
 Where in the World is this Image? Transformer-based Geo-localization in the Wild

Shraman Pramanick¹, Ewa M. Nowara ${ }^{1}$, Joshua Gleason²,
Carlos Castillo ${ }^{1}$, Rama Chellappa ${ }^{1}$
${ }^{1}$ Johns Hopkins University, ${ }^{2}$ University of Maryland, College Park

Introduction:

- Geo-localization is the task of predicting geographic location (latitude, longitude) from images.
- The goal of this work is planet-scale geo-localization from a single image.

Introduction:

- Geo-localization is the task of predicting geographic location (latitude, longitude) from images.
- The goal of this work is planet-scale geo-localization from a single image.

Challenges:

- Huge diversity of scenes all over the earth.
- Appearance variation of the same location depending on the time of the day, weather, season.

Introduction:

- Geo-localization is the task of predicting geographic location (latitude, longitude) from images.
- The goal of this work is planet-scale geo-localization from a single image.

Challenges:

- Huge diversity of scenes all over the earth.
- Appearance variation of the same location under different daytime or weather conditions.

Related Works:

- CNNs trained with large datasets have significantly improved the performance of geo-localization methods and enabled extending the task to the scale of the entire world.

Planet-Scale Geo-localization Approaches:

Hays et al. Im2GPS
First attempt for worldscale geo-localization using retrieval method

Vo et al.
[L]kNN
A retrieval-based geo-
localization system that combined Im2GPS and PlaNet

Muller et al.
ISNs
Introduced contextual
knowledge about environmental scenes into geo-localization

Theiner et al. SemP
Introduced semantic partitioning and interpretable geo-localization
 2008

ECCV 2016

Approach:

- Vision Transformer: Early aggregation of global information helps to focus on fine-grained cues.
- Semantic Segmentation: Provides robustness to appearance variation at same location.
- Multi-task Learning: Predict the scene type (i.e., natural, urban, indoor) to better learn scene-specific features.

Where in the World is this Image?

Approach:

- Vision Transformer: Early aggregation of global information helps to focus on fine-grained cues.
- Semantic Segmentation: Provides robustness to appearance variation at same location.
- Multi-task Learning: Predict the scene type (i.e., natural, urban, indoor) to better learn scene-specific features.

TransLocator:

- Dual-branch vision transformer - RGB image and corresponding Semantic maps - complementary information of same input.

TransLocator:

- Dual-branch vision transformer - RGB image and corresponding Semantic maps - complementary information of same input.
- Efficient and light-weight fusion between two branches. We sum the CLS tokens of each branch after every transformer encoder layer.
${ }^{(i)} x^{(k)}=\left[g\left(\sum_{j \in\{\mathrm{rgb}, \mathrm{seg}\}} f\left({ }^{(j)} x_{\mathrm{cls}}^{(k)}\right)\right) \|{ }^{(i)} x_{\text {patch }}^{(k)}\right]$

TransLocator:

- Dual-branch vision transformer - RGB image and corresponding Semantic maps - complementary information of same input.
- Efficient and light-weight fusion between two branches. We sum the CLS tokens of each branch after every transformer encoder layer.

$$
{ }^{(i)} x^{(k)}=\left[g\left(\sum_{j \in\{\mathrm{rgb}, \mathrm{seg}\}} f\left({ }^{(j)} x_{\mathrm{cls}}^{(k)}\right)\right) \|^{(i)} x_{\text {patch }}^{(k)}\right]
$$

- Different features are essential for various environmental settings, such as indoor and outdoor urban or natural scenes. Geo-localization and scene recognition are performed in multi-task fashion.

[^0]
\%
 TEL AVIV 2022
 Experimental Results:
 - Dataset Used
 $>$ Training: MediaEval Placing Task 2016 dataset 1 (MP-16) containing 4.72M geo-tagged images sourced from Flickr.
 > Validation: YFCC26k ${ }^{2}$, containing 25,600 geo-tagged images.

[^1]
Experimental Results:

- Dataset Used
$>$ Training: MediaEval Placing Task 2016 dataset 1 (MP-16) containing 4.72M geo-tagged images sourced from Flickr.
> Validation: YFCC26k ${ }^{2}$, containing 25,600 geo-tagged images.
$>$ Evaluation: $\operatorname{Im} 2$ GPS $^{3}, \operatorname{Im} 2 G P S 3 k^{4}$ and YFCC4k 5, containing 237, 2,997 and 4,536 geo-tagged images, respectively.

