

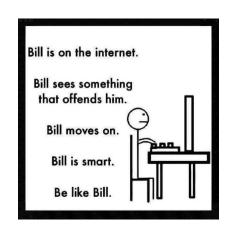
Exercise? I thought you said 'Extra Fries': Leveraging Sentence Demarcations and Multi-hop Attention for Meme Affect Analysis

Shraman Pramanick, Md. Shad Akhtar, Tanmoy Chakraborty Laboratory for Computational Social Systems (LCS2) Indraprastha Institute of Information Technology, New Delhi, India

- In recent years, Internet memes (or simply memes) have emerged as one of the most frequently circulated entities on social media platforms.
- Interpreting memes is a challenging task:
 - > The semantics of memes often depend upon implicit world knowledge
 - Two memes can have same image (and vice versa) but can convey entirely different semantics
 - Annotating memes is challenging "Subjective Perception Problem1"

Humor, Sarcasm, (-) Sentiment

Neutral

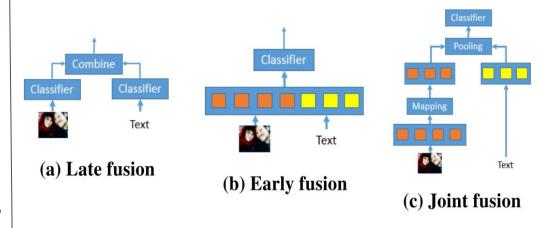


Problem Statement:

- A meme M is an image consisting of two modalities a background image I and some text T at the foreground, referring to a specific situation.
- Given a meme M, we analyze the emotion of memes on three dimensions:
 - > Sentiment classification positive, negative, or neutral
 - Affect classification humor, sarcasm, offense, motivation, or a combination of the four affects
 - > Affect quantification what is the quantification of the expressed affect. {0, 1, 2, 3}
- Dataset: Memotion 1.0 dataset², released in SemEval-2020 shared task on 'Memotion Analysis'

Related Work:

- Multimodal Fusion: Early Fusion, Late Fusion, Hybrid Fusion
 - > Early Fusion directly integrates multiple sources of data into a single feature vector
 - Late Fusion refers to the aggregation of decisions from multiple sentiment classifiers
 - Hybrid Fusion employs an intermediate shared representation



Visualization of fusion techniques (source: Duong et al.³, 2017)

Meme Emotion Analysis: SemEval-2020 Task 8 Memotion Analysis - top participants used FFNN, Naive Bayes, ELMo, MMBT, BERT for textual modality and Inception-ResNet, Polynet, DenseNet and PNASNet for visual modality.

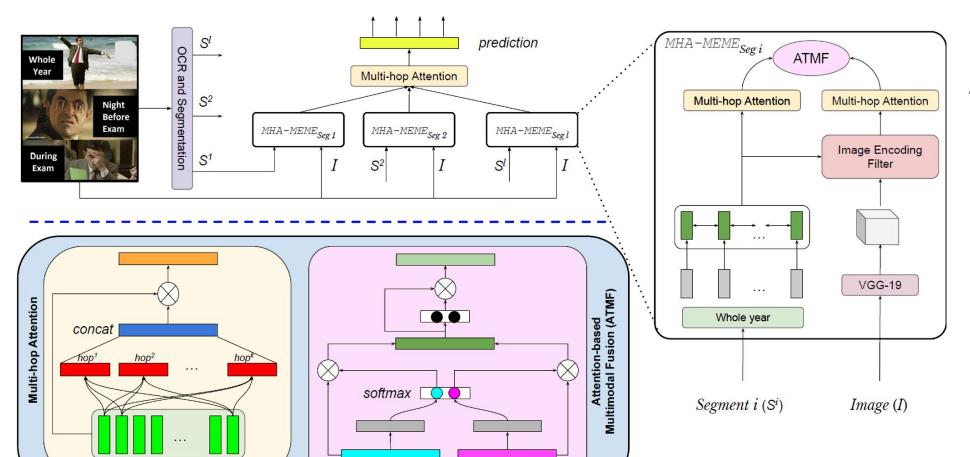
³Duong C T.; 2017. Multimodal Classification for Analysing Social Media.

