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Workshop Schedule

e Monday 9am-2pm: Tutorials
— René Vidal - Introduction to Analytic Foundations of Deep Learning
— René Vidal - Foundations of Feedforward Networks
— Alejandro Ribeiro - Foundations of Graph Neural Networks

e Tuesday 9am-2pm: Principled Design & Interpretability
— Max Welling, Gitta Kutyniok, Bin Yu, Yi Ma

e Wednesday 9am-2pm: Robustness & Fairness
— Peter Bartlett, Guillermo Sapiro, Soledad Villar, Tom Goldstein

 Friday 9am-2pm: Brainstorm and Discussion
— Edgar Dobriban - Robustness
— Gitta Kutyniok, Guillermo Sapiro - Fairness and Privacy
— Ben Haeffele, Chong You - Architecture Design
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Brief History of Neural Networks
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Impact of Deep Learning in Computer Vision
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Impact of Deep Learning in Speech Recognition

Word error rate on Switchboard
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Impact of Deep Learning in Game Playing

« AlphaGo: the first computer program to ever beat a
professional player at the game of Go [1]
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« Similar deep reinforcement learning strategies
developed to play Atari Breakout, Super Mario

Silver et al. Mastering the game of Go with deep neural networks and tree search, Nature 2016 =N
Artn‘"mal mtelhgence learns Mario level in just 34 attempts, https://www.engadget.co 6 Jper-mario-world-self-learning-ai/, JOHNS HOPKINS
h ith m/aleju/mario-ai @i‘:"
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https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai
https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai

Why These Improvements in Performance?

 Features are learned rather than hand-crafted

mean AP

« More layers capture more invariances [1]

« More data to train deeper networks 0:4f1“/—/f

0237 47 15 19 23

* More computing (GPUs) level

» Better regularization: Dropout

 New nonlinearities
— Max pooling, Rectified linear units (ReLU) [2]

« Theoretical understanding of deep networks remains shallow

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14. =
[2] Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature, 405(6789):947-951, 2000. %i'!"
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Key Theoretical Questions in Deep Learning

Architecture Design

Slide courtesy of Ben Haeffele

Optimization

Generalization
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Key Theoretical Questions: Architecture

e Are there principled ways to design networks?

— How many layers?

— Size of layers?

— Choice of layer types?

— What classes of functions
can be approximated by a
feedforward neural network?

— How does the architecture
impact expressiveness? [1]

Slide courtesy of Ben Haeffele

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016)
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Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]

Theorem [C’89, H'91] Let p() be a bounded, non-constant continuous func-
tion. Let I,, denote the m-dimensional hypercube, and C'(I,,) denote the space

of continuous functions on I,,. Given any f € C([,,) and € > 0, there exists
N >0 and v;,w;,b;, + =1..., N such that

F(x) = Z vip(w] = + b;) satisfies
i<N

sup |f(z) — F(z)] <e.

x€l,,
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Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]

e Approximation, depth, width and invariance: recent work
— Gaps between deep and shallow networks [Montufar’14, Mhaskar’16]
— Deep Boltzmann machines are universal approximators [Montufar’15]
— Design of CNNs via hierarchical tensor decompositions [Cohen '17]

— Scattering networks are deformation stable for Lipschitz non-linearities
[Bruna-Mallat ’13, Wiatowski 15, Mallat "16]

— Exponential # of units needed to approximate deep net [Telgarsky’16]
— Approximation with sparsely connected deep networks [Bolcskei *19]

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989.

[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989.

[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251-257, 1991.

[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.

[5] Cohen et al. Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions arXiv preprint arXiv:1705.02302

[6] Montufar, Pascanu, Cho, Bengio, On the number of linear regions of deep neural networks, NIPS, 2014

[7] Mhaskar, Poggio. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 2016.

[8] Montufar et al, Deep narrow Boltzmann machines are universal approximators, ICLR 2015, arXiv:1411.3784v3

[9] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872—-1886, 2013. —

[10] Wiatowski, Bolcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv2015. JOHNS HOPKINS
[11] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016. @i‘:"

[12] Telgarsky, Benefits of depth in neural networks. COLT 2016. MATHEMATICAL INSTITUTE
[13] Bolcskei, Grohs, Kutyniok, Petersen. Optimal approximation with sparsely connected deep neural networks. SIAM J. Math of Data Science, 2019 for DATA SCIENCE



Key Theoretical Questions: Optimization

 How to train neural networks?

— Problem is non-convex

— What does the error surface
look like?

— How to guarantee optimality?

— When does local descent succeed?

