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Rigid-Motion-Invariant Classification
of 3-D Textures
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Abstract—This paper studies the problem of 3-D rigid-motion-
invariant texture discrimination for discrete 3-D textures that are
spatially homogeneous by modeling them as stationary Gaussian
random fields. The latter property and our formulation of a 3-D
rigid motion of a texture reduce the problem to the study of 3-D
rotations of discrete textures. We formally develop the concept of
3-D texture rotations in the 3-D digital domain. We use this novel
concept to define a “distance” between 3-D textures that remains
invariant under all 3-D rigid motions of the texture. This concept
of “distance” can be used for a monoscale or a multiscale 3-D rigid-
motion-invariant testing of the statistical similarity of the 3-D tex-
tures. To compute the “distance” between any two rotations R,
and R, of two given 3-D textures, we use the Kullback-Leibler di-
vergence between 3-D Gaussian Markov random fields fitted to the
rotated texture data. Then, the 3-D rigid-motion-invariant texture
distance is the integral average, with respect to the Haar measure
of the group SO(3), of all of these divergences when rotations R,
and R- vary throughout SO(3). We also present an algorithm en-
abling the computation of the proposed 3-D rigid-motion-invariant
texture distance as well as rules for 3-D rigid-motion-invariant tex-
ture discrimination/classification and experimental results demon-
strating the capabilities of the proposed 3-D rigid-motion texture
discrimination rules when applied in a multiscale setting, even on
very general 3-D texture models.

Index Terms—Gaussian Markov random fields (GMRF),
isotropic multiresolution analysis (IMRA), Kullback-Leibler
(KL) divergence, rigid-motion invariance, volumetric textures,
3-D texture classification.

1. INTRODUCTION

VER the course of the last two decades, a variety of
() deterministic or stochastic texture models and an even
richer ensemble of texture discrimination methods have ap-
peared in the literature, e.g., in [12], [15], [23], [34], and [45].
However, most of this work is exclusively devoted to 2-D tex-
tures. In this paper, we consider only stochastic 3-D textures,
and we propose a novel method for 3-D rigid-motion-insen-
sitive automatic texture discrimination. Although, throughout
this paper, we exclusively refer to 3-D textures, the proposed
approach to texture discrimination applies to 2-D stochastic
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textures as well. In a nutshell, our contributions are: 1) the use
of Isotropic Multiresolution Analysis (IMRA) to model novel
3-D rotation-covariant and 3-D translation-invariant texture
signatures; and 2) the development of an efficiently computable
distance and discriminant functions for 3-D rigid-motion-in-
variant texture discrimination/classification. For a detailed
discussion of our contributions, we invite the reader to look
at Section X. Section I is devoted to a brief survey of the
literature and a heuristic presentation of our strategy to solve
this problem. In Sections II through Sections VI, we develop
the monoscale 3-D rigid-motion-invariant texture “distance.”
Section VII discusses the multiscale 3-D rigid-motion-invariant
texture discrimination. Section VIII describes how we con-
struct 3-D texture realizations for our experiments, whereas
in Section IX, we present our experiments and findings. In
the same section, we show that the proposed methods can be
used for the development of 3-D rigid-motion-invariant texture
binary classification algorithms applicable to real-world 3-D
images.

A. Stochastic Texture Models

Stochastic textures are often modeled by random fields. A
random field {X(s) : s € S} is a set of real-valued random
variables defined on the same probability space. Such a random
field is called Gaussian if any finite linear combination of
{X(s)} has a Gaussian distribution. The first step in texture
discrimination or classification is to define a texture signature,
which is specified as a vector of computable texture features,
belonging to a fixed finite or infinite dimensional feature vector
space (FVS).The high dimensionality of FVS formally facili-
tates texture discrimination by their signatures at the expense
of computational cost and higher sensitivity to noise. Past
literature has been mostly focused on 2-D textures and has
introduced a great variety of texture features ranging, for in-
stance, from spatial frequencies based on Gabor filters [6], [18],
[32], [40], [44] and wavelets [2], [10], [14], [20], [38], [46] to
autoregressive models such as Markov random fields [5], [9],
[11], [16], [26], [37]. For 2-D texture characterization by local
texture information linked to multipixel statistics, spatial in-
teraction stochastic models, such as Gibbs random fields, have
been widely studied [17], [19], [22]. In particular, Gaussian
Markov random fields (GMRFs) have been extensively applied
for 2-D texture classification [11], [15], [27], [40], and, more
recently, for 3-D textures in [41]. Existing literature on 3-D
texture models and discrimination is still limited due to serious
computational challenges native to 3-D image analysis (see
[29], [30], [35], [42], and [48]).
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B. 3-D Rigid-Motion-Invariant Texture Discrimination

A natural assumption for textures is that their statistical prop-
erties of interest are invariant under translations. Therefore,
the problem of 3-D rigid-motion-invariant texture discrim-
ination reduces to that of 3-D rotationally invariant texture
discrimination.

Background: Rotationally invariant discrimination between
textures has been studied mostly in 2-D. For instance, in [28],
two circularly symmetric autoregressive models are fitted to
the 2-D texture data: one for the four nearest neighbors and
one for the four diagonal nearest neighbors. Circularly sym-
metric models with higher order neighborhoods were used in
[40], where the [* norm of the outputs of circularly symmetric
2-D Gabor filters was a key feature. A basic shortcoming of
these models is that rotationally invariant discrimination be-
tween textures is achieved by handling nonisotropic textures as
if they were isotropic. A mathematically rigorous treatment of
isotropic textures can be found in [39]. However, generic tex-
tures often exhibit directional characteristics, which isotropic
models cannot capture. The setback of these approaches is rec-
ognized in [15], where 2-D textures are modeled by continuous
stationary GMRFs, and 2-D image texture rotations are gen-
erated via a continuous version of the discrete power spectral
density defined by the digitized image data. The best rotation
angle matching the given unknown texture to each texture from
a predefined gallery of textures is estimated by maximizing a
likelihood function derived from the continuous power spectral
densities. Texture classification is then carried out by comparing
model parameters. This approach worked well in 2-D, but a 3-D
version would be computationally extremely expensive since
the likelihood function in [15] is a product of terms evaluated
at each node in a 3-D lattice. The approach of [21], based on
local binary patterns, seems to be the first attempt to build a 3-D
texture classification scheme robust to 3-D rotations.

Rationale and Outline of Our Approach: We work with arbi-
trary and generally nonisotropic 3-D textures, which we model
as random fields that are defined on the continuous domain R>.
After image acquisition, the realizations of these textures are
digital 3-D images, where we assume that image intensities at
gray levels are given only for points in a discrete sampling lat-
tice. Nonetheless, our approach easily extends to multicompo-
nent images. Specifically, given an arbitrary spatially homoge-
neous 3-D texture X with a zero mean that is defined on a fixed
3-D rectangular lattice A C R3 similar to Z3, we assume that
X is the restriction to A of a “continuous” 3-D texture that is
defined on R?, which we will also denote by X for brevity. Ob-
viously, the “continuous” parent texture is not affected by 3-D
rigid motions. As we will explain later, we can focus only on 3-D
rotations as 3-D shifts do not affect our texture model. However,
the lattice of voxels A C R? is not invariant under 3-D rotations.
Hence, for each 3-D rotation & € SO(3), X is defined by first
applying the rotation « to the continuous “parent” texture X and
then by restricting this rotated continuous texture to A. More-
over, the values of the continuous texture X on the lattice points
do not necessarily coincide with the values obtained during ac-
quisition. To compatibly model the sampling of the realization
of a continuous texture as the restriction of its values on a dis-
crete lattice with the earlier natural definition for 3-D rotations
of a discrete texture X, we use the IMRA (see Section II) of its
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“continuous” parent. The IMRA modeling of texture discretiza-
tion facilitates at low computational cost a multiscale decom-
position of the discrete texture X at scales coarser than those
of the original discrete texture X. We fit to the rotated textures
X, at multiple scales j, zero-mean GMRFs Gx (e, j) from the
class introduced in [11] for 2-D and extended to 3-D in [41].
We choose this GMRF class because it facilitates a low com-
putational cost parameter estimation, and the Kullback-Leibler
(KL) distance between pairs of such GMRFs is explicitly com-
putable (see Section IV-C). This low-dimensional model is ob-
viously inadequate to describe complex and real-world textures.
This is why, hereinafter, we use the term “fit the GMRF model
to the texture” instead of “approximating the texture model.”
However, in the experiment section, we demonstrate that the
combined fitting of these simple models in a multiscale set-
ting is capable of discriminating more complex and not neces-
sarily GMRF textures. We next present a heuristic approach to
incorporating rotational invariance in the proposed GMRF-fit-
ting-based 3-D texture discrimination.

