

Shraman Pramanick¹, Ewa M. Nowara¹, Joshua Gleason², Carlos Castillo¹, Rama Chellappa¹ ¹Johns Hopkins University, ²University of Maryland, College Park

Introduction:

- **Geo-localization** is the task of predicting **geographic location** (latitude, longitude) from images.
- The goal of this work is **planet-scale geo-localization** from a **single image**.

Introduction:

- **Geo-localization** is the task of predicting **geographic location** (latitude, longitude) from images.
- The goal of this work is **planet-scale geo-localization** from a **single image**.

Challenges:

- Huge **diversity of scenes** all over the earth.
- Appearance variation of the same location depending on the time of the day, weather, season.

Introduction:

- **Geo-localization** is the task of predicting **geographic location** (latitude, longitude) from images.
- The goal of this work is **planet-scale geo-localization** from a **single image**.

Challenges:

- Huge **diversity of scenes** all over the earth.
- Appearance variation of the same location under different daytime or weather conditions.

Related Works:

• **CNNs trained with large datasets** have significantly improved the performance of geo-localization methods and enabled extending the task to the scale of the entire world.

Planet-Scale Geo-localization Approaches:

Approach:

- Vision Transformer: Early aggregation of global information helps to focus on fine-grained cues.
- Semantic Segmentation: Provides robustness to appearance variation at same location.
- **Multi-task Learning:** Predict the scene type (i.e., natural, urban, indoor) to better learn scene-specific features.

Approach:

- Vision Transformer: Early aggregation of global information helps to focus on fine-grained cues.
- Semantic Segmentation: Provides robustness to appearance variation at same location.
- **Multi-task Learning:** Predict the scene type (i.e., natural, urban, indoor) to better learn scene-specific features.

TransLocator:

• **Dual-branch vision transformer** - RGB image and corresponding Semantic maps - complementary information of same input.

TransLocator:

- **Dual-branch vision transformer** RGB image and corresponding Semantic maps complementary information of same input.
- Efficient and light-weight fusion between two branches. We sum the CLS tokens of each branch after every transformer encoder layer.

$${}^{(i)}x^{(k)} = \left[g(\sum_{j \in \{\text{rgb, seg}\}} f({}^{(j)}x^{(k)}_{\text{cls}}))||{}^{(i)}x^{(k)}_{patch}\right]$$

TransLocator:

- **Dual-branch vision transformer** RGB image and corresponding Semantic maps complementary information of same input.
- Efficient and light-weight fusion between two branches. We sum the CLS tokens of each branch after every transformer encoder layer.

$${}^{(i)}x^{(k)} = \left[g(\sum_{j \in \{\text{rgb, seg}\}} f({}^{(j)}x^{(k)}_{\text{cls}}))||{}^{(i)}x^{(k)}_{patch}\right]$$

 Different features are essential for various environmental settings, such as indoor and outdoor urban or natural scenes. Geo-localization and scene recognition are performed in multi-task fashion.

Experimental Results:

- Dataset Used
 - Training: MediaEval Placing Task 2016 dataset¹ (MP-16) containing 4.72M geo-tagged images sourced from Flickr.

¹Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017

Experimental Results:

- Dataset Used
 - Training: MediaEval Placing Task 2016 dataset¹ (MP-16) containing 4.72M geo-tagged images sourced from Flickr.
 - ➤ Validation: YFCC26k², containing 25,600 geo-tagged images.

¹Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017 ²Theiner, J., et al.; Interpretable semantic photo geolocation, IEEE/CVF Winter Conference on Applications of Computer Vision, 2022

Experimental Results:

- Dataset Used
 - Training: MediaEval Placing Task 2016 dataset¹ (MP-16) containing 4.72M geo-tagged images sourced from Flickr.
 - ➤ Validation: YFCC26k², containing 25,600 geo-tagged images.
 - Evaluation: Im2GPS³, Im2GPS3k⁴ and YFCC4k⁵, containing 237, 2,997 and 4,536 geo-tagged images, respectively.

¹Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017
²Theiner, J., et al.; Interpretable semantic photo geolocation, IEEE/CVF Winter Conference on Applications of Computer Vision, 2022
³Hays, J. et al.; Im2gps: estimating geographic information from a single image, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2008
⁴Hays, J. et al.; Large-scale image geolocalization, Multimodal Location Estimation of Videos and Images, Springer, 2015
⁵Vo, N. et al.; Revisiting im2gps in the deep learning era, IEEE/CVF International Conference on Computer Vision, 2017

Experimental Results:

- Dataset Used
 - Training: MediaEval Placing Task 2016 dataset¹ (MP-16) containing 4.72M geo-tagged images sourced from Flickr.
 - ➤ Validation: YFCC26k², containing 25,600 geo-tagged images.
 - Evaluation: Im2GPS³, Im2GPS3k⁴ and YFCC4k⁵, containing 237, 2,997 and 4,536 geo-tagged images, respectively.