Contributions:

- We leverage correspondence between a meme and its constituent texts depending upon the spatial locations.
- We propose MHA-Meme, an attentive framework that effectively selects and utilizes complementary features from textual and visual modalities to capture multiple aspects of emotions expressed by a meme.
- We report state-of-the-art results for all the three tasks.
- We establish the interpretability of MHA-Meme using LIME framework.

MHA-Meme:

feature vectors



visual feature

textual feature

Principle Components:

- Text Encoder
- Image Encoder
- Multi-hop Attention
- ATMF
- Classifier

- **Text Encoder:** BiLSTM [H = (h₁, h₂,, h_n)]
- <u>Image Encoder:</u> VGG-19 [F = (f₁, f₂,, f_m)]
- Image Encoding Filter:
 - We want to extract complementary features from textual and visual modality
 - The OCR-extracted text and the text in the image do not establish a direct correspondence
 - This Image Encoding Filter block outputs refined image features, U = (u₁, u₂,, u_m), filtering redundant information from two modalities
- Multi-hop Attention: Originally proposed by Lin et al. (2017)⁴ helps in capturing all different semantics expressed by a meme; applied on top of image and text features.
- Attention-based Multi-modal Fusion (ATMF): Same modality may have different contribution for different meme samples; computes modality specific attention score.

Implementation Details:

- Memotion Analysis' dataset contains 6601 training samples and 1879 test samples. Additionally, we to validate the generalizability of MHA-Meme, we collected and annotated an additional set of 334 memes.
- To alleviate data imbalance, we applied larger weights to minority classes in cross-entropy loss.

Our Implementation is publicly available at https://github.com/LCS2-IIITD/MHA-MEME

Scan here:

Hyper-parameter	Notation	Value			
hidden units of BiLSTM	u	256			
#dim for Dense layers	-	[256, 64, 8]			
Multi-hop A	Attention				
#hops (unimodal)	I.	30			
#hops (multimodal)	k	10			
#hidden-units (unimodal)	1	350			
#hidden-units (multimodal)	d	100			
Traini	ng				
Batch-size	-	8			
Epochs	N	200			
Optimizer	-	Adam			
Loss	-	NLL			
Learning-rate	α	0.005			
Learning-rate-decay	_	1e-4			
(/10Kiter)					
Momentum	-	0.9			
Class weights for imba	lanced trainin	g data			
sentiment $[w_{pos}, w_{neu}, w_{neg}]$	9-10	[1, 1.5, 2]			
affective - humor $[w_{nonhum}, w]$	v_{hum}	[1.5, 1]			
affective - $sarcasm [w_{nonsar}, w_{nonsar}]$		[1.5, 1]			
affective - offense $[w_{nonoff}, u]$	off]	[1.25, 1]			
affective - motivation $[w_{nonme}]$	$[v_{ot}, w_{mot}]$	[1, 1.25]			

Table 2: Hyper-parameters of MHA-Meme.

Ablation Results:

		Sei	ntiment c	lassificat	tion	Aff	ect classi	ication (A	(vg)	Affect quantification (Avg)				
	Models	Macro F1		Mici	Micro F1		Macro F1		Micro F1		Macro F1		Micro F1	
		$Test_A$	$Test_B$	$Test_A$	$Test_B$	$Test_A$	$Test_B$	$Test_A$	\mathbf{Test}_B	$Test_A$	\mathbf{Test}_B	$Test_A$	\mathbf{Test}_B	
	BiLSTM - OCR	0.338	0.373	0.509	0.572	0.421	0.455	0.542	0.570	0.302	0.310	0.420	0.438	
т	BERT - OCR	0.336	0.375	0.512	0.570	0.422	0.449	0.549	0.571	0.295	0.298	0.395	0.402	
1	BiLSTM - OCR Seg	0.352	0.391	0.560	0.594	0.475	0.490	0.570	0.594	0.319	0.332	0.422	0.442	
	BERT - OCR _{Seg}	0.351	0.384	0.538	0.580	0.471	0.482	0.563	0.581	0.311	0.316	0.418	0.425	
	InceptionV3	0.322	0.358	0.516	0.557	0.407	0.430	0.499	0.525	0.288	0.287	0.402	0.406	
I	V16	0.318	0.355	0.521	0.560	0.399	0.432	0.505	0.532	0.286	0.295	0.411	0.418	
	V19	0.325	0.367	0.525	0.562	0.413	0.448	0.518	0.550	0.292	0.300	0.405	0.419	
T+I	BERT - $OCR_{Seg} + V19$	0.356	0.410	0.585	0.624	0.508	0.529	0.620	0.645	0.325	0.362	0.424	0.435	
1+1	BiLSTM - OCR _{Seg} + V19	0.376	0.426	0.608	0.635	0.523	0.545	0.682	0.698	0.333	0.360	0.430	0.444	