Slide courtesy of Ben Haeffele @ JOHNS HOPKINS
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Key Theoretical Questions: Optimization

 Optimization theory: earlier work

— No spurious local minima for linear networks [Baldi-Hornik’89, Nouiehed’18, Zhu’]

— Backprop fails to converge for nonlinear networks [Brady’89], converges for
linearly separable data [Gori-Tesi’91-'92], or it gets stuck [Frasconi’97]

— Local minima and plateaus in multilayer perceptrons [Fukumizu-Amari’00]

e Optimization theory: recent work on landscape

— Convex neural networks in infinite number of variables [Bengio '05]
— No spurious local minima for deep linear networks and square loss [Kawaguchi’16]

— No spurious local minima for positively homogeneous networks [Haeffele-Vidal’15
“17], but infinitely many local minima in general [Yun '19]

— Role of level sets on spurious valleys [Venturi ‘18, Nguyen’18’19, Kuditipudi ‘19]

— Statistical physics-based analysis of the landscape of two-layer neural networks
[Mei '18 “19] and multilayer networks [Choromanska ’15, Verpoort-Lee-Wales ’20]

1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

2] Brady, Raghavan, J Slawny. Back propagation fails to separate where perceptrons succeed. IEEE Trans Circuits & Systems, 36(5):665—-674, 1989.
3] Gori, Tesi. On the problem of local minima in backpropagation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(1):76-86, 1992.

4] Frasconi, Gori, Tesi. Successes and failures of backpropagation: A theoretical. Progress in Neural Networks: Architecture, 5:205, 1997.

5] Fukumizu, Amari. Local minima and plateaus in multilayer perceptrons. Neural Networks, 2000.

6] Bengio, Le Roux, Vincent, Delalleau, Marcotte. Convex Neural Networks. NeurlPS, 2005

7] Kawaguchi. Deep learning without poor local minima. NeurlPS, 2016.

8] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 2015.

9] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

10] Yun, Sra, Jadbabaie. Small nonlinearities in activation functions create bad local minima in neural networks. ICLR 2019.

11] Y Cooper. The loss landscape of overparameterized neural networks. arXiv:1804.10200, 2018.

12] Venturi, A. S. Bandeira, and J. Bruna. Spurious valleys in two-layer neural network optimization landscapes. arXiv preprint arXiv:1802.06384, 2018.

13] Nguyen On connected sublevel sets in deep learning. arXiv preprint arXiv:1901.07417, 2019. =X OHNS HOPKINS
14] Nguyen, Mukkamala, Hein. On the loss landscape of a class of deep neural networks with no bad local valleys. arXiv preprint arXiv:1809.10749, 2018.

15] Kuditipudi, Wang, Lee, Zhang, Li, Hu, Ge, Arora. Explaining landscape connectivity of low-cost solutions for multilayer nets. NeurlPS, 2019.

16] Mei, Montanari, Nguyen. A mean field view of the landscape of two-layer neural networks. PNAS, 115(33):E7665-E7671, 2018. MATHEMATICAL INSTITUTE
17] Mei, MlSlakleW|cz Montanari. Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit. COLT 2019 far DATA SCIENCE

[18] Verpoort, Lee, Wales. Archetypal landscapes for deep neural networks. PNAS, 2020.




Key Theoretical Questions: Optimization

e Optimization theory: recent work on algorithms

— GD on networks with many hidden units can learn polynomials [Andoni ’14]

— Attacking the saddle point problem [Dauphin '14]

— Effect of noise and BN on the landscape [Santurkar’18, Chaudhari’15, Soudry '16]
— Entropy-SGD is biased toward wide valleys [Chaudhari ’17]

— Deep relaxation: PDEs for optimizing deep nets [Chaudhari 18]

— Guaranteed training of NNs using tensor methods [Janzamin ’16]

— Convergence of GD for deep linear neural networks [Arora '18]

— Implicit acceleration by over-parameterization [Arora 18, Tarmoun '20]

— Benign landscape [Fang ’19] and convergence of gradient methods in
overparametrized models [Chizat ’18, Li 18, Du '19, Allen-Zhu’19, Zou ’19]

— Mean-field and learning dynamics [Nguyen '19]

1] Andoni, Panigrahy, Valiant, Zhang. Learning polynomials with neural networks. ICML 2014.

2] Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, Identifying and attacking the saddle point problem in high-dimensional non- convex optimization, NeurlPS 2014.

3] Santurkar, Tsipras, llyas, Madry. How does batch normalization help optimization? NeurlPS, 2018.

4] Soudry, Y Carmon. No bad local minima: Data independent training error guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

5] Chaudhari, Soatto. Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks. ICLR 2018.

6] Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes, Sagun, Zecchina. Entropy-SGD: biasing gradient descent into wide valleys. ICLR 2016, JSM 2019.
7] Chaudhari, A Oberman, S Osher, S Soatto, G Carlier. Deep relaxation: partial differential equations for optimizing deep neural networks. RMS 2018

8] Janzamin, Sedghi, Anandkumar, Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods, arXiv:1506.08473, 2016.

9] Arora, Cohen, Golowich, Hu. A convergence analysis of gradient descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

10] Arora, Cohen, Hazan. On the optimization of deep networks: Implicit acceleration by overparameterization. arXiv preprint arXiv:1802.06509, 2018.