Given two discrete 3-D textures X and Y with zero intensity
means, our preliminary choice for a texture “distance” at scale j
could be the minimum taken over the 7 € SO(3) of the KL di-
vergence between the GMRF models Gx (I3, ) and Gy (7, 7),
where I is the 3 X 3 identity matrix. This model should be able,
in principle, to give the best rotation matching angle between the
two textures, but it does not lead to a rotationally invariant tex-
ture discriminant via fitting because the models Gx (e, j) and
Gy (Ta,j) may not be the same as Gx(Is,7) and Gy (7,7),
respectively, as & runs throughout SO(3). If a GMRF model is
fitted to the texture X, then a 3-D rotation of the same model can
equally well be fitted to the same 3-D rotation of X. In partic-
ular, the heart of the problem is not to classify textures as “iden-
tical” or “not identical” by finding their best matching angle but
to develop a “distance” and, based on this “distance,” a deci-
sion function uniquely designating the value “identical” or “not
identical” to all of their 3-D rigid motions. These considerations
lead us to choose the orbit {Gx (e, 7) : @ € SO(3)} of the fitted
GMRF model of X. Only those orbits are covariant to 3-D rota-
tions and invariant to 3-D shifts. Thus, the problem that the first
choice of texture distance appears to have is solved if we instead
find a “distance” between the orbits {Gx (e, j) : @ € SO(3)}
and {Gy(7ra,j) : @ € SO(3)}. The average over SO(3) of
the KL divergences between the orbits for the fitted Gaussian
fields Gx (e, j) and Gy (e, j) is an obvious choice of such a
“distance.” In fact, we define the 3-D rigid-motion-invariant dis-
tance between X and Y at the scale j as the minimum taken over
T € SO(3) of the average of the KL divergences of the orbits
of the GMRF models Gx (@, j) and Gy (7@, j) as « traverses
SO(3) (see Section V-C).

II. IMRA FOR CONTINUOUS TEXTURES

Given an arbitrary 3-D texture, each 3-D rotation of this
texture will be theoretically modeled below as a realization
of a GMRF indexed by the Euclidean space R. For brevity,
we will refer to such stochastic models as continuous tex-
tures. In practice, digital acquisition of 3-D textures delivers
a discrete random field defined on a finite cube included in
a discrete rectangular lattice, which can always be identified
with 73 C R®. We formalize the digitization process through a
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multiscale approach implemented by MRA tools since textures
can be intuitively viewed as a superposition of simpler textures
“living” at different scales. Let D be the operator defined on
L?*(R®) by Df(z) = 23/2 f(2x), and if a € R, let T, be given
by T.f(z) = f(z — a), where x € R3.

Definition 1: [43] An MRA of L?(R?) with respect to dyadic
dilations is a sequence {V;},cz of closed subspaces of L*(R?)
satisfying the following conditions.

HVj€eZ V; C Vi

2) D7 f belongs to V; if and only if f belongs to V.

3) UjezVj is dense in L2(R3), and N;czV; = {0}.

4) There is a function ¢ such that V; is the closed linear span
of {Tn¢ : m € 73}, which is a Bessel sequence.

This definition [8] extends the classical one [36] since we do
not require {Tp¢ : n € Z3} to be an orthonormal or a Riesz
basis of Vj. Every V; remains invariant under the action of the
translation group {75, : n € Z*}. For high scales j, the
space V; is then practically translation invariant. However, even
then, V; is not invariant under the action of all 3-D rotations.
Within this framework, the digitization at scale 5 of a contin-
uous 3-D image f indexed by R? is formalized by the linear
mapping representing f by the sequence {(P; f, D' Tn¢) }nezs
where P; is the orthogonal projection onto V;. Each P; com-
mutes with translations 75-;,, but not necessarily with arbitrary
3-D rotations. However, the resolution level required to produce
satisfactory digital outputs should not change under image rota-
tions. This simple pragmatic principle leads us to consider only
MRAs for which each V; is invariant under the action of the ro-
tation group SO(3). From here on, these MRAs will be called
IMRAS for brevity. In this paper, we shall use IMRAs to gen-
erate multiscale representations for all 3-D rotations of contin-
uous textures. Note that here and in the following, the Fourier
transforms of any f € L!(R?) are given by

f(6) = / f(@)e @ Odg, £ e R
ke

Therefore, the Nyquist bandwidth is the cube [—(1/2), (1/2)]3.
The IMRAS generated by single refinable functions are charac-
terized [43, Prop. 2.2] by the following necessary and sufficient
condition: Let ¢ be a “refinable” function for which V; is the
closed linear span of {T,¢ : n € Z3}. Then, {V;},cz is an
IMRA of L2(R?) if and only if ¢ is radial and ¢ vanishes out-
side a ball B(0,b) with b < 1/2.

III. AUTOCOVARIANCE FUNCTION OF CONTINUOUS

TEXTURES IN THE IMRA FRAMEWORK

Hereinafter, a continuous texture X = [X,], z € R? is
assumed to be generated by a stationary Gaussian random
field. The autocovariance function p of X is defined by
p(u) = Cov[X,, X,1,] for all u and x in R®. We will always
assume that:

1) The Fourier transform of p, which is denoted by p, is C*°.

2) The support of pis contained in a ball centered at the origin.

Let by > 0 be the radius of the ball in item 2 above, and let
0 < b < 1/2 satisfy 2971b < by < 27b for some scale j € Z*.
We use an IMRA {V;}; generated by a radial refinable function
¢ with a C* Fourier transform ¢ such that &(E) = 1 for all
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€] < 279bg, and $(¢) = O for |¢€| > b. Then, V; contains all
L? functions whose Fourier transform is supported in the ball of
radius b; therefore, p € V;. With no loss of generality, we may
and will always assume that j = 0 so thatb/2 < by < b. Hence,
qAS = 1 on the support of p, which implies that, for all k € 73,
(p, Tep) = p(k) = Cov[Xg,Xo]. Note that the first of these
two equalities essentially shows that the discrete sampling of a
continuous texture is its restriction to a discrete lattice and that
it requires the assumption ngS = 1 on the support of p. Therefore,
the autocovariance of the discrete random field {X (k) : k €
Z3}, which is the restriction of the continuous texture X on Z3,
is simply the restriction of p to Z3; therefore, it is also denoted
by p. In fact, the restriction of p to Z> completely determines p
on R? via

> p(k)Tkp(s) Vs eR. (1)

kez3

p(s) =

The previous discussion establishes that the autocovariance
function of a stationary stochastic 3-D texture X indexed by R3
and that of its restriction to the infinite lattice 73 are explicitly
related via (1).

IV. CLASS OF GMRF MODELS

‘We emphasize that, in our approach, discrimination between
two generic 3-D textures X and Y relies on the fitting of mul-
tiscale GMRF models after applying arbitrary rotations to X
and Y. Fitting does not require X or Y to be Gaussian or sta-
tionary. Hence, parameter estimation of GMRFs is used only
as a tool to extract local statistical characteristics of textures
and is performed a fairly large number of times for each tex-
ture of interest. The complexity of these parameter estimations
increases quickly when one increases the size of the basic neigh-
borhoods defining these Gibbs random fields [31]. Thus, to min-
imize computing cost, we have deliberately restricted the class
of GMRFs considered here to those with first-order neighbor-
hoods. However, since such models essentially encode only cor-
relations for nearby pixels, we first implement a multiscale de-
composition of each texture X by a fast IMRA decomposi-
tion algorithm (see Section VII-A), and we then fit GMRFs
with first-order neighborhoods to each one of these monoscale
texture outputs. This multiscale parametrization does encode
medium- and long-distance correlations between voxels.

A. Stationary GMRF

We now describe the stationary GMRF models used in our
approach (see [41]). We consider 3-D image data X indexed
by the finite lattice A = {k = (¢,7,k)}, where 1 < i < M,
1<j< N,and1 < k < P. The grid points k = (4,7, k)
are indexed by integers and are referred to as sites, nodes, or
voxels. The lattice size is denoted by |A| = M N P. We assume
that the image data X (k) belong to a finite set A C R and
that they are toroidal, i.e., they satisfy a periodic boundary
condition. The spatial Markov structure of a stationary GMRF
is defined by a translation-invariant neighborhood system
n = {nk,k € A} associating to each node k the neighbor-
hood mp = (k+ W) C A, where W = WTU W~ isa
symmetric neighborhood of the origin, i.e., W~ = —W*. We
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restrict our GMRF models to first-order interactions only, i.e.,
W+ = {(1,0,0),(0,1,0), (0,0,1)}.