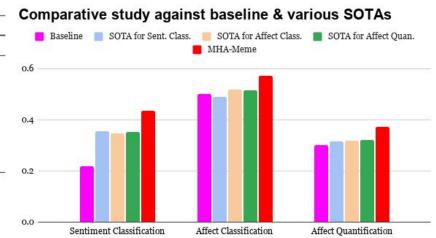
Table 3: Ablation results on multimodal inputs and various feature extraction mechanisms. For the affect classification and quantification tasks, we report average scores. T: Text, I: Image, V16: VGG16, V19: VGG19.

- Among unimodal systems, textual modality performs better than visual modality.
- Segmenting the OCR text helps in improving results.
- Multimodal systems outperform unimodal systems.

State-of-the-art Results for Three Tasks:

System	Cont		Affe	ct classific	ation	Affect quantification						
	Sent.	Hum	Sar	Off	Motiv	Avg	Hum	Sar	Off	Motiv	Avg	
Bs*	0.218	0.512	0.506	0.491	0.491	0.500	0.248	0.241	0.230	0.484	0.301	
A*	0.352^2	0.515	0.511^{3}	0.512	0.520^{3}	0.515^{2}	0.271 ^{1‡}	0.250	0.258	0.512	$0.322^{1\ddagger}$	
\mathbf{B}^*	$0.355^{1\ddagger}$	0.473	0.508	0.499	0.474	0.489	0.262	$0.259^{1\ddagger}$	0.264^{2}	0.474	0.314	
\mathbf{C}^*	0.345	0.516^{3}	$0.516^{1\ddagger}$	$0.522^{2\ddagger}$	0.519	$0.518^{1\ddagger}$	0.249	0.254	0.247	0.519	0.317^{3}	
\mathbf{D}^*	0.341	0.521^{2}	0.441	0.491	0.512	0.491	0.264^{3}	0.254	0.241	0.517	0.319^{2}	
\mathbf{E}^*	0.346	0.514	0.504	0.512	0.507	0.511^{3}	0.0	0.0	0.0	0.507	0.127	
K.1*	0.350^{3}	-	-	_	-	-	-	-	-	_	4	
F*	0.325	$0.529^{1\dagger}$	0.485	$0.529^{1\dagger}$	0.491	0.509	0.261	0.236	$0.265^{1\ddagger}$	0.491	0.313	
G*	0.339	0.502	0.499	0.479	0.498	0.494	0.236	0.230	0.262^{3}	0.521^{3}	0.312	
\mathbf{H}^*	0.323	0.493	0.487	0.505	0.490	0.494	0.237	0.255^{2}	0.252	0.502	0.311	
I^*	0.335	0.510	0.513^{2}	0.506	0.509	0.509	0.256	0.244	0.248	0.509	0.314	
J^*	0.345	0.434	0.447	0.400	0.488	0.442	0.255	0.254^{3}	0.241	0.488	0.310	
K.2*	0.248	0.502	0.494	0.496	$0.534^{1\dagger}$	0.506	0.140	0.233	0.261	$0.534^{1\dagger}$	0.292	
K.3*	0.323	0.486	0.500	0.472	0.522^{2}	0.495	0.215	0.193	0.233	0.522^{2}	0.291	
K.4*	0.349	0.514	0.495	0.486	0.494	0.497	0.265^{2}	0.245	0.246	0.494	0.312	
K.5*	0.337	0.500	0.483	0.516^{3}	0.520	0.505	0.251	0.238	0.256	0.520	0.316	
MM	0.376^{\dagger}	0.527^{\ddagger}	0.520^{\dagger}	0.517	0.531 [‡]	0.523^{\dagger}	0.271^{\dagger}	0.260^{\dagger}	0.268^{\dagger}	0.531^{\ddagger}	0.333^{\dagger}	

Table 4: Comparative study against baselines and various state-of-the-art systems. All scores are Macro-F1 as per the official evaluation metric of the 'Memotion Analysis' shared task (Sharma et al. 2020). Superscripts ¹, ², and ³ denote official rank of the system in the shared task. For each case, the best and the second ranked scores among all systems are denoted by dagger(†) and double-dagger(‡), respectively. The first batch of results (after baseline, *Bs*) denotes a set of top three ranked systems for the three tasks (on average). System*: Values taken from Sharma et al. (2020). MM: MHA-Meme.