11] Tarmoun, Franca, Haeffele, Vidal. Implicit Acceleration of Gradient Flow in Overparameterized Linear Models.

12] Fang, Gu, Zhang, Zhang. Convex formulation of overparameterized deep neural networks. arXiv preprint arXiv:1911.07626, 2019.

13] Chizat, Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. NeurlPS, 2018.

14] Li, Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. NeurlPS, 2018.

15] Du, Zhai, Poczos, Singh. Gradient descent provably optimizes over-parameterized neural networks. ICLR, 2019.

16] Du, Lee, Li, Wang, Zhai. Gradient descent finds global minima of deep neural networks. ICML, 2019. Q OHNS HOPKINS
17] Allen-Zhu, Li, Song. A convergence theory for deep learning via over-parameterization. ICML, 2019.

18] Zou, Cao, Zhou, Gu. Gradient descent optimizes over-parameterized deep ReLU networks. Machine Learning 2019

19] Zou, Gu. An improved analysis of training over-parameterized deep neural networks. NeurlPS, 2019. MATHEMATICAL INSTITUTE
20] Nguyen. Mean field limit of the learning dynamics of multilayer neural networks. arXiv preprint arXiv:1902.02880, 2019. DATA SCIENCE

21] Dogra, Redman. Optimizing Neural Networks via Koopman Operator Theory, 2020. far



Key Theoretical Questions: Generalization

 Generalization and regularization theory: earlier work
— # training examples grows polynomially with network size [1,2]

 Regularization methods: earlier and recent work
— Early stopping [3]
— Dropout, Dropconnect, Dropblock and extensions (adaptive, annealed) [4,5]
— Batch normalization [6]

 Generalization and regularization theory: recent work
— Distance and margin-preserving embeddings [7,8]
— Path SGD/implicit regularization & generalization bounds [9,10]
— Product of norms regularization & generalization bounds [11,12]
— Information theory: info bottleneck, info dropout, Fisher-Rao [13,14,15]
— Rethinking generalization: [16]

1] Sontag. VC Dimension of Neural Networks. Neural Networks and Machine Learning, 1998.

2] Bartlett, Maass. VC dimension of neural nets. The handbook of brain theory and neural networks, 2003.

3] Caruana, Lawrence, Giles. Overfitting in neural nets: Backpropagation, conjugate gradient & early stopping. NeurlPS 2001.

4] Srivastava. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.

5] Wan. Regularization of neural networks using dropconnect. ICML, 2013.

6] loffe, Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv preprint arXiv:1502.03167, 2015

7] Giryes, Sapiro, Bronstein. Deep Neural Networks with Random Gaussian Weights. arXiv:1504.08291.

8] Sokolic. Margin Preservation of Deep Neural Networks, 2015

9] Neyshabur. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015

10] Behnam Neyshabur. Implicit Regularization in Deep Learning. PhD Thesis 2017

11] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of invariant classifiers. In AISTATS, 2017. Q OHNS HOPKINS
12] Sokolié, Giryes, Sapiro, Rodrigues. Robust Large Margin Deep Neural Networks. IEEE Transactions on Signal Processing, 2017.

13] Shwartz-Ziv, Tishby. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017.

14] Achille, Soatto. Information dropout: Learning optimal representations through noisy computation. arXiv: 2016. MATHEMATICAL INSTITUTE
15] Liang, Poggio, Rakhlin, Stokes. Fisher-Rao Metric, Geometry and Complexity of Neural Networks. arXiv: 2017. DATA SCIENCE

16] Zhang, Bengio, Hardt, Recht, Vinyals. Understanding deep learning requires rethinking generalization. ICLR 2017. far



Key Theoretical Questions: Generalization

 Generalization and regularization theory: recent work

Implicit regularization of dropout [Cavazza’'18, Mianjy’18, Pal’20, Arora’20], batch

normalization [Schilling’16, De’20] & GD [Arora’19] in matrix factorization/deep nets

Neural tangent kernel (NTK) [Jacot’18, Chizat'19, Arora’19,

Arora’19, Fang 19, Montanari’19 °20, Cao’19]
A

Over-parametrization can improve generalization [Belkin’19,

Wei’19, Ghorbani ‘20]
Allen-Zhu’18,

under-fitting over-fitting under-parameterized /\ over-parameterized
. Test risk Test risk / .
% % “classical” “modern”
E O’E regime interpolating regime
N : .
S o ;Training risk ~ Training risk:
sweet spot T — __ =~ - . _interpolation threshold
~a > e

>

Complexity of H Complexity of H Image credit:

Mikhail Belkin

(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

1] Cavazza, Haeffele, Morerio, Lane, Murino, Vidal, Dropout as a Low-Rank Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487
2] Mianjy, Arora, Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777

3] Pal, Lane, Vidal, Haeffele. On the Regularization Properties of Structured Dropout, CVPR (2020). https://arxiv.org/abs/1910.14186

4] Arora, Bartlett, Mianjy, Srebro. Dropout: Explicit Forms and Capacity Control. arXiv:2003.03397, 2020.