The joint probability distribution of the random variables
X(k), k € A is a multivariate Gaussian distribution with
covariance matrix ¥ = ¢?B~! and mean vector . Stationarity
forces the |A| x 1 vector p to have constant coordinates p, = .
The (JA| x |A|) matrix B = [byx] is positive and symmetric,
and due to the assumed neighborhood structure W, we have

1, ifl =k,
b = { —bOx ifl € np, (2)
0, else

where 0, = _, for all » € W. The matrix B is parametrized by
vector § = [,],r € WT. Hence, the GMRF models considered
here are completely parametrized by p, o > 0, and the vector
0 = [0y], 7 € W subject to the condition that B = B(#) is a
positive matrix. We assume that 4 = 0 for our textures.

The random “gray level” X (k) can be expressed by linear

regression on the “gray levels” at neighboring nodes as follows
[11], [27]:

Tp = Z Or(Th—r + Thtr) + €k 3)
rew+

where (e1,. .., eja|) is the colored Gaussian noise with covari-
ance o>B(6).

Now, given a realization x of the GMRF X indexed by A,
define foreachr € A the m-dimensional vector y, = [z14+2_y],
l € (r+W)], where m is the size of W. Letting Y to be the
(JA] x m) matrix Y = [y,],r € A, the least squares estimates
[11]7 and @ of the parameters o and @ are given by the following
statistics [41]:

0(x) :=(YTY) 'YTx (4)
:7\2()() = ﬁ (XTX - 5TYTX) . 5)

When W is a first-order neighborhood, as in our case, the posi-
tivity of the matrix B(8) is equivalent to the condition |#] < 0.5,
but in general, the condition for positivity is quite complicated
[31]. Here, || denotes the ¢! norm of vector . Hence, we re-
strict ourselves to this very simple neighborhood and perform
the least squares estimate under the constraint || < 0.5. Statis-
tical properties of this estimate are analyzed in [27]. We choose
this over maximum-likelihood (ML) schemes [11] because ML
estimates require expensive numerical optimization techniques.

It is easy to check that the entries of Y'Y and Y 'x can be
determined from the empirical autocovariance function pg of the
realization x as follows:

1
po(k) = Al > apapsk, forall k€A (6)

reA

The strictly stationary GMRF X is assumed to have an autoco-
variance function p tending to 0 at infinity; hence, X is ergodic.
Thus, (see [4, Th. II1.4.2 and 4.4]) for |A| that is large enough,
each p(k) can be approximated with sufficient accuracy by the
empirical autocovariance po(k).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 5, MAY 2012

B. Extraction of Basic Texture Features

Let X be an arbitrary digitized 3-D texture, approximately
stationary, for which the acquisition process has delivered a re-
alization x indexed by a sufficiently large finite 3-D lattice A.
We then systematically replace all x(k) by x(k) — i, where
[ is the empirical mean of the realization x. We then deliber-
ately model x exactly as if x had been generated by a stationary
GMREF associated to a neighborhood system of first order on the
sublattice A, although this is generally not the case. This is what
we refer to as “fitting the first-order GMRF model” on X. We es-
timate the empirical variance o2 and the empirical covariances
of x, as well as the corresponding correlation parameter vector
# € R3, using (4) and (5), under the necessary and sufﬁcie/n\t
condition |f] < 0.5. In view of (2), the estimated variance o2
and the estimated 3-D vector # completely determine the esti-
mated covariance matrix 3(x) of the specific GMRF model that
we have fitted to the 3-D texture realization x. We essentially
consider the matrix f](x) as a preliminary basic feature vector
extracted from the realization x. Further on, we will combine
the preceding stationary GMRF modeling with 3-D rotations to
generate high-dimensional signatures that are covariant under
3-D rigid motions.

C. KL Distance Between Stationary GMRF's

We will need to compare pairs of stationary GMRFs for
discrimination purposes. A natural distance between stationary
GMRFs can be derived from the KL divergence between
stochastic processes. The advantages of the KL divergence
over simpler Euclidean distances between parameter vectors,
when dealing with stochastic models, are outlined in [6]. The
KL divergence Div(G1||G2) between two N-dimensional
Gaussian probability distributions GG and G5, with respective
mean vectors g, and g, and invertible covariance matrices 31
and X, is given by

2D1V(G1||G2) = IOgS (e—
(1o — )" ST (1 — py) + Trace (B7'%5) — N.

Symmetrizing the original KL divergence, which is not sym-
metric, and assuming zero means yield

KLdist(31, ¥p) = (1/2)Trace (X5 'S +2; '8 — 21y xn) -

(N
In our study, N is the size of the 3-D lattice A and is typically
greater than 106, For lattice sizes of this order, KLdist is not
easily computable by means of the previous equation and with
elementary matrix operations. However, since the GMRFs G4
and G satisfy a toroidal boundary condition and are strictly
stationary, their covariance matrices commute with all periodic
shifts in the following sense: Consider a tiling of Z* by translates
of A, i.e., there exists an infinite subset Z of Z3 such that Z? is
equal to the disjoint union of the tiles {¢ + A : ¢ € Z}. Then,
for each 8 € 73, 8 = i(s) + p(s) for unique choices of i(8) € T
and p(8) € A. Then, both covariance matrices are such that the
(k,l)th entry of each ¥; is equal to the (p(s + k), p(s + 1))th
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entry of ;. Matrices that satisfy this property are 3-D circulant
convolution matrices. Standard arguments from operator theory
or matrix analysis imply F(2.q) = D.(Fq),q € RN, k =
1,2, where F is the 3-D DFT matrix and the D; values are
N x N diagonal matrices; the entries of which are given by the
restriction of the Fourier series of the autocovariance functions
of the stationary GMRFs (G; and G5, on a discrete lattice. Since
the DFT is an isomorphism, we have

KLdist(31, ¥2) = (1/2)Trace (D;1D1 +D;'D,— ZINxN)

(®)
which is easily computable since inversion of diagonal matrices
is anumerically inexpensive and stable operation. For the simple
structure of the covariance matrix of our model, the entries of
D; are samples of values of trigonometric polynomials directly
obtained on points of the N? regular grid in the Fourier do-
main [—(1/2),(1/2)]3. Thus, we do not require expensive fast
Fourier transforms (FFTs) to calculate the distance.

V. ROTATIONALLY INSENSITIVE SIGNATURES
FOR 3-D TEXTURES

A. 3-D Rotations of Textures

For all @ € SO(3) and f € L?(R?), we define Rqof(z) =
f(aTx). Similarly, the e rotation of a continuous 3-D texture X
indexed by R? is the continuous texture where the random vari-
able (X), corresponds to the random variable X,r,. Then,
the autocovariance p, of the continuous texture X is given by
Pa = Rap. Our goal is to calculate the autocovariance of the
discrete texture X©, which is the restriction of its continuous
counterpart on the lattice Z2. Equivalently, we want to estimate
the sequence {pa(k)}rezs for all rotations e from the known
input { p(k) } kezs . This sequence completely determines the au-
tocovariance p via (1). We assume that p belongs to V; of the
IMRA generated by some radial function ¢. This implies that
Pa belongs to Vj as well; hence, p, is accurately represented
by its values {pqa (k) }xeczs on the same lattice, regardless of the
rotation . Therefore, the kth value of p, is given by

pa(k) = (Rap, Txd) = (p, TakRar ¢) = (0, Tard)  (9)

for all k € Z*. Equation (9) proves a simple steerability rule,
stating precisely how the sampling of a continuous texture by re-
striction of its values to the lattice Z2 is compatible with 3-D ro-
tations. Moreover, if @; and @ are two rotations and if (pa, )a,
is the autocovariance of the rotated texture X2 by a;, then (9)
implies

(pOtQ)al (k) = <p027T01k¢> = <p7 Tazﬂ1k¢> = Paza; (k)

(10)
which shows why (9) is a steerability rule. The computational
implementation of this rule is done by approximating p, (k) =
(P, Tak®) by (p, To—io ¢}, where k' € 77, by taking jo >
0 to be high enough so that points 277 k" and ak are suffi-
ciently close. This computation is performed by iteratively ap-
plying 7 steps of the reconstruction algorithm of the Fast IMRA
transform [7], [25] on the data set {pa (k) }rcz= in the following
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Fig. 1. 2-D plot of H,.

way: First, we define the transfer function of the low-pass syn-
thesis filter Hy as follows:

Hy(§)
1 ¢ < 52
= % [1 + cos (% (|5| - 157/3))} ) 157/3 <kl < %
0 otherwise

(11)

where ¢ € [—(1/2),(1/2)]3, Band 7 > 0, and Hy is Z3 peri-
odic. The parameter 3 > 0 determines the width 3/ of the tran-
sition band, whereas 7 determines the cutoff frequency of the
filter (see Fig. 1). Typically, we set 7 = 100/84 and 5 = 1/7. At
each reconstruction step, the low-pass component at the current
resolution level 7 < jo is first upsampled by a factor of 2. The
upsampled low-pass component is convolved with the synthesis
low-pass filter hg. It is best to implement this convolution as fast
convolution in the frequency domain via multiplication with Hy.
The added benefit is speed and best use of the isotropy of Hy,
which manifests better in the frequency domain. At the first iter-
ation of the reconstruction algorithm, the low-pass component
is set to a given input image. For instance, for the implementa-
tion of (10), we use {pa(k)}reczs. Then, the current high-pass
component, which is forced to be zero, is added to generate the
image at resolution level j + 1. In practice, all this computation
is restricted on a finite sublattice of Z3. In Section IX, we use
jJo = 1,2. We also observe that this method of approximating
po(k) is numerically more accurate than trilinear interpolation
between nearest neighbors of ak.