On average, MHA-MEME beats all the top performing systems in the SemEval-20 Memotion Analysis Challenge in a range of 1.5% - 3% Macro-F1 score

Importance of Different Modules:

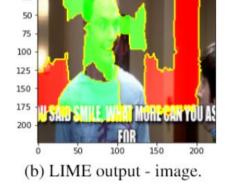
	S	Sentiment classification							Affect classification							Affect quantification						
	Hops	D-Fu	ısion	AT-Fusion		ATMF		D-Fusion		AT-Fusion		ATMF		D-Fusion		AT-Fusion		ATMF				
0.2		\mathbf{T}_A	T_B	\mathbf{T}_A	T_B	\mathbf{T}_A	T_B	\mathbf{T}_A	T_B	\mathbf{T}_A	T_B	\mathbf{T}_A	T_B	\mathbf{T}_A	T_B	\mathbf{T}_A	T_B	\mathbf{T}_A	T_B			
Ξ	S	33.6	37.2	34.2	38.1	34.5	38.5	50.1	52.2	50.4	52.7	50.5	52.9	30.7	32.4	31.4	33.0	31.8	33.5			
2	M	34.0	37.5	34.4	38.6	34.9	38.9	50.3	52.6	50.5	53.0	50.8	53.2	31.5	33.1	31.9	33.8	32.0	34.3			
2	S	35.5	38.6	358	39.1	37.0	40.9	51.0	52.8	51.2	53.3	51.7	54.0				34.8	32.9	35.2			
2	M	36.4	40.5	37.2	41.3	37.6	42.6	51.3	53.0	51.4	53.6	52.3	54.5	32.4	34.6	32.7	35.1	33.3	36.0			

Table 5: Comparative study of different fusion mechanisms and effect of single-hop attention vs multi-hop attention (in %). M1: BiLSTM - OCR + VGG19. M2: BiLSTM - OCR_{Seg} + VGG19. S: Single hop; M: Multi hops

- D-Fusion is direct concatenation; AT-Fusion is an attentive framework proposed by (Poria et al. 2017)⁵. Our proposed ATMF performs superior to D-Fusion and AT-Fusion in all experiments.
- The incorporation of multi-hops yields ~2% improvement for different model variants.

Interpretability of MHA-Meme:

- The prediction probabilities by MHA-Meme on this sample corresponding to positive, neutral, and negative sentiment classes are 0.683, 0.246, 0.071.
- The smiling face of the character, highlighted by green pixels, prominently contributes to the positive class.
- In text, the words 'SMILE' and 'MORE' imparts positive sentiment.
- The word 'SMILE' has highest attention weight in the two segments, supporting the explanations by the LIME framework.



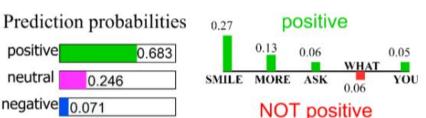
(a) Input meme.

0.246

positive

neutral

negative 0.071



(c) LIME output - text.

Segment₁: WHAT HOWARD Segment₂: YOU SAID SMILE WHAT MORE CAN YOU ASK FOR

(d) Attention weights as computed by MHA-Meme.

Figure 3: Example of explanation by LIME on both visual and textual modalities and visualization of attention weights over text tokens obtained from MHA-Meme.

Conclusion:

- In this paper, we addressed three tasks related to the affect analysis of a meme, namely, sentiment classification, affect classification, and affect class quantification.
- We propose an attention-rich neural framework (called MHA-Meme) that analyzes the interaction between visual and textual modalities at fine-granular level. We design two attention mechanisms

 a multi-hop attention module for the unimodal feature extraction and an attention-based multimodal fusion module for computing the interaction between the two modalities.
- MHA-Meme performs consistently across three tasks on Memotion Analysis dataset.
- In comparison, baseline systems did not report consistent performance for all the tasks or affect dimensions.

Thank You!