5] Schilling. The effect of batch normalization on deep convolutional neural networks, 2016.

6] De, Smith. Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks, 2020.

7] Jacot, Gabriel, Hongler. Neural tangent kernel: Convergence and generalization in neural networks. NeurlPS, 2018.

8] Chizat, Oyallon, Bach. On lazy training in differentiable programming. NeurlPS, 2019.

9] Arora, Du, Hu, Li, Salakhutdinov, Wang. On exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019.

10] Wei, Lee, Liu, Ma. Regularization matters: Generalization and optimization of neural nets v.s. their induced kernel. NeurlPS, 2019.

11] Ghorbani, Mei, Misiakiewicz, Montanari. When Do Neural Networks Outperform Kernel Methods? arXiv preprint arXiv:2006.13409, 2020.

12] Belkin, Hsu, Ma, Mandal, Reconciling modern machine-learning practice and the classical bias—variance trade-off. PNAS, 2019.

13] Allen-Zhu, Li, Liang. Learning and generalization in overparameterized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018.

14] Arora, Du, Hu, Li, Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. ICML, 2019.

15] Fang, Dong, Zhang. Over parameterized two-level neural networks can learn near optimal feature representations. arXiv preprint arXiv:1910.11508, 2019.

17] Montanari, Ruan, Sohn, Yan. The generalization error of max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. arXiv 2019
18] Montanari, Zhong The |nterpo|at|on phase transition in neural networks: Memorization and generalization under lazy training. arXiv preprint arXiv:2007.12826. 2020
[19] Cao, Gu. Generalization bounds of stochastic gradient descent for wide and deep neural networks. NeurlPS, 2019.
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https://arxiv.org/abs/1910.14186
https://arxiv.org/abs/1910.14186

Key Theoretical Questions are Interrelated

* Optimization can Architecture
Impact '
generalization [1,2]

Architecture has
strong effect on
generalization [3]

Generalization/
Regularization Optimization

Some architectures R .
could be easier to © e s
optimize than others [4]

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).

[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 @ JOHNS HOPKINS

[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Fairness, Accountability, Transparency (FAT)

. .. ® 00
Data Prediction
2~ T

 As DNNSs support important decisions, how do we...
— communicate uncertainty to decision makers?

— ensure the robustness of their predictions?
— not overstate what can be inferred?
— treat individuals equitably?

— interpret their predictions? PPy _ Yield Sign
| + o
« Recent work (later this week)

Authentic Adversarial Adversarial
Input Perturbation Input

— Poisoning attacks (Goldstein '19)

— Veridical inference (Yu '20)

— Conformal inference (Candes 19 ‘20)
— Minimax Pareto fairness (Sapiro '21)
— Rate-distortion framework for explaining decisions (Kutyniok '19)

[7] Shafahi, Huang, Najibi, Suciu, Studer, Dumitras, Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. NeurlPS 2018.

[5] Yu, Kumbier. Veridical data science. PNAS 2020. Q

[3] Romano, Patterson, E Candes. Conformalized quantile regression. NeurlPS, 2019. JOHNS I IOPKINS
[1] Lei, Candes. Conformal Inference of Counterfactuals and Individual Treatment Effects arXiv preprint arXiv:2006.06138, 2020 @i‘y

[2] Sesia, Candés. A comparison of some conformal quantile regression methods. Stat 2020

[4] Martinez, Bertran, Sapiro. Minimax Pareto Fairness: A Multi Objective Perspective. ICML 2020. MATHEMATICAL INSTITUTE
[6] Macdonald, Waldchen, Hauch, Kutyniok. A rate-distortion framework for explaining neural network decisions, arXiv preprint arXiv:1905.11092, 2019 far DATA SCIENCE



Workshop Schedule

e Monday 9am-2pm: Tutorials
— René Vidal - Introduction to Analytic Foundations of Deep Learning
— René Vidal - Foundations of Feedforward Networks
— Alejandro Ribeiro - Foundations of Graph Neural Networks

e Tuesday 9am-2pm: Principled Design & Interpretability
— Max Welling, Gitta Kutyniok, Bin Yu, Yi Ma

e Wednesday 9am-2pm: Robustness & Fairness
— Peter Bartlett, Guillermo Sapiro, Soledad Villar, Tom Goldstein

 Friday 9am-2pm: Brainstorm and Discussion
— Edgar Dobriban - Robustness
— Gitta Kutyniok, Guillermo Sapiro - Fairness and Privacy
— Ben Haeffele, Chong You - Architecture Design
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Notation: Single Neuron Architecture

output

\

activation

f weights function

input
. L
sigmoid: (x) = T+ oxp(—2)