B. Monoscale Rotationally Covariant Texture Signatures

Let x be arealization of the discrete stationary zero-mean 3-D
texture X indexed by a sufficiently large finite 3-D lattice A C
Z3. As before, po (@ € SO(3)) is the autocovariance function
of X that is calculated as described in the Section V-A, where
p is estimated by the empirical autocovariance po by means of
(6). Under the assumption that the given discrete texture X at
the scale that corresponds to the grid A has zero mean and is
wide-sense stationary, we calculate its empirical autocovariance
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matrix i, following Section IV-B. In light of (10), we define the
texture signature of X by

I'x(e) =X, a € S0(3) (12)
where Y, is the autocovariance or X*. The strict stationarity
of X and of all X imply that the (k,I) entry of 4 is equal
to pa(k — ). By combining this choice of texture signature
with (10), we obtain I'xa: (1) = I'x (@2a), for all @1, as €
SO(3);i.e., I'x is arotationally covariant signature for the 3-D
texture X. This is a key property in the construction of rotation-
ally invariant distances presented in Section V-C. However, in
practice, X is not available. Instead, we obtain from x the em-
pirical autocovariance pg, which is an estimate of p. Then, for
each @ € SO(3), we derive the values of {(pg)a(k)}reca from
those of pg according to the previous subsection. We define

Ii(a) = (E)a  ac SO3) (13)
where (i)a is the autocovariance matrix corresponding to
{(po)a(k)}rea to be the monoscale 3-D texture signature of
the observed texture X at the scale corresponding to the density
of the lattice A. This is the orbit {Gx(a,j) : @ € SO(3)}
of the GMRF models fitted to the texture X and to all of its
rotations at scale j = 0 that we promised in the introduction.
Now, let @; € SO(3). Let x, y be the realizations of X and
X! observed on A, and let I'y and I'y be their signatures,
respectively. If {p(k)}rezs is the 3-D autocovariance of X,
then the 3-D autocovariance of X! is {pq, (k) }rezz. Ideally,
one should expect then that the empirical autocovariance of
X1 estimated from gy should be equal to {(po)a, (K)}ren-
Since empirical autocovariances are only approximations of
true autocovariances, this equality can be only true within a
certain margin of error, but this is not the only reason why
the rotational covariance of I'x only holds approximately. The
reason for which I'y (e) = I'x (1), for all @ € SO(3), is that
the computation of (pg)a, (k) is implemented via an approxi-
mation. If there had been no approximation in the computation
of these coefficients, I'y (o) = I'x(a1a), for all @ € SO(3),
would be true. Therefore, the faithfulness of the rotational co-
variance of the texture signatures that we compute lies entirely
on the global approximation of the sequence {(po)a, (k) tkca
for each desired rotation a;. We now introduce rotationally
invariant monoscale 3-D texture distances.

C. Rotationally Invariant Distance Between 3-D Texture
Signatures

Recall that the KL distance between two stationary Gaussian
random fields with zero means and autocovariance matrices X1
and X5 is a symmetric function KLdist(X1, ¥9) given by (7).
The Markov property of GMRFs is critical for a low computa-
tional cost estimation of the inverses of >; and 5. Consider a
3-D texture X, and let X? be the rotation of X induced by B €
SO(3). The corresponding signatures I'x and I'xs defined by
(12) are both indexed by SO(3) and differ only by a multiplica-
tive “shift” acting on their index space, namely multiplication
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by 3. We want these textures to be classified as identical. Since
direct comparison of signatures indexed by SO(3) is quite im-
practical, we introduce an “average divergence” between pairs
of texture signatures: For any pair X, Y of 3-D textures with
autocovariance functions satisfying the mild properties stated
in Section III, we will then define a distance dist(X,Y) by

min

dist(X, Y) i= _min

/ KLdist (I'x (a), 'y (Ta)) da.

50(3)
(14)

Since the integral in (14) is continuous in 7 over the compact
group SO(3), it must achieve its minimum for at least one ro-
tation 7 € SO(3), which is then one of the rotations that best
aligns the signatures of X and Y7.

The left invariance of the Haar measure [13] and the pre-
ceding definition readily imply the main rotation invariance
properties as follows:

dist(X,Y) =dist(X*,Y?)  Va,B e SO(3)
dist(X, X%*) =0 Va € SO(3).

15)
(16)

As stated earlier, in practice, the original texture signatures I'x
and [y are not available and must be replaced by 3-D texture
signatures that are derived from realizations x and y of these
3-D textures given on a finite lattice A. This leads us to compute
a distance Rdist(x,y) approximating dist(X,Y') and naturally
defined by
Rdist(x,y) :=

min

Louin / KLdist (I'x (@), [y (Ta)) dev.

50(3)
a7)
Remark 1: When the diameter of the lattice A tends to in-
finity, then Rdist(x,y) converges to dist(X,Y). The rotation
invariance of Rdist(x, y) also holds approximately because the
texture signatures are only approximately covariant as we have
explained in the previous section. On the other hand, Rdist(x, y)
is not influenced by the translates of x and y by any vector t as
long as t belongs to A because texture signatures are computed
by approximate autocovariance functions, which themselves are
invariant to translates that leave the sampling lattice A invariant.
Hence, in all practical tests and applications that follow, we
consider Rdist(x,y) to be the promised 3-D rigid-motion-in-
variant texture “distance.”

VI. NUMERICAL COMPUTATION OF ROTATIONALLY INVARIANT
DISTANCE BETWEEN 3-D TEXTURES

A. Parametrization of SO(3) by Euler Angles

Each 3-D rotation @« € SO(3) is parametrized by its three
Euler angles («, /3,7), using the ZY 7 convention, and can be
written as the product of three rotations as follows:

a = Rz(y)Ry(B)Rz() (18)
where Rz (), Ry (f3), and Rz(«) are rotations by angles ~, 3,
and « around the Z-axis, the Y -axis, and the Z-axis, respec-
tively, with 0 < o, v < 2m,and 0 < 3 < 7.
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The normalized left-invariant Haar measure SO(3) is then
given by

1
da = — sin(f)dadfBdy
8T

; (19)

where do, df3, and dry are the usual Lebesgue measure.

Due to the symmetries of covariance matrices in our texture
models, the integral in (17) may be restricted to Euler angles as
follows:

(o, B,7) € EB = [0, 7] x [0, g] x[0,7].  (0)
Indeed, fora = a + 7w, with0 < a < 7, 0 < 8 < (7/2),
0 <~ < 7, we have

o = ale<’/T)

where a; = Rz(7v)Ry(8)Rz(a). Since our covariance ma-
trices are invariant under the rotation Rz (), we can take a €
[0, 7]. Similarly, y can be restricted to [0, 7] as well.

To justify why it is enough to take 3 in [0, (7 /2)], first, let
a = Rz(v)Ry(a+ 7/2)Rz(a) with 0 < a < (7/2). Now,
Ry (a + (7/2)) can be replaced by Ry (a + (37/2)) because
the latter rotation is the composition of rotations Ry (w) and
Ry (a + (7/2)), and the covariance matrices we consider are
invariant under Ry (7). To complete the proof of this claim note

Ry <a+ 37%) = Rz(m)Ry (5—0) Rz(m).

B. Discretization of SO(3)

For the practical computation of the rotationally invariant
distance Rdist defined in (17), we discretize the integral over
SO(3) in the right-hand side of (17).

