.1. Key Computational Steps 

The algorithms discussed above achieve the required complexity 
of O(nk2) preprocessing with O(nk) cost per time point when 
sampling the geodesic curve. Algorithms for the SVD can be im- 
plemented reliably [6] and the computation of principal angles and 
vectors is addressed by BjOrck and Golub 171. Stewart discus.ses a 
reliable algorithm to determine the CS decomposition io P I ,  and 
the work of Paige and Wei [91 provides useful generalizations. 

The transformation Q can be computed via Householder re- 
flectors with a complexity of O(nk2) 161. Its form can be chosen 
so that its application to an n x k matrix also requires O(nk2 
However, we can reduce the complexity of pmducing Q to 0 k 

( LT CTS& ). where G E SO(k) and chosen so that L E 
R'" li is triangular with negative diagonal elements. This requires 
O(k3) computations and we have 

2. 
while insuring stability if we rotate the basis for SO, i.e., GTSo $ 2  - 

L - h  ( I - L ) - ' (  L T - I k  GTS$ ) ,  T 
=In - ( W2G ) 

STQo = ( ST, S s  ) Qo = ( STSoGT S g  + ZTGTS& ) 

where ( L  - b ) Z  = ( GTSTS1 - SII ). 

3. APPLICATIONS 

We present two applications of the efficient algorithms described 
earlier. One relates to tinding the best linear representation of im- 
ages for application in image-based object recognition, while the 
second deals with computing means and covariances on Grass- 
mann manifolds. 
1. Optimal Component Analysis: High dimensionality of ob- 
sewed images implies that the task of recognizing objects (From 
images) will generally involve excessive memory storage and com- 
putation. It also prohibits effective use of statistical techniques in 
image analysis since statistical models on high-dimensional spaces 
a e  both difficult to derive and to analyze. This motivates a search 
for representations that can reduce image dimensions or induce 
representations that are relatively invariant to the unwanted pelrur- 
bations. One idea is to project images linearly to some pie-defined 
low-dimensional subspace, and use the projected values for ana- 
lyzing images. Fox instance, let S be an n x k orthogonal matrix 
denotinga basis ofak-dimensional subspaceof W" (n >> k),  and 
let I bz an image reshaped into an n x 1 vector. Then, the vector 
a ( I )  = U T I  E Wk becomes a k-dimensional represe$ation of I. 
In this setup, several bases including principal component analysis 
(FCA) and Fisher discriminant analysis (FDA) have widely been 
used. Although they satisfy some optimality criteria, they may not 
necessarily bz optimal for a spaific application at hand. 

We are interested in using l inea representations of images in 
recognition of objects from their images, and define F ( S )  to the 
recognition performance on a data set resulting fmm choosing S 
for projecting images intoBk (see [4] fordetails). We seekoptimal 
subspace: S = argmaxsEO,,.r F(S) ,  and utilize the following 
algorithm to solve for it. 

Algorithm 1 Stochastic Gradient Serurh: Lzf X ( 0 )  E G..k be 
any inifial condition. Sef t = 0. 

1 .  Calculare rhe gradient direcrion mfrix A(Xt) ofF using 
numerical approximarions as described in [4]. 
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2. Generare k(n - k) independenr realizarions, wijs, fmm 
standard n o m 1  densir). Calculate 0 candidate value Y 
according to V(1) rraningfmm X t  in rhedirecrion o f ( A +  
O W )  (Task I ) .  

3. Cornpure F(Y) ,  F(Xt), andser dF = F ( Y )  - F(Xt) .  
4. Ser Xt+l = Y withpmbabilifymin{exp(dF/Dt), l}, else 

5. Decrease the temperature Dt to Dt+l, se1 t = t + 1, and 

Shown in Figure 2 are four examples of F ( X t )  plotted versus the 
time t, each starting from a different initial condition. 

set Xt+l = Xt. 

go ro Step 1. 

118181“m6 ItershmO 

(a) (b) 

Fig. 2. Plots of F ( X t )  (top) and geodesic distance of Xt from X O  
(bottom) versus t for different initial conditions. (a) Xn =PCA, 
(b)Xo = ICA. For these curves, n = 154 and I; = 5. 

2. Sample Statistics of Subspaces: Any problem of statistical 
inference on requires computation of sample statistics. In 
view of the nonlinearity of &k. it is not straightforward to de- 
fine and compute e\’en basic statistics such as means and covari- 
ances. There are two types of definitions popularly used : (i) Ex- 
trinsic statistics, where G, ,k  is embedded in a larger Euclidean 
space, statistics are computed in this larger space and then pro- 
jected back to A , k  [IO]. Non-uniqueness of embedding leads to 
non-uniqueness of statistics although the computations are rela- 
tively simple here. (ii) Intrinsic statistics, where the Riemannian 
SrmCtUre of &k is used to define uniquely statistics of interest 
[I I]. The computation of intrinsic mean requires an iterative pro- 
cedure with a need for both exponentiation and logarithm in each 
step. An algorithm for computing intrinsic mean and covariance 
of subspaces with orthonormal bases Si E W n X k ,  i = 1 , .  . . , m 
on 0n.k is stated next. 

Algorithm 2 Ser j = 0. Choose some rime increment t 5 b. 
Choose a point pn E Gn,k as an inirial guess ofthe mean. (For 
eranrple, one could jusr take WO = Si.) 

1. For each i = 1,  . . . , m choose rhe rangent vecror B; E 
T P j ( A , k )  which is rangent ro rhe shorresr geodesicfmm 
p j  ro Si. and whose n o m  is equal ro rhe lengrh of rhis 
shonesr geodesic (Task 2). The vecror B = Bi fom 
the direction nlatrixfor updaring p i .  

Flowfor rime e along the geodesic which srans at p j  and 
hos velociry vector B (Task I ) .  Call rhepoint where you end 
up p j + l ,  i.e. pj+i = * ‘ ( e )  staning ar p j  in rhe direction 
given by B. 
Ifconverged, set p = p j .  Else set j = j + 1, andgo lo Step 
1. 

Similar ro Srep I ,  compute the direcrions B;sfor geodesics 
f m m  p ro Sis. Extract the sub-marrices A;sfmm B;s, and 
compute rheir sample covariance matrix afer  convening 
Ais into column vectors. 

4. CONCLUSION 

We have presented efficient algorithms for two key tasks in solving 
problems on Grassmann manifolds: computation of exponential 
map for evaluating geodesics, and computation of its inverse for 
direction finding. Our current work focuses on numerical stability 
of these algorithms in the context of applications in image analysis. 
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