ReLU: 9(z) = max(x,0)

0

@ JOHNS HOPKINS
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Notation: Multilayer Network Architecture
| input weights |—> w WL <—| output weightsl

\ _}\\r s _
\&@?ﬁ?’; %
T A ALK ,“,.

| # inputs |—> no n1 N9 nr
v \l # outputs |

|# hidden neurons |

D (z, {W[l]}) =¢L(W[L]¢L—1(W[L_1] .. -wg(W[2]¢1(W[1]m)) )

AN !

output activation weights input
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Three Errors in Statistical Learning Theory

Prediction
Function

H : space of all prediction functions

‘fH
fF/

Approximation
error

N )

. f : empirically optimal hypothesis e f; : ground truth
e f - hypothesis found by algorithm < f : optimal hypothesis
@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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Notation: Regularized Loss

Neural

Network

Given training examples (X,Y), find model parameters W that
minimize regularized loss (classification error)

output (Iabels)\ / input (data)
min (Y, ®(X,W)) + \O(W)
Lo "

loss function prediction function regularization function

Architecture ® designed to control approximation error
Regularizer © designed to control generalization error

Optimizer designed to control optimization error

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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Tutorial Schedule

 Part l: Optimization Landscape of Linear Networks
— All local minima are global
— Other critical points are saddle points
— All saddles are strict for one hidden layer
— Non-strict saddles exist for deeper networks

e Part ll: Optimization Landscape of Positively
Homogeneous Networks

— If network is wide enough, all local minima are global
— One can escape local minima by increasing the size of the network

e Part lll: Analysis of Dropout

— Dropout is SGD applied to a regularized objective
— Dropout induces low-rank and balanced solutions

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

[2] Nouiehed, Razaviyayn. Learning deep models: Critical points and local openness. arXiv preprint arXiv:1803.02968, 2018 =

[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. @w OHNS HOPKINS
[4] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML *14 MATHEMATICAL INSTITUTE
[5] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15

[6] Haeffele. Vidal. Global optimality in neural network trainina. CVPR 2017. far DATA SCIENCE



Part |.: Landscape of Linear Networks

minimum W ——»

FIGURE 2. The landscape of E.

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, =

[12?83. iehed, R i L ing d dels: Critical points and local Xi int arXiv:1803.02968, 2018 %i‘:" JOHNS HOPKINS
ouiehed, Razaviyayn. Learning deep models: Critical points and local openness. arXiv preprint arXiv: . ,

[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. MATHEMATICAL INSTITUTE

for DATA SCIENCE



Part |I: Landscape Homogeneous Networks

« What properties of the
network architecture
facilitate optimization?

— Positive homogeneity

— Parallel subnetwork
structure

« What properties of the
regularization function
facilitate optimization?

— Positive homogeneity

— Adapt network
structure to the data [1]

Picture courtesy of Ben Haeffele

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)

Architecture

Generalization/
Regularization Optimization
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Part |I: Landscape Homogeneous Networks

Optimization Theorem 1:

A local minimum such
that all the weights from
one subnetwork are zero
IS a global minimum
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[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B ' - @i':" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Part |I: Landscape Homogeneous Networks

Optimization Theorem 2:

If the size of the network
IS large enough, local
descent can reach a
global minimizer from
any initialization

Non-Convex Function Today’s Framework

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing

ICML 14 ’ @ JOHNS HOPKINS

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATP}i%‘X?E?&g\?gETUTE



Part lll: Analysis of Dropout for Linear Nets

 What objective
function is being
minimized by
dropout?

« What type of
regularization is
induced by dropout?

 What are the
properties of the
optimal weights?

Picture courtesy of Ben Haeffele

Architecture

Generalization/
Regularization Optimization
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Part lll: Analysis of Dropout for Linear Nets

Theorem 3:

Dropout is SGD
Q applied to a
stochastic objective.

X

Theorem 4: Theorem 5:
Dropout induces explicit  Dropout induces

low-rank regularization balanced weights.
(nuclear norm squared).

[1] Jacopo Cavaz Bejm n Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, Rene Vidal, Dropout as a Low-Rank

RequiERkior Mat  Factorizati o AISTATS (2018), hitps-/a rx orglabs/1710.03487 JOHNS HOPKINS
121 PooreRlkai han Aro R @ Vidal, On the Impict Bia of Dropout, ICML (2018). hips:lianivrglabs1506.09717 @i‘}'
[3] Ambar Pal, Con ane, Re s Vidal, Benjamin D. Haeffele. o the Regularization Properties of Structured Dropout. https:// MATHEMATICAL INSTITUTE

ales !|91u|1155 for DATA SCIENCE
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Single-Hidden Layer Linear Networks

* Linear Network with One Hidden Layer

| input weights |—> 1val U 4—| output weightsl

Input X

| # inputs |—> no

|# hidden neurons |

* Hypothesis space:
F={feY*: f(x)=UV x, where UeR™*™ and VeR"™*™}

@ JOHNS HOPKINS
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Single-Hidden Layer Linear Networks