In view of Section VI-A, we select a finite 3-D rectangular
grid of points («, 3,7) € EB by defining a partition of £ B
into rectangles having the same Haar measure. In view of (19),
this is achieved by defining

a:{%} Vi=0,1,...,N—1

a O.V
B = {arccos (1—J—;V o)} Vj=0,1,...,N—1
k
e = {WW} Vk=0,1,....,N—1
ag ey = (i, B, )

The discrete values of [ start with 0.5 to avoid the unwieldy
gimbal lock point 3y = 0 (see [1]). Using the discrete set of ro-
tations that were just defined, a computationally implementable
version of the distance Rdist defined in (17) is given by

N—-1N-1N-1

TGS(.)(S) N3 Z Z Z KLdlSt

min
=0 7=0 k=0

x (i k), Ty (TG k) -

1)
By taking into account the symmetries of the covariance ma-
trices, the numerical minimization in (21) can be restricted to
T € EB. Thus, computing the approximate Rdist defined by
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(21) involves solving the following minimization problem in
three variables:

Find  nojn, F(r) )
where F(T) is
N-1N-1N-1
N3 KLd1st (a(i,j,k))vPy(Ta('i,j,k))) :
=0 7=0 k=0

To keep the computations tractable for intensive numerical
testing on a set of roughly 6400 pairs of standard-size 3-D im-
ages, we choose N = 5, which results in a total of 125 distinct
rotations; thus, the texture signature involves 125 x 4 = 500
parameters. For smaller test sets, one could of course use
N > 5. Each evaluation of F' requires the rotation of one of the
two textures: the calculation of 125 sets of GMRF parameters
for the rotated texture and the calculation of KL distance for
125 pairs of parameters.

The rotation of a texture is achieved by rotating the covariance
matrix, as explained earlier in Section V-A, which is a computa-
tionally much cheaper task than rotating the entire 3-D texture.
For efficiency, each KL distance is calculated in the Fourier do-
main. Thus, each evaluation of the function F'(1) is achieved in
about 1 s, which is still quite costly for one function evaluation.
For instance, finding the minimum of F' by exhaustive search
through 1000 rotations (corresponding to N = 10) would re-
sult in a computation time of 15 min. An optimization approach
involving derivatives would also require a high number of eval-
uations of £’ and might get trapped in local minima.

To circumvent these problems, we minimize F'(7) through
the Matlab pattern-search algorithm [3], which yields a good
minimum of F' in less than 100 function evaluations. On a
2.8-GHz processor, the calculation of Rdist between two given
3-D textures of size 120 x 120 x 120 takes 2—3 min.

VII. APPLICATION OF 3-D RIGID-MOTION-INVARIANT
TEXTURE DISCRIMINATION

A. Multiscale Rotationally Invariant Distances of 3-D Textures

The computable distance Rdist quantifies the dissimilarity be-
tween two 3-D textures given on a finite lattice A. One of the
main ingredients of our approach is the assumption that there
is an IMRA {V;}; generated by a radial function ¢ such that
the autocovariance p of the texture X belongs to a subspace V.
The scale j determines the density of the lattice A. By conven-
tion, we can always set j = 0. However, we do not need to con-
fine the Rdist-based comparison of two textures to a single-scale
7 = 0 since the Rdist-based comparison of two textures at other
scales probes into correlations of voxels that are further apart
and therefore enhances texture discrimination.

Using this multiscale comparison of textures, we first gain
reduced computational cost at each scale because the first-order
GMRF parametrization model we rely on is small. This would
definitely not be the case if we had decided to use “order-£”
GMRF models with & > 1 (see [31]). Second, GMRF models
with k& > 1 are determined by a parameter vector # for which
the constraint |#] < 1/2 is only sufficient and severely restricts
the parameter space. To implement the multiscale comparison
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of two textures, we use the IMRA decomposition algorithm [7],
[39] in the following way: The input image is convolved with
analysis low-pass filter h first, and then, it is downsampled by a
factor of 2. This procedure produces the low-pass output, which
can be used as input for an iteration of the low-pass decom-
position. The transfer function of the analysis low-pass filter
is given by (11) with 7 = 100/59 and # = 1/6. The con-
volution by hg can again be performed as fast convolution in
the frequency domain. If we wish to maintain translation invari-
ance, then we apply the decomposition algorithm, and we skip
the downsampling by 2. In this case, for a single application of
the decomposition algorithm, the first-order neighbors are the
third-order neighbors, i.e., two voxels apart on each of the z, y,
and z-directions.

To implement the multiscale Rdist-based comparison of two
textures, we begin with two realizations x(?) and y(©) of the ar-
bitrary 3-D textures X and Y given above. Both x(?) and y(©)
are given on a finite lattice A(?). We apply the IMRA decompo-
sition algorithm to x(®) and y(?) to generate two corresponding
multiscale realizations x/) and y/) defined for each of the
coarser scales j = —1, —2 — 3, —.J, on successively coarser lat-
tices A(9). At each coarser scale j — 1, the lattice A is reduced
by a factor of two per dimension. Hence, the number J + 1 of
scales that we can consider in 3-D is fairly small in practice and
depends essentially on the initial resolution of our data, which
is the cardinality of the initial lattice A(®).

Then, for j = 0, -1, -2 — 3, —J, we define Rdist;(x,y) =
Rdist(x(), y()). The vector of these .J +1 rotationally invariant
distances Rdist;(x,y), where j = 0,—1,... — J, will be our
multiscale 3-D texture discrimination tool.

B. Self-Distance for 3-D Textures

Theoretically, the self-distance Rdist;(x,x*) of the 3-D
texture x from every rotation of itself at scale j must be zero.
However, when we compute the distance of a 3-D texture from
a rotation of itself, we only achieve an approximate minimiza-
tion in formula (22). Furthermore, note that we implement
texture rotations via a rotation of their empirical autocovari-
ance function, which adds another level of approximation to
Rdist;(x,x). Hence, numerically computed “self-distances”
are small but nonzero. Therefore, discrimination between 3-D
textures must take these nonzero “self-distances” into account.

To estimate the self-distance of a 3-D texture, we generate
rotations of X by 20 randomly selected a; € SO(3) (k =
1,2,...,20) and define diamy (5 ) to be the 80th percentile of the
20 distances Rdist(x), (x())®*). The choice of 20 random ro-
tations and of the 80th percentile were reached after numerical
testing, which showed that these choices provided a reasonably
accurate estimate of the self-distance of the texture whose real-
ization is x. In a nutshell, diamy () is an efficient Monte Carlo
estimate of the baseline computational errors that will affect the
computation of Rdist;(x,y). We remark that the Haar measure
of SO(3) has to be taken into account when the 20 rotations
are randomly selected.

C. Discrimination Between 3-D Textures

The rotationally invariant 3-D texture distance Rdist; mea-
sures the stochastic dissimilarity of two textures. For practical
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purposes, we must use Rdist; at one or more scales j to dis-
criminate two 3-D textures X and Y. This question is equiva-
lent to probing whether Y is statistically identical with a 3-D
rigid motion of X. Recall that even the computable Rdist; is by
definition shift invariant with respect to translates by t € 27773
because it is extracted by estimating the autocovariance function
of x, which is not affected by the respective translates of the tex-
ture. Obviously, one can easily propose more than one texture
discrimination rule based on Rdist;. To this end, we define the
discriminant function RD; by

' _ Rdist;(x,y) — diamy (j)
RDj(x,y) = max {0, Giamy () . (23)

First we remark that RD;(x,y) may not be equal to RD;(y, x)
due to various numerical errors in the computation of Rdist; and
because diam, (j) may not be equal to diamy, (7). Intuitively, the
value of the discriminant function RD;(x,y) essentially com-
pares how many times further away the most proximal and rel-
atively best 3-D aligned texture realization of y appears to be
from every 3-D rigid-motion-induced realization of x, where
the “unit of the distance measurement” is the self-distance of y.
Since the value of this and of every discriminant function based
on Rdist; is not practically affected by the 3-D rigid motions of
each pair of texture realizations that we compare, we can utilize
RD; to devise 3-D rigid-motion-invariant texture discrimina-
tion rules. Nevertheless, these rules must be application specific.
With this in mind, we coin two rules indicative of the various
possibilities.

Rule I: x and y are stochastically the same 3-D tex-
ture modulo rigid motions at scale j if RD;(x,y) =
RD;(y,x) = 0 and statistically different if RD;(x,y) > 0 or
RD;(y,x) > 0.

More conservative variants of rule 1 utilize a “user-defined”
threshold € > 0 to declare that x and y are realizations modulo
3-D rigid motions of stochastically different 3-D textures at
scale j if RDj(x,y) > e or RD;(y,x) > e. An even more
conservative rule would declare the textures as different if both
RDj(x,y) and RD;(y,x) > ¢, and certainly more variants of
rule 1 can be proposed. Rule 1 can be applied if we have only
two texture realizations. Finally, if we wish to apply these rules
for multiple scales, we can declare that x and y are different if at
any of the scales j = 0, —1, —2, —3, rule 1 or any rule of choice
declares them as different. This approach to multiscale texture
discrimination is justified by the fact that we fit very simple tex-
ture models to textures whose neighborhood order may or is typ-
ically higher than one. By examining the decomposition of the
texture output at various scales, we capture voxel interactions of
a certain order, which, for 7 < 0, is higher than 1 and cannot be
captured if we use our GMREF first-order probe at the original
scale only (j = 0). The multiscale application of the discrimi-
nation rules will become more clear in the experiment section.