Reporting New State-of-the-Art Results

- ➤ Using TransLocator, we obtained the following continent-level performance improvements.
 - Im2GPS: 5.5%, Im2GPS3k: 14.1%, YFCC4k: 4.9%, YFCC26k: 9.9%

¹Larson, M. et al.; The benchmarking initiative for multimedia evaluation: Mediaeval 2016, IEEE MultiMedia, 2017 ²Theiner, J., et al.; Interpretable semantic photo geolocation, IEEE/CVF Winter Conference on Applications of Computer Vision, 2022 ³Hays, J. et al.; Im2gps: estimating geographic information from a single image, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2008 ⁴Hays, J. et al.; Large-scale image geolocalization, Multimodal Location Estimation of Videos and Images, Springer, 2015 ⁵Vo, N. et al.; Revisiting im2gps in the deep learning era, IEEE/CVF International Conference on Computer Vision, 2017

Quantitative Results on Im2GPS:

		Distance $(a_r \ [\%] \ @ \ km)$					
Dataset	Method	Street	City	Region	Country	Continent	
		1 km	25 km	200 km	750 km	2500 km	
	Human	_	_	3.8	13.9	39.3	
	[L]kNN, $\sigma = 4$	14.4	33.3	47.7	61.6	73.4	
	MvMF	8.4	32.6	39.4	57.2	80.2	
	PlaNet	8.4	24.5	37.6	53.6	71.3	
Im2GPS	CPlaNet	16.5	37.1	46.4	62.0	78.5	
	ISNs (M, f, S_3)	16.5	42.2	51.9	66.2	81.0	
	ISNs (M, f^*, S_3)	16.9	43.0	51.9	66.7	80.2	
	ViT-MT	$1\bar{8}.\bar{2}$	46.4	62.1	74.5	85.2	
	TransLocator	19.9	48.1	64.6	75.6	86.7	
	$\Delta_{ t Ours - ISNs}$	3.0↑	5.1 ↑	12.7 ↑	8.9 ↑	5.5↑	

Ablation Experiments:

• ViT-B/16 performs better than ResNet101 and EfficientNet-B4.

		Distance $(a_r \ [\%] \ @ \ km)$					
Dataset	Method	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continen 2500 km	
	ResNet101	14.3	41.4	51.9	64.1	78.9	
	EfficientNet-B4	15.4	42.7	52.8	64.8	79.5	
Im2GPS	ViT base	16.9	43.4	54.5	67.8	80.7	
	+ Seg	17.6	44.8	58.9	70.0	83.3	
	+ Seg + MFF	19.0	47.2	62.7	73.5	85.7	
	+ Seg + MFF + Scene	19.9	48.1	64.6	75.6	86.7	
Im2GPS 3k	ResNet101	9.0	25.1	32.8	46.1	63.5	
	EfficientNet-B4	9.2	26.8	32.7	47.0	63.9	
	ViT base	9.9	28.0	37.8	54.2	70.7	
	+ Seg	10.5	29.1	42.5	55.8	73.6	
	+ Seg + MFF	11.1	30.2	45.0	56.8	78.1	
	+ Seg + MFF + Scene	11.8	31.1	46.7	58.9	80.1	

Ablation Experiments:

- ViT-B/16 performs better than ResNet101 and EfficientNet-B4.
- Adding segmentation branch helps over single-branch (RGB) system. Attention based fusion is better than concatenation-based fusion.

		Distance $(a_r \ [\%] \ @ \ km)$					
Dataset	Method	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km	
	ResNet101	14.3	41.4	51.9	64.1	78.9	
	EfficientNet-B4	15.4	42.7	52.8	64.8	79.5	
Im2GPS	ViT base	16.9	43.4	54.5	67.8	80.7	
	+ Seg	17.6	44.8	58.9	70.0	83.3	
	+ Seg + MFF	19.0	47.2	62.7	73.5	85.7	
	+ Seg + MFF + Scene	19.9	48.1	64.6	75.6	86.7	
Im2GPS 3k	ResNet101	9.0	25.1	32.8	46.1	63.5	
	EfficientNet-B4	9.2	26.8	32.7	47.0	63.9	
	ViT base	9.9	28.0	37.8	54.2	70.7	
	+ Seg	10.5	29.1	42.5	55.8	73.6	
	+ Seg + MFF	11.1	30.2	45.0	56.8	78.1	
	+ Seg + MFF + Scene	11.8	31.1	46.7	58.9	80.1	

Ablation Experiments:

- ViT-B/16 performs better than ResNet101 and EfficientNet-B4.
- Adding segmentation branch helps over single-branch (RGB) system. Attention based fusion is better than concatenation-based fusion.
- Using multi-task learning further improves the performance.

		Distance $(a_r \ [\%] \ @ \ km)$					
Dataset	Method	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km	
	ResNet101	14.3	41.4	51.9	64.1	78.9	
	EfficientNet-B4	15.4	42.7	52.8	64.8	79.5	
Im2GPS	ViT base	16.9	43.4	54.5	67.8	80.7	
	+ Seg	17.6	44.8	58.9	70.0	83.3	
	+ Seg + MFF	19.0	47.2	62.7	73.5	85.7	
	+ Seg + MFF + Scene	19.9	48.1	64.6	75.6	86.7	
Im2GPS 3k	ResNet101	9.0	25.1	32.8	46.1	63.5	
	EfficientNet-B4	9.2	26.8	32.7	47.0	63.9	
	ViT base	9.9	28.0	37.8	54.2	70.7	
	+ Seg	10.5	29.1	42.5	55.8	73.6	
	+ Seg + MFF	11.1	30.2	45.0	56.8	78.1	
	+ Seg + MFF + Scene	11.8	31.1	46.7	58.9	80.1	

Qualitative Results:

Error Analysis:

Examples of incorrectly localized Im2GPS images

G - Alaska P - Greenland Error - 3936 km

G - Libya P - Sudan Error - 2019 km

Examples of incorrectly localized YFCC4k images

G - Varanasi P - Agra Error - 645 km

G - Jacksonville P - West Mexico Error - 2909 km

G - Colorado P - Tokyo Error - 9860 km

G - Berlin P - San Jose Error - 9138 km

Thanks for watching our presentation!

Sample Code and data is provided on Github: <u>https://github.com/ShramanPramanick/Transformer_Based_Geo-localization</u>