 Risk: R(Ua V) = Ea},y [Hy _ UVTCB”%}
 Empirical risk: N
1 1
Rs(U. V)= lly; UV '3 = <Y —UVTX|E
j=1

 Both can be written as

R(U, V) = trace(Xyy — 284, VU + UV ' S,,VU ")

- If 2, is invertible, the problem becomes matrix factorization

. —1 T2 . Ty\—1 T2
D g Y(XXT)™1 -
Wi [|Xya Xy — UV |7 or min |[V(XX )™ UV |F

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Single-Hidden Layer Linear Networks

minimum W ———»

FIGURE 2. The landscape of E.

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks,

1989. @ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Single-Hidden Layer Linear Networks

« Risk: R(U,V) = Eqgy[lly — UV |
= trace(Xyy — 25y VU ' + UV 'S, VU")

* Note: If the hidden layer is large enough (n1 > max{ng, na})
sothat Z = UV 'is full rank, and ¥, is invertible, then

Z*=UV*" =%,.5 1

« Theorem [1]: If ¥, and ¥ = X,,¥_ 1%, are invertible, and
lem is a matrix with the top n; eigenvectors of 2, then up to

a change of basis, the set of global minima of R is:

U= Ql:np V = Za_gizmle:n]_7 UVT — Ql!nl Qirnl Z’ymza_:al:

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, =
1989. @w JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Single-Hidden Layer Linear Networks

. Theorem [1]: Let O, be n, eigenvectors of 2= = 2 DI

YX—XX —Xy-*

— If U is full column rank, the set of local critical points of R is

U=Q;andV =X_1%.,Q;

— Moreover, critical points with J # [n,] are strict saddles, while critical
points with / = [n,] are global minima.

— If U is rank deficient, any critical point is a strict saddle.

« Theorem [2,3]: Any local minimum of R is a global minimum.

Moreover, if 2., is invertible, then any critical point of R that
IS not a global minimum is a strict saddle.

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks,

=
[12?8&. iehed, R i L ing d dels: Critical points and local Xi int arXiv:1803.02968, 2018 %i‘:" JOHNS HOPKINS
ouiehed, Razaviyayn. Learning deep models: Critical points and local openness. arXiv preprint arXiv: . ,
[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. MATHEMATICAL INSTITUTE

for DATA SCIENCE



Deep Linear Networks

* Deep Linear Network with L layers

| input weights |—> w

w L <—| output weights |

=

K O SREX |
£ WA
Input X 25 Yy output
{ % 7

| # inputs I_> o nl n2 nr
V \l # outputs |

|# hidden neurons |

 Hypothesis space:
F={fey?*: f(x)=wHwl=U. . wllg where Wl ¢ Rr*mi-11
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Deep Linear Networks

+ Risk: R(W) =Eqy[lly
= trace(Xyy — 25, W) 1 @‘ zaWi' ;)

- Note: If hidden layers are large enough (n; > max{ny, n; })
so that W, is full rank, and 2 is invertible, then

Wl*:L — Zyw E;alz

- Theorem [1]: If 2., and 2, are full rank with n; < n;and

2, = ZyxZ;lexy is full rank with n; distinct eigenvalues, then:

— Any local minimum is global, other critical points are saddle points
— A saddle such that rank(W[L_l]---W[l]) = minj<;<z—1 1 is strict

— Other saddles may not be strict.

[1] Kawaguchi. Deep learning without poor local minima. NeurlPS, 2016. @ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Tutorial Schedule

 Part l: Optimization Landscape of Linear Networks
— All local minima are global
— Other critical points are saddle points
— All saddles are strict for one hidden layer
— Non-strict saddles exist for deeper networks

e Part ll: Optimization Landscape of Positively
Homogeneous Networks

— If network is wide enough, all local minima are global
— One can escape local minima by increasing the size of the network

e Part lll: Analysis of Dropout

— Dropout is SGD applied to a regularized objective
— Dropout induces low-rank and balanced solutions

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

[2] Nouiehed, Razaviyayn. Learning deep models: Critical points and local openness. arXiv preprint arXiv:1803.02968, 2018 =

[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. @w OHNS HOPKINS
[4] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML *14 MATHEMATICAL INSTITUTE
[5] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15

[6] Haeffele. Vidal. Global optimality in neural network trainina. CVPR 2017. far DATA SCIENCE



Workshop Schedule

e Monday 9am-2pm: Tutorials
— René Vidal - Introduction to Analytic Foundations of Deep Learning
— René Vidal - Foundations of Feedforward Networks
— Alejandro Ribeiro - Foundations of Graph Neural Networks

e Tuesday 9am-2pm: Principled Design & Interpretability
— Max Welling, Gitta Kutyniok, Bin Yu, Yi Ma

e Wednesday 9am-2pm: Robustness & Fairness
— Peter Bartlett, Guillermo Sapiro, Soledad Villar, Tom Goldstein