Now, suppose that we have more than one texture realization,
e.g., X1, X2, ... Xy, are all from the same texture type, e.g., X;
and y1,y2, ...y, are all from different texture type, e.g., Y.
This is a scenario suitable for an application domain, e.g., all
these realizations are texture samples corresponding to two dis-
tinct types of soft tissues imaged in a 3-D current transformer
(CT) scan. In such a case, tissues of the same histological type
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may give rise to texture realizations with quite similar stochastic
properties but for which one cannot assert with certainty that
they are generated by the same stochastic texture model. To this
end, consider the ensembles x1,X2,...X,, and y1,¥2,...¥r,
as a set of prototypes for these two different types of 3-D tex-
tures. Let z be another texture realization obtained from the
same 3-D image. The following is a rule for 3-D rigid-mo-
tion-invariant binary classification of 3-D textures.

Rule 2: Let z be another texture realization extracted from
the same 3-D image and assume that z belongs to one of the
two texture types X or Y. We say that z is of texture type X if
maz{RD;(x;,z) : 1 < i <71} < min{RD;(y;,z) : 1 <
i < ro}. Otherwise, we say that z is of texture type Y.

We remark that ZD; is not the only choice of a discriminant
function. In fact, if one replaces the ratio in the right-hand side
of (23) with

Rdist;(x,y)+Rdist;(y, x) —2 max {diam (j), diam, (5)
2 max {diamy (), diamy (5)

then the discriminant function becomes symmetric, but this
choice no longer works well for texture classification defined
by Rule 2. Rule 2 compares a test realization against prototypes,
and the Monte Carlo estimate of the numerical errors in the
computation of Rdist;(x,y) is diamy (j), rendering the sym-
metry of RD; meaningless unless there is only one prototype
from each class and one probe.

VIII. GENERATION OF SYNTHETIC TEXTURES

To test our 3-D rigid-motion-invariant multiscale discrim-
ination approach, we have generated two types of synthetic
3-D textures. The first small set of 3-D textures involves only
stochastic textures generated by stationary GMRF models to
simply provide a consistency check for our discrimination
algorithms within the universe of stationary random textures.
We use the algorithm detailed in [41, Ch.4] for generating these
textures.

For our second set of numerical tests, we synthesize 3-D tex-
tures using cooccurrence matrices [24]. We needed to generate
this large test set of arbitrary synthetic 3-D textures at reasonable
computational cost. We decided to use 3-D cooccurrence matrix
models since these synthetic texture models have been exten-
sively used in computer graphics to emulate extended ranges of
real-life 2-D textures extracted from arbitrary photographic data
and, in general, are not GMRFs. We deliberately decided not to
use GMREF stochastic models for the large test set to demon-
strate the classification ability of our algorithm on more general
textures, although, we only use GMREF as the probing tool.

Next, we briefly describe our algorithm for generating these
textures. In the cooccurrence matrix characterization of a 3-D
texture x, indexed by a finite lattice A C Z2, the gray levels of
x are usually binned together to create fewer levels for compu-
tational efficiency. Call g as the number of gray levels of the
image x after this preliminary compression. Select any fixed
symmetric finite subset OFF of Z3, which will be called a set
of “offsets.” To each offset I € OFF, one typically associates
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Fig. 2. Examples of 3-D textures obtained from cooccurrence-matrix-based
texture synthesis.

the g X g cooccurrence matrix C'(I) with entries C(1); ; defined

by

such that
Xm =7j}-

C(l); ; = cardinal {(k,m) € (A x A)

|k —m| =|l|; =xx=71; 24
We fix a set of g = 8 gray levels. To generate each test volume
of a 3-D texture, we first select an arbitrary set OFF C 73 of five
offsets I € [—3, 3]2. Then, for each I € OFF we select an arbi-
trary cooccurrence matrix Cj of size 8 x 8, randomly pick eight
of Cy’s entries, and set them approximately 100 times larger than
the rest of the entries of Cj. To synthesize a 3-D texture realiza-
tion x having those five arbitrary cooccurrence matrices C(1),
we extend the texture synthesis algorithm outlined for 2-D-tex-
tures in [33] to 3-D. This modified algorithm is a variant of the
Metropolis algorithm adapted to minimize the cooccurrence dis-

parity cost function as follows:

Cost(J) := > ||Ci— K|
leOFF

where J is an arbitrary image and K is the cooccurrence matrix
of the image .J for the offset I, and the norm of a matrix is the
sum of the absolute values of all of its entries.

In contrast to the stochastic descent algorithm in [33], at each
iteration, we only update .J if the update decreases Cost(.J). This
deterministic cost descent differs slightly from the classical sto-
chastic Metropolis algorithm in [33] but converges much faster
to a very good local minimum of Cost(.J) quite adequate for the
synthesis of arbitrary 3-D textures with eight gray levels and
five preassigned cooccurrence matrices. Finally, the dynamic
gray-level range of each 3-D image J generated with this al-
gorithm is extended from 8 to 128 gray levels to give J a more
“natural” look. This is done by replacing each voxel value 7 =
0,1,...,7 by arandom value in 16 x 7 and 16 x (i + 1) — 1.
Realizations of such 3-D textures are shown in Fig. 2.

IX. EXPERIMENTAL RESULTS

To study the performance of our method, we performed three
sets of experiments using synthetic and X-ray CT data sets.
More details on these experiments and additional experiments
are presented in [47].

A. Synthetic Textures Generated by GMRF's

Our first set of experiments intends to perform a first simple
consistency check for the proposed rotationally invariant dis-
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TABLE 1
RDo(x;,x1)

X1 X2 X3 X4 X5 X X7
X4 0 193.0 12.6 160.3 161.7 279.0 187.3
X 191.7 0 8.0 895.0 | 896.0 1455.0 | 975.3
X3 122.0 82.7 0 594.7 | 597.7 947.5 633.7
X4 162.0 | 893.3 | 63.8 0 0 2.5 1.3
X5 163.0 | 899.0 | 64.0 0 0 3.0 1.3
Xg 186.6 | 968.0 | 68.4 1.3 1.3 0 0
X7 190.0 | 980.3 | 69.5 1.7 1.7 0 0

crimination between 3-D textures. We only use rotations that
map the coordinate axes onto themselves because such rotations
leave the texture properties invariant. We generate realizations
of four synthetic textures X4, X5, X¢, and X7 using first-order
GMRFs with the following parameter vectors 6:

X, : (0.1,0.1,0.25)
X : (0.05,0.15,0.20)

X5 :(0.1,0.25,0.1)
X7 : (0.20,0.15,0.05).

Thus, X5 is the same as X4 rotated by 7/2 around the X -axis,
and X7 is the same as Xg rotated by 7 /2 around the Y -axis. We
also generate three other realizations of textures, i.e., X1, Xo,
X3, by using higher-order GMRFs. Table I lists the values of the
3-D rigid-motion-invariant discriminant RDg(x;,X;/) between
arbitrary pairs (x;, x;/) of these seven 3-D textures at scale j =
0. Notice that, in Table I and in all other tables, 7 denotes row
and ¢ denotes column.

We observed in this experiment that the “distance” Rdist; is
not strictly symmetric but is still nearly very symmetric. This is
because our numerical scheme for calculating 3-D texture dis-
tances relies on an approximate minimization and a discretiza-
tion of SO(3) with a fairly moderate density. Samples of ro-
tated autocovariances are approximated by resampling the de-
sired rotation of the autocovariance function on the grid Z3/2
using the reconstruction part of the fast isotropic wavelet algo-
rithm, as mentioned in Section V-A. We also observed that this
resampling technique on the rotated grid Z*/2 gives better tex-
ture discrimination results than linear interpolation. We remark
that the lattice Z3 /2 is good for this example, but for other more
demanding textures, one may need to use denser lattices such
as 73 /27 with j = 2, 3. Using the strictest of the variations of
rule 1 applied with ¢ = 1 (see Table I) X4, X5 and Xg, X7
are found to be pairs of identical textures up to 3-D rigid mo-
tions. Moreover, group X4, Xj5 is not the same (modulo 3-D
rigid motions) as the group X¢, X7. However, the “distance”
RDg between the pair X4, X5 and the pair Xg, X7 is not of
the same order as the “distance” between either of the X4, X5;
X, X7; and X1, X, and X 3. This disparity between the orders
of magnitude of these “distances” reflects the structural differ-
ence between these textures: The latter three of them are real-
izations of GMRFs of order higher than 1, whereas the former
four are all realizations of first-order GMRFs; therefore, statis-
tically, the disparity among the former four textures should not
be as pronounced as the disparity between any of the X4, Xj5;
X, X7; and any of X1, Xo, and X3. This observation seems
not to be accidental. As the results in the following sections re-
veal, the proposed “distance” shows discriminative power even
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Fig. 3. Discrimination results from combining all three scales using rule 1’ for

the 4950 pairs of 3-D textures. Texture realization pairs are classified as identical
(black pixels) or distinct (white pixels).

when the 3-D texture realizations come from more complex sta-
tistical models than GMRFs of the first order. Moreover, our
“texture distance probe’ helps identifying the five different tex-
ture classes in which these seven realizations belong to. Specifi-
cally, each of X1, X5, and X3 forms a class of its own, and X4,
X5 and X4, X7 form the remaining two classes.

