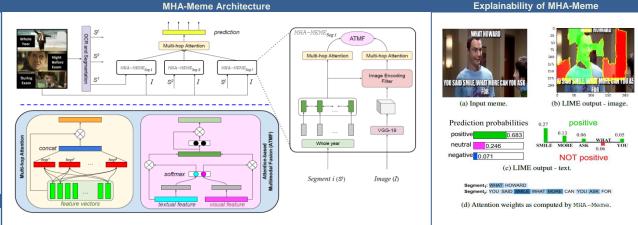
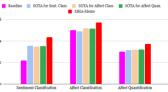
Exercise? I thought you said 'Extra Fries': Leveraging Sentence Demarcations and Multi-hop Attention for Meme Affect Analysis

Shraman Pramanick, Md. Shad Akhtar, Tanmoy Chakraborty IIIT-Delhi

Motivation


- Interpreting memes is a challenging task often because of the implicit world knowledge and overlapping information.
- Two memes can have same image (and vice versa) but can convey different semantics based on the other modality.
- world knowledge plays a crucial part in establishing are relationship between a meme and its reference situation.

Annotating memes is challenging, as emotion about memes highly depends upon individual's perception of an array of aspects within society - "Subjective Perception Problem" (Zhao et al. 2018)


Objective and Contributions

- We propose multi-hop attention-based framework. MHA-Meme. which captures complementary features from meme image and text.
- We evaluate MHA-Meme on the 'Memotion Analysis' dataset for all three sub-tasks -sentiment classification, affect classification. and affect class quantification and report benchmark results.
- Memotion Analysis' dataset contains 6601 training samples and 1879 test samples. Additionally, we to validate the generalizability of MHA-Meme, we collected and annotated an additional set of 334 memes.
- ٠ Sentiment Classes – [positive, neutral, negative]
- Affect Classes [humor, sarcasm, offense, motivation] ٠
- We establish the interpretability of MHA-Meme using LIME framework

Results

	Models		Sentiment classification				Affect classication (Avg)				ct quanti	fication	(Avg)		
			Macro F1		Micro F1		Macro F1		Micro F1		Macro F1		ro F1	-	
		Test _A	Test _B	Test _A	Test _B	Test _A	Test _B	Test _A	Test _B	Test _A	Test _B	Test _A	Test _B	Comparative study against baseline & various SOTA	
Т	BiLSTM - OCR	0.338	0.373	0.509	0.572	0.421	0.455	0.542	0.570	0.302	0.310	0.420	0.438	 Baseline SOTA for Sent. Class. SOTA for Affect Class. MHA-Meme 	.t Qua
	BERT - OCR	0.336	0.375	0.512	0.570	0.422	0.449	0.549	0.571	0.295	0.298	0.395	0.402	0.6	
	BiLSTM - OCRSeq	0.352	0.391	0.560	0.594	0.475	0.490	0.570	0.594	0.319	0.332	0.422	0.442		
	BERT - OCRSeg	0.351	0.384	0.538	0.580	0.471	0.482	0.563	0.581	0.311	0.316	0.418	0.425	0.4	_
I T+I	InceptionV3	0.322	0.358	0.516	0.557	0.407	0.430	0.499	0.525	0.288	0.287	0.402	0.406		
	V16	0.318	0.355	0.521	0.560	0.399	0.432	0.505	0.532	0.286	0.295	0.411	0.418	0.2	
	V19	0.325	0.367	0.525	0.562	0.413	0.448	0.518	0.550	0.292	0.300	0.405	0.419		
	BERT - $OCR_{Seg} + V19$	0.356	0.410	0.585	0.624	0.508	0.529	0.620	0.645	0.325	0.362	0.424	0.435	0.0	
	BiLSTM - OCR _{Seg} + V19	0.376	0.426	0.608	0.635	0.523	0.545	0.682	0.698	0.333	0.360	0.430	0.444	Sentiment Classification Affect Classification Affect Quantificat	om.

References:

1. Zhao, S.; Ding, G.; Huang, Q.; Chua, T.-S.; Schuller, B. W.; and Keutzer, K. 2018. Affective Image Content Analysis: A Comprehensive Survey. In IJCAI, 5534–5541. 2. Sharma, C.; 2020. SemEval-2020 Task 8: Memotion Analysis- the Visuo-Lingual Metaphor! In SemEval-2020, 759-773. 3. Lee, K.-H.; Chen, X.; Hua, G.; Hu, H.; and He, X. 2018. Stacked cross attention for image-text matching. In ECCV, 201–216.

Contact us @shramanp@iiit.ac.in ¹Code: https://github.com/LCS2-IIITD/MHA-MEME