 Friday 9am-2pm: Brainstorm and Discussion
— Edgar Dobriban - Robustness
— Gitta Kutyniok, Guillermo Sapiro - Fairness and Privacy
— Ben Haeffele, Chong You - Architecture Design

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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Workshop Schedule

e Monday 9am-2pm: Tutorials
— René Vidal - Introduction to Analytic Foundations of Deep Learning
— René Vidal - Foundations of Feedforward Networks
— Alejandro Ribeiro - Foundations of Graph Neural Networks

e Tuesday 9am-2pm: Principled Design & Interpretability
— Max Welling, Gitta Kutyniok, Bin Yu, Yi Ma

e Wednesday 9am-2pm: Robustness & Fairness
— Peter Bartlett, Guillermo Sapiro, Soledad Villar, Tom Goldstein

 Friday 9am-2pm: Brainstorm and Discussion
— Edgar Dobriban - Robustness
— Gitta Kutyniok, Guillermo Sapiro - Fairness and Privacy
— Ben Haeffele, Chong You - Architecture Design
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Tutorial Schedule

 Part l: Optimization Landscape of Linear Networks
— All local minima are global
— Other critical points are saddle points
— All saddles are strict for one hidden layer
— Non-strict saddles exist for deeper networks

e Part ll: Optimization Landscape of Positively
Homogeneous Networks

— If network is wide enough, all local minima are global
— One can escape local minima by increasing the size of the network

e Part lll: Analysis of Dropout

— Dropout is SGD applied to a regularized objective
— Dropout induces low-rank and balanced solutions

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

[2] Nouiehed, Razaviyayn. Learning deep models: Critical points and local openness. arXiv preprint arXiv:1803.02968, 2018 =

[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. @w OHNS HOPKINS
[4] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML *14 MATHEMATICAL INSTITUTE
[5] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15

[6] Haeffele. Vidal. Global optimality in neural network trainina. CVPR 2017. far DATA SCIENCE



Part |I: Landscape Homogeneous Networks

« What properties of the
network architecture
facilitate optimization?

— Positive homogeneity

— Parallel subnetwork
structure

« What properties of the
regularization function
facilitate optimization?

— Positive homogeneity

— Adapt network
structure to the data [1]

Picture courtesy of Ben Haeffele

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)

Architecture

Generalization/
Regularization Optimization
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Part |I: Landscape Homogeneous Networks

Optimization Theorem 1:

A local minimum such
that all the weights from
one subnetwork are zero
IS a global minimum
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[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B ' - @i':" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Part |I: Landscape Homogeneous Networks

Optimization Theorem 2:

If the size of the network
IS large enough, local
descent can reach a
global minimizer from
any initialization

Non-Convex Function Today’s Framework

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing

ICML 14 ’ @ JOHNS HOPKINS

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATP}i%‘X?E?&g\?gETUTE
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization

— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

ICML 14 @ JOHNS HOPKINS

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
for DATA SCIENCE



Key Property #1: Positive Homogeneity

e Start with a network

Lo
XK " REZ NS
L0 0K APV
8, BRI 22
/s ‘% Zr '\
| /X FR ,
« Scale the weights by — N2\

a >0 aW?l aW? aW?

e Qutput is scaled by Ozp, where p = degree of homogeneity
W, W2 W3 =Y
1 2 3y — P
b(aW, aW=, aW?) = a’Y

@ JOHNS HOPKINS
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Examples of Positively Homogeneous Maps

 Example 1: Rectified Linear Units (ReLU)

W1

max{oz, 0 }

_/]7 a >0

+

Does not change
rectification

AlW9

Qw3

« Linear + RelLU layer is positively homogeneous of degree 1

R/ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Examples of Positively Homogeneous Maps

 Example 2: Simple networks with convolutional layers, RelLU,
max pooling and fully connected layers

max{a’z1, a2y}

o Q! Y
e

aW?l aW? a W3

« Typically each weight layer increases degree of homogeneity
by 1

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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Examples of Positively Homogeneous Maps

« Some Common Positively Homogeneous Layers

Fully Connected + RelLU

Convolution + ReLU

Max Pooling

Linear Layers

6(Not Sigmoids\

Mean Pooling

Max Out

Many possibilities...