B. Synthetic 3-D Textures Generated by Cooccurrence
Matrices

We performed various tests to validate that our approach
achieves a high accuracy rate when it discriminates between
3-D textures. With those experiments, we validate that our
3-D texture discrimination is invariant to rigid motions. In
the first experiment, we use a set of 100 distinct synthetic 3-D
texture realizations generated by distinct arbitrary cooccurrence
matrices, as described in Section VIII. We apply to each one
of these 3-D texture realizations x = x(*) the IMRA decom-
position algorithm, to derive the two coarser scale realizations
x(=1 and x(=?) (see Section Section VII-A). To demonstrate
the discrimination capabilities of the combination of 3-D
rigid-motion-invariant texture “distances” Rdist;, monoscale
results are combined. For discrimination, we use rule 1/, which
is a variant of rule 1, as follows: Texture realizations x; and x;-
are declared different at scale 7 modulo 3-D rigid motions if
RD]'(X“XVL'I) > 0 and RDj(Xil?Xi) > 0, forl <7, i’ < 100.
Using this rule, we say that two textures are different if they
are different for any scale j; otherwise, they are classified as
being of the same type. If the pixel (4,4’) in Fig. 3 is black, then
the realization x; is of the same texture type as that of a 3-D
rigid motion of x;,. Remarkably, the discrimination accuracy
reaches 100% when discrimination results from all three scales
are combined, despite the fact that monoscale discrimination
accuracy is always strictly less than 100%.

The computation of Rdist; for each pair requires about 3 min.
Computing Rdist; for 10 000 pairs of 3-D textures at scales j =
0,—1,—2 and performing the entire experiment on a 50-pro-
cessor parallel computing cluster takes less than two days.

The next experiment establishes that the proposed method of
3-D texture discrimination is truly rotationally invariant. To this
end, we generate a set of ten synthetic texture realizations of size
2403 using cooccurrence matrices, as before (see Fig. 4). Then,
for any given texture realization, we randomly select a set of
eight Euler angles in 3-D by taking two random angles, each
for o € [10°,170°], # € [10°,80°], and v € [10°,170°]. The
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Fig. 4. Example of a texture realization and of its 3-D rotation from one of the
ten groups used in the second experiment of Section IX-B.
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Fig. 5. Grayscale plots of the rotationally invariant distance Rdist;(x;,x;/)
when 7 # ¢ for scales j = 0,—1,—2. We use ten 3-D texture realizations,
with eight rotations of each realization. The diagonal entries of these plots give
the self-distances diam,, (j) of these 80 3-D texture realizations. Black pixels
encode zero distances, whereas brighter ones encode higher distance values. (a)
Rdisto. (b) Rdist_;. (c) Rdist_o.

range [10°,170°] is selected to avoid creating almost aligned
realizations. Then, we perform one iteration of the IMRA re-
construction algorithm (see Section V-A). The filtered output
has size 4803. The rotation is implemented by rotating the orig-
inal 2402 sampling grid by the appropriate Euler angle and by
resampling the filtered 4803-voxel output at the points of the ro-
tated 2403 grid. The use of the IMRA filter ko guarantees that
numerical errors resulting from the resampling process are well
controlled. The value of each voxel of the rotated 240 grid is
computed from the values of its nearest neighbors in the 4803
grid using trilinear interpolation. Recall that a similar method is
used to compute the rotations of autocovariance matrices during
the extraction of 3-D texture signatures. Finally, the rotated tex-
ture realization is a cube of size 120® extracted from the center
of the cube of size 2403 that we produced in the previous step.
This generates a gallery of 80 texture realizations organized in
ten groups of eight texture realizations each. All eight members
of each group are 3-D rotations of one another.

Applying Rdist; for j = 0, —1, —2 gives the results shown in
Fig. 5. Note that images in Fig. 5(a)—(c) are splitin 8 x 8 blocks.
Within each block, all pixels have comparable grayscale values.
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Fig. 6. Discrimination results using rule 1’ for the ten groups of eight rotated
texture realizations. Texture realization pairs are classified as identical (black
pixels) or distinct (white pixels). The discrimination accuracy at each scale is
given in parenthesis. (a) Scale 0 (accuracy of 65.13%). (b) Scale —1 (accuracy
of 53.54%). (c) Scale —2 (accuracy of 97.41%). (d) Combine all three scales
(accuracy of 98.75%).

The pixels belonging to the same 8 x 8 block in the main diag-
onal of each plot appear to have the same grayscale value indi-
cating that the self-distances of the eight rotated realizations of
the same texture are almost equal. This observation underscores
the expected result: Since Rdist; is approximately rotationally
invariant, diam, () is almost equal to diamya (7) (@ € SO(3)).
Applying now the discrimination rule 1’ per scale and by com-
bining scales as we did in Experiment 1 gives the results shown
in Fig. 6. Inspection of the latter plot shows that the use of rule
1" enables a very good rotation invariant discrimination, particu-
larly effective in deciding that two textures are not 3-D rigid-mo-
tion equivalent. If, instead of rule 1/, we use rule 1, then we ob-
serve roughly the same high rate of discrimination accuracy, but
the number of wrong hits increases in the off-diagonal blocks
and decreases in the string of the 8 x 8 diagonal blocks.

We perform a similar experiment to show that the proposed
texture discrimination method is 3-D translation invariant as
well. Again, we generate a set of ten synthetic texture realiza-
tions as in the previous experiment. Each of them has size 240°.
Eight cubes of size 1203 are randomly extracted from each oc-
tant of all ten volumes. This provides us with eight translations
for each texture realization. By applying rule 1’ in three scales
7 = 0,—1,—2 and by combining discrimination results shown
in Fig. 7, the discrimination accuracy reaches 99.76%. The com-
bined application of discrimination rule 1, as given previously,
yields results plotted in Fig. 7.

C. Shot of Soft-Tissue Discrimination

In this section, we show how the proposed method is capable
of soft-tissue discrimination in 3-D scans when tissues are as-
sociated with 3-D textures. We use two different series of ab-
domen X-ray CT scans acquired from the same patient at dif-
ferent times during the same study. Gall bladder and muscle are
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TABLE II
SERIES 1: VALUES OF RD _(x,y). Gy,...,G4 AND My, ..., M, ARE USED AS PROTOTYPES FOR GALL BLADDER AND MUSCLE, RESPECTIVELY. T'G AND
T M ARE TEST SAMPLES FOR GALL BLADDER AND MUSCLE. OBSERVE THAT THE VALUES IN COLUMN OF T'G AND T M INDICATES THAT T'G IS MORE “CLOSE”
T0 Gy, ..., G4, AS COMPARED WITH M, ..., M. SIMILARLY, T'M IS MORE “CLOSE” TO M, ..., M, AS COMPARED WITH GGy, ..., Gy
G1 G2 G Gy TG My Mo M3 My TM
G 0 18.1 4.5 0 4.2 697.4 149 | 1811.1 | 143 | 1623
Go 23.2 0 32.5 0.7 | 157 | 15529 | 19.4 | 3381.8 | 22.8 | 256.9
Gs 1.5 334 0 0 2.6 875.2 17.2 | 21342 | 17.0 | 1959
Gy 74.1 71.1 21.4 0 10.3 | 1995.7 | 252 | 4389.8 | 30.4 | 309.2
TG 50.1 53.5 7.3 0 0 1658.1 | 23.9 | 35224 | 245 | 283.9
My 116.9 93.9 55.7 1.8 30 0 1.9 105.4 4.0 27.4
Moy 205.2 | 1263 90.6 2.7 | 415 569.6 0 572.4 1.5 10.8
M3 200.7 | 115.7 84.1 24 | 407 56.8 0.5 0 2.1 15.9
My | 2174 | 107.6 | 92.6 23 | 462 | 701.6 0 666.1 0 48.7
TM | 2509 | 1285 | 101.3 | 2.8 | 49.0 | 488.2 0.1 293.3 3.8 0

70
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Fig.7. Combined discrimination results using rule 1 for the ten groups of eight
spatially shifted texture realizations. Texture realization pairs are classified as
identical (black pixels) or distinct (white pixels). The discrimination accuracy
reaches 99.76%.

the two tissue types we consider in each of the two CT-scan se-
ries. We show that we can distinguish these two types of soft
tissue by using the 3-D texture discrimination techniques we
develop. Suppose that x and y are texture realizations from gall
bladder and/or muscle tissue.

