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❖ In recent years, Internet memes (or simply memes) have emerged as one of the most frequently 
circulated entities on social media platforms.

❖ Interpreting memes is a challenging task:
➢ The semantics of memes often depend upon implicit world knowledge
➢ Two memes can have same image (and vice versa) but can convey entirely different 

semantics 
➢ Annotating memes is challenging - “Subjective Perception Problem1”

Humor, Sarcasm, (-) Sentiment Neutral

1Zhao, S.; Ding, G.; Huang, Q.; Chua, T.-S.; Schuller, B. W.; and Keutzer, K. 2018. Affective Image Content Analysis: A Comprehensive Survey. In IJCAI, 5534–5541
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Problem Statement:

❖ A meme M is an image consisting of two modalities – a background image I and some text T at 
the foreground, referring to a specific situation.

❖ GIven a meme M, we analyze the emotion of memes on three dimensions:
➢ Sentiment classification - positive, negative, or neutral
➢ Affect classification - humor, sarcasm, offense, motivation, or a combination of the four 

affects
➢ Affect quantification - what is the quantification of the expressed affect. {0, 1, 2, 3}

❖ Dataset: Memotion 1.0 dataset2, released in SemEval-2020 shared task on ‘Memotion Analysis’

2Sharma, C.; 2020. SemEval-2020 Task 8: Memotion Analysis- the Visuo-Lingual Metaphor! In SemEval-2020, 759–773.
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Related Work:

❖ Multimodal Fusion: Early Fusion, Late Fusion, 
Hybrid Fusion
➢ Early Fusion directly integrates multiple 

sources of data into a single feature vector
➢ Late Fusion refers to the aggregation of 

decisions from multiple sentiment classifiers
➢ Hybrid Fusion employs an intermediate 

shared representation

 

Visualization of fusion techniques (source: Duong 
et al.3, 2017)

❖ Meme Emotion Analysis: SemEval-2020 Task 8 Memotion Analysis - top participants used 
FFNN, Naive Bayes, ELMo, MMBT, BERT for textual modality and Inception-ResNet, Polynet, 
DenseNet and PNASNet for visual modality.

3Duong C T.; 2017. Multimodal Classification for Analysing Social Media.
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Contributions:

❖ We leverage correspondence between a meme and its constituent texts depending upon 
the spatial locations.

❖ We propose MHA-Meme, an attentive framework that effectively selects and utilizes 
complementary features from textual and visual modalities to capture multiple aspects of 
emotions expressed by a meme.

❖ We report state-of-the-art results for all the three tasks.

❖ We establish the interpretability of MHA-Meme using LIME framework.
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MHA-Meme:

Principle Components:

● Text Encoder
● Image Encoder
● Multi-hop Attention
● ATMF
● Classifier
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● Text Encoder: BiLSTM [H = (h1, h2, ……, hn)] 
● Image Encoder: VGG-19 [F = (f1, f2, ……, fm)]

● Image Encoding Filter:
○ We want to extract complementary features from textual and visual modality
○ The OCR-extracted text and the text in the image do not establish a direct correspondence
○ This Image Encoding Filter block outputs refined image features, U = (u1, u2, ……, um),

filtering redundant information from two modalities

● Multi-hop Attention: Originally proposed by Lin et al. (2017)4 - helps in capturing all different 
semantics expressed by a meme; applied on top of image and text features. 

● Attention-based Multi-modal Fusion (ATMF): Same modality may have different 
contribution for different meme samples; computes modality specific attention score.

4Lin, Z.; Feng, M.; Santos, C. N. d.; Yu, M.; Xiang, B.; Zhou,B.; and Bengio, Y. 2017. A structured self-attentive sentence embedding.
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Implementation Details:
● Memotion Analysis’ dataset contains 6601 training 

samples and 1879 test samples. Additionally, we to 
validate the generalizability of MHA-Meme, we collected 
and annotated an additional set of 334 memes.

● To alleviate data imbalance, we applied larger weights 
to minority classes in cross-entropy loss.

Our Implementation is publicly available at    
https://github.com/LCS2-IIITD/MHA-MEME

Scan here:

https://github.com/LCS2-IIITD/MHA-MEME
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Ablation Results:

● Among unimodal systems, textual modality performs better than visual modality.
● Segmenting the OCR text helps in improving results.
● Multimodal systems outperform unimodal systems.
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State-of-the-art Results for Three Tasks:

On average, MHA-MEME beats 
all the top performing systems in 

the SemEval-20 Memotion 
Analysis Challenge in a range of 

1.5% - 3% Macro-F1 score
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Importance of Different Modules:

● D-Fusion is direct concatenation; AT-Fusion is an attentive framework proposed by (Poria et al. 
2017)5. Our proposed ATMF performs superior to D-Fusion and AT-Fusion in all experiments.

● The incorporation of multi-hops yields ∼2% improvement for different model variants.

5Poria, S.; Cambria, E.;2017b. Multi-level multiple attentions for  contextual  multimodal  sentiment  analysis. In ICDM, 1033–1038. IEEE
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Interpretability of MHA-Meme:
● The prediction probabilities by MHA-Meme on this 

sample corresponding to positive, neutral, and 
negative sentiment classes are 0.683, 0.246, 
0.071. 

● The smiling face of the character, highlighted by 
green pixels, prominently contributes to the 
positive class.

● In text, the words ‘SMILE’ and ‘MORE’ imparts 
positive sentiment. 

● The word ‘SMILE’ has highest attention weight in the 
two segments, supporting the explanations by the 
LIME framework.
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Conclusion:

● In this paper, we addressed three tasks related to the affect analysis of a meme, namely, 
sentiment classification, affect classification, and affect class quantification.

● We propose an attention-rich neural framework (called MHA-Meme) that analyzes the interaction 
between visual and textual modalities at fine-granular level. We design two attention mechanisms 
- a multi-hop attention module for the unimodal feature extraction and an attention-based 
multimodal fusion module for computing the interaction between the two modalities.

● MHA-Meme performs consistently across three tasks on Memotion Analysis dataset. 

● In comparison, baseline systems did not report consistent performance for all the tasks or affect 
dimensions.

 



Thank You! 