[^2]
Experimental Results:

- Dataset Used
$>$ Training: MediaEval Placing Task 2016 dataset 1 (MP-16) containing 4.72M geo-tagged images sourced from Flickr.
$>$ Validation: YFCC26k ${ }^{2}$, containing 25,600 geo-tagged images.
$>$ Evaluation: $\operatorname{Im} 2$ GPS $^{3}, \operatorname{Im} 2 G P S 3 k^{4}$ and $Y F C C 4 k^{5}$, containing 237, 2,997 and 4,536 geo-tagged images, respectively.
- Reporting New State-of-the-Art Results
$>$ Using TransLocator, we obtained the following continent-level performance improvements.
■ Im2GPS: 5.5\%, Im2GPS3k: 14.1\%, YFCC4k: 4.9\%, YFCC26k: 9.9\%

[^3]
Quantitative Results on Im2GPS:

Dataset	Method	Distance (a_{r} [\%] @ km)				
		Street	City	Region	Country	Continent
		1 km	25 km	200 km	750 km	2500 km
Im2GPS	Human	-	-	3.8	13.9	39.3
	[L]kNN, $\sigma=4$	14.4	33.3	47.7	61.6	73.4
	MvMF	8.4	32.6	39.4	57.2	80.2
	PlaNet	8.4	24.5	37.6	53.6	71.3
	CPlaNet	16.5	37.1	46.4	62.0	78.5
	$\text { ISNs }\left(\mathrm{M}, \mathrm{f}, \mathrm{~S}_{3}\right)$	16.5	42.2	51.9	66.2	81.0
	ISNs (M, $\mathrm{f}^{*}, \mathrm{~S}_{3}$)	16.9	43.0	51.9	66.7	80.2
	$-\overline{\mathrm{Vi}} \mathrm{~T}-\overline{\mathrm{M}} \mathrm{~T}$	$1 \overline{8} . \overline{2}$	$\overline{46.4}$	$\overline{6} 2.1$	$7 \overline{4} .5$	$85 . \overline{2}$
	TransLocator	19.9	48.1	64.6	75.6	86.7
	$\Delta_{\text {Ours - ISNs }}$	$3.0 \uparrow$	$5.1 \uparrow$	$12.7 \uparrow$	$8.9 \uparrow$	$5.5 \uparrow$

Where in the World is this Image?
Transformer-based Geo-localization in the Wild

Ablation Experiments:

- ViT-B/16 performs better than ResNet101 and EfficientNet-B4.

Dataset	Method	Distance (a_{r} [\%] @ km)				
		Street 1 km	$\begin{gathered} \text { City } \\ 25 \mathbf{k m} \end{gathered}$	Region 200 km	Country $750 \text { km }$	Continent 2500 km
Im2GPS	ResNet101	14.3	41.4	51.9	64.1	78.9
	EfficientNet-B4	15.4	42.7	52.8	64.8	79.5
	ViT base	16.9	43.4	54.5	67.8	80.7
	+ Seg	17.6	44.8	58.9	70.0	83.3
	+ Seg + MFF	19.0	47.2	62.7	73.5	85.7
	+ Seg + MFF + Scene	19.9	48.1	64.6	75.6	86.7
$\begin{gathered} \operatorname{Im} 2 \mathbf{G P S} \\ 3 \mathbf{k} \end{gathered}$	ResNet101	9.0	25.1	32.8	46.1	63.5
	EfficientNet-B4	9.2	26.8	32.7	47.0	63.9
	ViT base	9.9	28.0	37.8	54.2	70.7
	+ Seg	10.5	29.1	42.5	55.8	73.6
	+ Seg + MFF	11.1	30.2	45.0	56.8	78.1
	+ Seg + MFF + Scene	11.8	31.1	46.7	58.9	80.1

Ablation Experiments:

- ViT-B/16 performs better than ResNet101 and EfficientNet-B4.
- Adding segmentation branch helps over single-branch (RGB) system. Attention based fusion is better than concatenation-based fusion.

