

Shraman Pramanick¹, Dimiter Dimitrov², Rituparna Mukherjee¹, Shivam Sharma^{1,3}, Md. Shad Akhtar¹, Preslav Nakov⁴, Tanmoy Chakraborty¹

¹Indraprastha Institute of Information Technology, Delhi, India

²Sofia University, Bulgaria

³Wipro Al Labs, India

⁴Qatar Computing Research Institute, HBKU, Doha, Qatar

Introduction:

 Internet memes are formed of an image and a short piece of text embedded on it.

- Internet memes are formed of an image and a short piece of text embedded on it.
- Memes are difficult to analyze: multimodality, context-dependency, morphed image, noisy text

- Internet memes are formed of an image and a short piece of text embedded on it.
- Memes are difficult to analyze: multimodality, context-dependency, morphed image, noisy text
- Increasing use of memes with bad intentions: hateful memes¹, offensive memes²

- Internet memes are formed of an image and a short piece of text embedded on it.
- Memes are difficult to analyze: multimodality, context-dependency, morphed image, noisy text
- Increasing use of memes with bad intentions: hateful memes¹, offensive memes²
- Harm has a broader perspective compared to hate and offense

¹The Hateful Memes Challenge, Kiela et al., NeurIPS'20

²Multimodal meme dataset for identifying offensive content, Suryawanshi et al., , LREC-TRAC '20

- Internet memes are formed of an image and a short piece of text embedded on it.
- Memes are difficult to analyze: multimodality, context-dependency, morphed image, noisy text
- Increasing use of memes with bad intentions: hateful memes¹, offensive memes²
- Harm has a broader perspective compared to hate and offense

NOT hateful, NOT offensive but HARMFUL to Donald Trump

¹The Hateful Memes Challenge, Kiela et al., NeurIPS'20

²Multimodal meme dataset for identifying offensive content, Suryawanshi et al., , LREC-TRAC '20

Our Contributions:

We formally define the notion of harmful memes in contrast to hateful and offensive memes.

Our Contributions:

- We formally define the notion of harmful memes in contrast to hateful and offensive memes.
- We formulate two novel problems
 - → Problem 1 (Harmful meme detection): very harmful, partially harmful, or harmless
 - → Problem 2 (Target identification of harmful memes): individual, organization, community/country, or society/general public/others

Our Contributions:

- We formally define the notion of harmful memes in contrast to hateful and offensive memes.
- We formulate two novel problems
 - → Problem 1 (Harmful meme detection): very harmful, partially harmful, or harmless
 - → Problem 2 (Target identification of harmful memes): individual, organization, community/country, or society/general public/others
- We develop a large-scale dataset, HarMeme, containing 3,544 real memes related to COVID-19.

Our Contributions:

- We formally define the notion of harmful memes in contrast to hateful and offensive memes.
- We formulate two novel problems
 - → Problem 1 (Harmful meme detection): very harmful, partially harmful, or harmless
 - → Problem 2 (Target identification of harmful memes): individual, organization, community/country, or society/general public/others
- We develop a novel dataset, HarMeme, containing 3,544 real memes related to COVID-19.
- We experiment with ten state-of-the-art unimodal and multimodal models.

Data Collection & Annotation:

- Collection: Google Image, Instagram, Facebook
- Deduplication
- Annotation Guidelines
- Annotation Process
 - → Dry run
 - → Final annotation
 - → Consolidation

pybossa Community Projects Create About

MEME annotation project: Contribute

Harmful

Intensity

- O Very harmful
- O Somewhat harmful
- O Not harmful

Target of harmful content

- O Targeting an individual
- O Targeting an organization
- O Targeting a community
- O Harmful to the society, or the general public

Guidelines

Submit

Reject Other

Reject Cartoon

Baselines:

- Unimodal Models
 - Text Only
 - TextBERT
 - Image Only
 - VGG19
 - DenseNet
 - ResNet
 - ResNeXt

- Multimodal Models (Image + Text)
 - Unimodal Pre-training
 - Late Fusion
 - Concat BERT
 - MMBT
 - Multimodal Pre-training
 - Vilbert CC
 - VisualBERT COCO

Access our dataset and implementation using this QR

The full dataset and the source code of the baseline models are available at http://github.com/di-dimitrov/harmeme

Evaluation:

		Harmful Meme Detection												
Modality	Model	2-Class Classification						3-Class Classification						
		Acc ↑	P↑	R↑	F 1 ↑	MAE ↓	MMAE ↓	Acc ↑	P↑	R ↑	F1 ↑	MAE ↓	MMAE ↓	
	Human [†]	90.68	84.35	84.19	83.55	0.1760	0.1723	86.10	67.35	65.84	65.10	0.2484	0.4857	
	Majority	64.76	32.38	50.00	39.30	0.3524	0.5000	64.76	21.58	33.33	26.20	0.4125	1.0	
Text Only	TextBERT	70.17	65.96	66.38	66.25	0.3173	0.2911	68.93	48.49	49.15	48.72	0.3250	0.5591	
Image Only	VGG19	68.12	60.25	61.23	61.86	0.3204	0.3190	66.24	40.95	44.02	41.76	0.3198	0.6487	
	DenseNet-161	68.42	61.08	62.10	62.54	0.3202	0.3125	65.21	41.88	44.25	42.15	0.3102	0.6326	
	ResNet-152	68.74	61.86	62.89	62.97	0.3188	0.3114	65.29	41.95	44.32	43.02	0.3047	0.6264	
	ResNeXt-101	69.79	62.32	63.26	63.68	0.3175	0.3029	66.55	42.62	44.87	43.68	0.3036	0.6499	
Image + Text (Unimodal Pre-training)	Late Fusion	73.24	70.28	70.36	70.25	0.3167	0.2927	66.67	44.96	50.02	45.06	0.3850	0.6077	
	Concat BERT	71.82	71.58	72.23	71.82	0.3033	0.3156	65.54	42.29	45.42	43.37	0.3881	0.5976	
	MMBT	73.48	68.89	68.95	67.12	0.3101	0.3258	68.08	51.72	51.94	50.88	0.3403	0.6474	
Image + Text	Vilbert CC	78.53	78.62	81.41	78.06	0.2279	0.1881	75.71	48.89	49.21	48.82	0.2763	0.5329	
(Multimodal Pre-training)	V-BERT COCO	81.36	79.55	81.19	80.13	0.1972	0.1857	74.01	56.35	54.79	53.85	0.3063	0.5303	

Performance for harmful meme detection. For two-class classification, we merge very harmful and partially harmful into a single class. † This row reports the human accuracy on the test set.

- Multimodal systems consistently outperform unimodal ones.
- Sophisticated fusion techniques yield better results than simple concatenation.
- The best baseline is still far from human accuracy, indicating the potential for enriched multimodal models for meme analysis.

Evaluation:

Modelity	Model	Target Identification of Harmful Memes								
Modality	Model	Acc ↑	P↑	R↑	F1 ↑	MAE ↓	MMAE ↓			
	Human [†]	87.55	82.28	84.15	82.01	0.7866	0.3647			
	Majority	46.60	11.65	25.00	15.89	1.2201	1.5000			
Text (T) only	TextBERT	69.35	55.60	54.37	55.60	1.1612	0.8988			
Image (I) only	VGG19	63.48	53.85	54.02	53.60	1.1687	1.0549			
	DenseNet-161	64.52	53.96	53.95	53.51	1.1655	1.0065			
	ResNet-152	65.75	54.25	54.13	53.78	1.1628	1.0459			
	ResNeXt-101	65.82	54.47	54.20	53.95	1.1616	0.9277			
I + T (Unimmodal Pre-training)	Late Fusion	72.58	58.43	58.83	58.43	1.1476	0.6318			
	Concat BERT	67.74	54.79	49.65	49.77	1.1377	0.8879			
	MMBT	72.58	58.43	58.83	58.35	1.1476	0.6318			
I + T (Multimodal	Vilbert CC	72.58	59.92	55.78	57.17	1.1671	0.8035			
Pre-training)	V-BERT COCO	75.81	66.29	69.09	65.77	1.1078	0.5036			

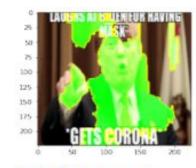
• Similarly for target identification, multimodal systems perform well.

Evaluation:

Modality	Model	Target Identification of Harmful Memes								
Modality	Model	Acc ↑	P↑	R↑	F1 ↑	MAE ↓	MMAE ↓			
	Human [†]	87.55	82.28	84.15	82.01	0.7866	0.3647			
	Majority	46.60	11.65	25.00	15.89	1.2201	1.5000			
Text (T) only	TextBERT	69.35	55.60	54.37	55.60	1.1612	0.8988			
Image (I) only	VGG19	63.48	53.85	54.02	53.60	1.1687	1.0549			
	DenseNet-161	64.52	53.96	53.95	53.51	1.1655	1.0065			
	ResNet-152	65.75	54.25	54.13	53.78	1.1628	1.0459			
	ResNeXt-101	65.82	54.47	54.20	53.95	1.1616	0.9277			
I + T (Unimmodal Pre-training)	Late Fusion	72.58	58.43	58.83	58.43	1.1476	0.6318			
	Concat BERT	67.74	54.79	49.65	49.77	1.1377	0.8879			
	MMBT	72.58	58.43	58.83	58.35	1.1476	0.6318			
I + T (Multimodal	Vilbert CC	72.58	59.92	55.78	57.17	1.1671	0.8035			
Pre-training)	V-BERT COCO	75.81	66.29	69.09	65.77	1.1078	0.5036			

- Similarly for target identification, multimodal systems perform well.
- Interpretability analysis shows the presence of bias even in the best baseline system.

(a) Very harmful meme



(b) LIME output - image



(c) LIME output - text

(d) Harmless meme

(e) LIME output - image

Conclusion:

- In this work, we formally define the notion of harmful mems which is much broader than hate and offense.
- We present HarMeme, the first large-scale benchmark dataset for the detection of harmful memes and identification of their targets.
- Our analysis shows that off-the-shelf multimodal systems are not adequate to understand the underlying semantics of harmful memes.
- In future work, we plan to design new multimodal models for meme analysis and extend HarMeme with more examples.

Thank You!