First, consider the standardized mean difference Dy (x,y)
defined by

_ |Mean(x) — Mean(y)|
B Var(x) + Var(y)

DIW <X7 y)

where Var(x) and Var(y) are sample variances of x and y, re-
spectively. This expression gives a simple measure of how much
the average intensity values of x in Hounsfield units are different
from the average intensities of y in a standardized “unit of mea-
surement,” which can be considered as the Z-score of the means
of x and y, assuming that these two tissue samples are indepen-
dent of one another. From each CT-scan series, we extract five
texture realizations from each tissue type, and we designate four
of them, all from the same tissue type as a training set (referred
to as G; and M;, i = 1,2, 3,4) and the remaining one of them
as a test sample (referred to as TM and T'G; “G” signifies gall
bladder). Each of these sample volumes has a size of 233. We
observe that, in both CT-scan series, Dys(z,y) drops below 2,
which implies that we cannot safely distinguish these two tissue
types by using only the standardized difference of average inten-
sities or by thresholding Hounsfield unit intensities in general.
Tables II and III show the values of RD_; for different pairs
of tissue samples from both CT-scan series. First, observe that
RD_; takes positive values even for 3-D texture pairs of the

same tissue type. By no means this should be interpreted as dif-
ference in tissue types. Natural and anatomical variations among
different samples of the same tissue may void the spatial homo-
geneity assumption for textures forcing RD_; to assume posi-
tive values. For instance, a volume in the gall bladder close to a
cystic artery has an extra directional feature due its proximity to
the artery that is full of contrast, which other regions of the gall
bladder, less proximal to this artery, do not have. This observa-
tion shows that rule 2 in Section VII-C and its variants facili-
tate the correct tissue discrimination. Rule 2 introduces the use
of training tissue samples. Observe that the values in columns
TG and T'M in both tables indicate that T'G' is more “close”
, G4 than to M1, ..., M, and that the opposite holds
true for T'M. The test samples from both tissue types are, in-
deed, correctly classified as “gall bladder” or “muscle” using
rule 2 applied on the values of RD_; shown in Tables II and
III.

In conclusion, the statistical disparity RD; applied to a single
scale or to a combination of scales can be used for binary clas-
sification purposes as in this case of soft-tissue classification,
when intensity value thresholding is not statistically sufficient
for tissue classification. In fact, if both are combined, the clas-
sification accuracy should improve.

X. CONTRIBUTIONS, SUMMARY AND FUTURE WORK

We present an innovative approach to rotationally invariant
classification of 3-D textures. Instead of adopting an isotropic
model for the texture statistics, we define a 3-D rigid-motion-in-
variant distance for high-dimensional GMRF-based texture sig-
natures, which are rotationally covariant and invariant to 3-D
translations. Therefore, the proposed 3-D texture signatures are
indexed by the full group of 3-D rotations. In practice, they
are built by fitting simple GMRF models to each rotation of a
given texture, despite that those textures may not be GMRFs.
The GMRF models associated to each rotation of a 3-D texture
are simply used as a probing tool, to encode statistics of local
interactions between neighboring pixels into low-dimensional
feature vectors computable at low cost. Our main contributions
are the following:

1) A novel rotationally invariant distance between the high-

dimensional signatures of two arbitrary 3-D textures x and
y; this distance is rigorously based on calculating the Haar
integral (with respect to the measure of SO(3)) of the KL
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TABLE III
SERIES 2: VALUES OF RD_(x,y). G1....,G4 AND M, ..., M, ARE USED AS A TRAINING SET FOR GALL BLADDER AND MUSCLE, RESPECTIVELY. T'G' AND
T M ARE TEST SAMPLES FOR GALL BLADDER AND MUSCLE. OBSERVE THAT, ONCE AGAIN, THE VALUES IN COLUMN OF T'G AND 7'M INDICATES THAT T'G IS
MORE “CLOSE” TO GF1, . .. , G4 AS COMPARED WITH M, ..., M, SIMILARLY, T M IS MORE “CLOSE” TO M, ..., M4, AS COMPARED WITH GF¢, ..., G,
G1 Go G3 Gy TG My Mo Mg My TM

G4 0 0 2.3 5.6 5.0 162.2 | 533.8 | 2353 | 1504.2 | 59.7

Gy 115.0 0 0 20.2 | 0.6 329.8 | 794.7 | 3042 | 2297.1 | 82.3

G3 18.7 0 0 8.9 0.2 181.1 | 495.0 | 199.6 | 14353 | 59.1

[en 59.7 0.2 5.8 0 6.4 28.7 284.0 | 1244 | 5359 34.4

TG 82.1 0 1.5 17.1 0 368.2 | 791.4 | 312.5 | 23943 | 80.9

M, 914 04 | 165 1.1 12.3 0 126.3 35.2 130.4 15.8

My | 2270 | 2.0 | 350 | 17.8 | 22.6 | 132.6 0 0.3 104.0 6.4

M3y 2285 | 1.9 | 36.7 | 16.8 | 21.4 89.3 18.4 0 83.0 10.1

My 1856 | 1.4 30 9.5 17.7 29.7 21.2 6.8 0 8.9

TM | 2349 | 1.9 | 394 | 19.0 | 202 | 1564 | 111.8 15.0 252.5 0

divergences between pairs of GMRF models associated to
each 3-D rotation of textures x and y.

2) Implemention of 3-D rotations of a 3-D texture in a compu-
tationally efficient manner. The idea of rotating the auto-
covariance function corresponding to the texture, instead
of the texture itself, makes the 3-D rotations computa-
tionally tractable. This novelty enables discrimination be-
tween 3-D textures having a broad variety of directional
characteristics.

3) An efficient method for the computation of the rotationally
invariant distance by means of the Euler angle parameteri-
zation of SO(3) and the selection of a moderate-size finite
grid of points in SO(3) uniformly distributed with respect
to the Haar measure of SO(3). The block-circulant struc-
ture of the covariance matrix of the GMRF model enhances
the computational efficiency since it allows the calculation
of the KL distance in the Fourier domain.

4) Rules for the 3-D rigid-motion-invariant texture dis-
crimination and binary classification, which take into
account the proposed 3-D rigid-motion-invariant distance
between textures computed at a range of scales. These
rules allow the use of simple GMRF models and avoid
computationally costly parameter estimation of GMRFs
with long-range interactions. We experimentally establish
that these rules enhance the sensitivity of rigid-motion-in-
variant discrimination between 3-D textures and that they
are applicable even to non-GMRF textures.

Our motivation to study stochastic 3-D textures comes from
medical image analysis. X-ray CT and MRI scanners increas-
ingly acquire high-spatial-accuracy 3-D images in which tex-
tures are generated by the response of soft biological tissues to
the imaging modality. Those 3-D textures are not suitably mod-
eled by deterministic approaches for two reasons. First, natural
local tissue variations modify 3-D textures corresponding to the
same type of tissue, which is a fact that is quite well shown
with the variations of sample mean values among tissue samples
of the same type (see Section IX-C); second, image acquisition
“noise” contributes to the variability of these textures.

Although, we do not claim that the herein proposed methods
for 3-D texture discrimination are applicable for all types of
soft-tissue discrimination/classification in CT and MRI 3-D im-
ages, we provide in Section IX-C experimental evidence estab-
lishing a method that can be utilized for at least binary soft-

tissue classification in medical 3-D image analysis. In X-ray CT
in particular, blood-infused tissues have very similar scattering
properties due to their high content of water molecules. As a re-
sult, several types of soft tissues are indiscriminable by intensity
thresholding only. The last experiment in the previous section
shows that soft-tissue discrimination in the native dimension-
ality of X-ray CT images is a valid problem. In this context,
3-D rigid-motion insensitive tissue discrimination is very desir-
able as soft tissues occupy the 3-D space in a random variety of
orientations and are often associated with nonisotropic textures.

A seemingly practical constraint of the proposed method is
the size of the 3-D texture patch required for the calculation
of the 3-D invariant distances between textures. We have em-
pirically established that we need a 3-D texture patch with a
size of 20 x 20 x 20-30 x 30 x 30 for accurate 3-D texture
discrimination. The need to downsample the image data and to
perform accurate multiscale texture discrimination makes this
patch-size requirement rather restrictive for tissue types whose
spatial extent varies significantly. Alternatively, downsampling
can be omitted when discrimination is applied to scales 7 < 0,
but then, the first-order neighbors become the pixels two or four,
..., 27 apart from the center of the neighborhood. We are cur-
rently developing a method [47] on how to modify the feature
extraction we have presented in this paper to overcome the need
to use rectangular 3-D texture patches.
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