Dataset	Method	Distance (a_{r} [\%] @ km)				
		Street 1 km	$\begin{gathered} \text { City } \\ 25 \text { km } \end{gathered}$	Region 200 km	Country 750 km	Continent 2500 km
Im2GPS	ResNet101	14.3	41.4	51.9	64.1	78.9
	EfficientNet-B4	15.4	42.7	52.8	64.8	79.5
	ViT base	16.9	43.4	54.5	67.8	80.7
	+ Seg	17.6	44.8	58.9	70.0	83.3
	+ Seg + MFF	19.0	47.2	62.7	73.5	85.7
	+ Seg + MFF + Scene	19.9	48.1	64.6	75.6	86.7
$\begin{gathered} \operatorname{Im} 2 \mathbf{G P S} \\ 3 \mathbf{k} \end{gathered}$	ResNet101	9.0	25.1	32.8	46.1	63.5
	EfficientNet-B4	9.2	26.8	32.7	47.0	63.9
	ViT base	9.9	28.0	37.8	54.2	70.7
	+ Seg	10.5	29.1	42.5	55.8	73.6
	+ Seg + MFF	11.1	30.2	45.0	56.8	78.1
	+ Seg + MFF + Scene	11.8	31.1	46.7	58.9	80.1

Where in the World is this Image?
Transformer-based Geo-localization in the Wild

Ablation Experiments:

- ViT-B/16 performs better than ResNet101 and EfficientNet-B4.
- Adding segmentation branch helps over single-branch (RGB) system. Attention based fusion is better than concatenation-based fusion.
- Using multi-task learning further improves the performance.

Dataset	Method	Distance (a_{r} [\%] @ km)				
		Street 1 km	$\begin{gathered} \text { City } \\ 25 \mathrm{~km} \end{gathered}$	Region 200 km	Country 750 km	Continent 2500 km
Im2GPS	ResNet101	14.3	41.4	51.9	64.1	78.9
	EfficientNet-B4	15.4	42.7	52.8	64.8	79.5
	ViT base	16.9	43.4	54.5	67.8	80.7
	+ Seg	17.6	44.8	58.9	70.0	83.3
	+ Seg + MFF	19.0	47.2	62.7	73.5	85.7
	+ Seg + MFF + Scene	19.9	48.1	64.6	75.6	86.7
$\begin{gathered} \mathbf{I m} 2 \mathbf{G P S} \\ 3 \mathbf{k} \end{gathered}$	ResNet101	9.0	25.1	32.8	46.1	63.5
	EfficientNet-B4	9.2	26.8	32.7	47.0	63.9
	ViT base	9.9	28.0	37.8	54.2	70.7
	+ Seg	10.5	29.1	42.5	55.8	73.6
	+ Seg + MFF	11.1	30.2	45.0	56.8	78.1
	+ Seg + MFF + Scene	11.8	31.1	46.7	58.9	80.1

Qualitative Results:

Error Analysis:

Examples of incorrectly localized Im2GPS images

G - Thailand
P-Morocco
Error-10754 km

G - Hebei
P - Tokyo
Error - 2024 km

G - Alaska
P-Greenland
Error - 3936 km

G - Libya
P-Sudan
Error - 2019 km

Examples of incorrectly localized YFCC4k images

G - Varanasi
P - Agra
Error - 645 km

G - Jacksonville
P - West Mexico
Error - 2909 km

G - Colorado
P - Tokyo
Error - 9860 km

G - Berlin
P-San Jose
Error - 9138 km

Thanks for watching our presentation!

Sample Code and data is provided on Github:
https://github.com/ShramanPramanick/Transformer_Based_Geo-localization

[^0]: ${ }^{1}$ Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017

[^1]: ${ }^{1}$ Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017
 ${ }^{2}$ Theiner, J., et al.; Interpretable semantic photo geolocation, IEEE/CVF Winter Conference on Applications of Computer Vision, 2022

[^2]: ${ }^{1}$ Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017
 ${ }^{2}$ Theiner, J., et al.; Interpretable semantic photo geolocation, IEEE/CVF Winter Conference on Applications of Computer Vision, 2022
 ${ }^{3}$ Hays, J. et al.; Im2gps: estimating geographic information from a single image, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2008
 ${ }^{4}$ Hays, J. et al.; Large-scale image geolocalization, Multimodal Location Estimation of Videos and Images, Springer, 2015
 ${ }^{5}$ Vo, N. et al.; Revisiting im2gps in the deep learning era, IEEE/CVF International Conference on Computer Vision, 2017

[^3]: ${ }^{1}$ Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017
 ${ }^{2}$ Theiner, J., et al.; Interpretable semantic photo geolocation, IEEE/CVF Winter Conference on Applications of Computer Vision, 2022
 ${ }^{3}$ Hays, J. et al.; Im2gps: estimating geographic information from a single image, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2008
 ${ }^{4}$ Hays, J. et al.; Large-scale image geolocalization, Multimodal Location Estimation of Videos and Images, Springer, 2015
 ${ }^{5}$ Vo, N. et al.; Revisiting im2gps in the deep learning era, IEEE/CVF International Conference on Computer Vision, 2017