\_ /

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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e Architecture properties that facilitate optimization

— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization

— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, &N
Applications to Image Processing, ICML *14 JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, ar. 5 MATHEMATICAL INSTITUTE
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. for DATA SCIENCE



Key Property #2: Parallel Subnetworks

« Subnetworks with identical structure connected in parallel

« Simple example: Network:
single-hidden layer network

Subnetwork:
one RelLU
hidden unit

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



MATHEMATICAL INSTITUTE
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RelLU layers

* Any positively homogeneous network can be used
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Key Property #2: Parallel Subnetworks

 Example: Parallel AlexNets [1]

Subnetwork:
AlexNet

%43\1 b

192 19
13 \ 13
=il i
I &
192 192

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012
Q@W JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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e Architecture properties that facilitate optimization

— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization

— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

ICML 14 @ JOHNS HOPKINS

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
for DATA SCIENCE



Basic Regularization: Weight Decay

OW, W= W?) = [[WHE + W37 + [IW7|%

W77

W2
O(aW?,aW?=, aW?) =
O(aW!h, aW?, aW?) =

6‘ X2 éﬁ’iv& “ X
S SIS
S S\

 Proposition non-matching degrees => spurious local minima
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Regularizer Adapted to Network Size

« Start with a positively homogeneous network with parallel
structure

NI ;.A
I AERK 2S5 AERE KA .

N
SO S

-~ N\ 2

)

N R AL
_‘.t' "” N , ‘;‘v N7
1500 4

XK 7 A KA
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A ~

N 7/
< S
R X7
‘ XK 7 AR KA
\ VS S VUSEST
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Regularizer Adapted to Network Size

» Take the weights of one subnetwork and define a regularizer

as H(Wll, W12, W137 W14, W15) with the properties:

 Positive semi-definite

* Positively homogeneous with
the same degree as network

S (aW) =aPid(W)
0(aW) =la?P(W)
« Example: product of norms

WL IIWE W |

\
o)

N

/

i\t
X
5‘
AN
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Q\

]
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K] :(‘
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Regularizer Adapted to Network Size

e Sum over all subnetworks

O(W) = ZH(W@')

r = # subnets

* Allow r to vary

« Adding a subnetwork is
penalized by an additional
term in the sum

* Regularizer constraints
number of subnetworks

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE AGING
for DATA SCIENCE

ccccccccc



e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B _ - %i'!" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
31 P Y - for DATA SCIENCE



Typical Low-Rank Formulations

e Convex formulations:

m}}nf(Y, X)+ \O(X)

X

— Low-rank matrix approximation
— Low-rank matrix completion
— Robust PCA

v Convex
* Large problem size

 Factorized formulations:

min /(Y. UV')+X0(U,V)

VT

— Principal component analysis
— Nonnegative matrix factorization
— Sparse dictionary learning

* Non-Convex
v Small problem size
v Structured factors

@ JOHNS HOPKINS
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Relating Convex & Factorized Formulations

S, V)

F(X)

Convex lower bound: F(X) < f(U,V) UV'=X

Global minima agree: min F(X) = min f(U,V)
X UvT=x

@ JOHNS HOPKINS
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Relating Convex & Factorized Formulations

e Convex formulations: Factorized formulations

min (Y, X) + A X[, mind(Y.UVT)+XO(U,V)

« Variational form of the nuclear norm [1,2]

(IX|lJ= min |3 |Ul2llVillyf st UVT =X

JXI: =2 ouX)) -
o lon Is the projective tensor norm [3,4]

Xlhuo =i D WillVillo st UVT =X
1=

I minima and convergence in low- rank semidefinite programming. Math. Prog., 2005. =

ira, ino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition,” CVPR, %w JOI—INS HOPKINS
ach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. MATHEMATICAL INSTITUTE
Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. for DATA SCIENCE
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Main Results: Matrix Factorization

« Theorem 1: Assume Y is convex and once differentiable in X.
A local minimizer (U, V') of the non-convex factorized problem

. T . -
min (Y, UV >+;\|Uz\\uuv;rrv

such that for some i U, = V; = 0, is a global minimizer.
Moreover, UV ! is a global minimizer of the convex problem

min £(Y, X) + Al X[|u.0
I—‘T

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, /=
ICML 14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15 @i‘:"
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Main Results: Matrix Factorization

If at a spurious local minima, we can find a descent direction
by adding extra dimensions, thus creating a saddle point

L
. .
o 0

If at a global minima, we cannot find a descent direction

@ JOHNS HOPKINS
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Main Results: Matrix Factorization

« Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

e Meta-Algorithm:
— If not at a local minima, perform local descent
— At local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size of factorization and find descent direction (u,v)

rr+1 U<+ U u| V|V v

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



From Matrix Factorization to Deep Learning
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* |n matrix factorization we
had

T
QU V)= UV
i=1
 In positively homogeneous

networks with parallel
structure we have

W)Y =) oW}, ... W)
1=1
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From Matrix Factorization to Deep Learning

* In matrix factorization we had “generalized nuclear norm”

!
1200 = goin 2 NUillalVille 8. UV =2
1=

« By analogy we define “nuclear deep net regularizer”

Qy.0(Z) = {mg? ool . WEY st (W ... WE) =27
Wkt r
T =1

where 6 is positively homogeneous of the same degree as 0

- Proposition: {14 ¢ is convex

e Intuition: regularizer © “comes from a convex function”
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Main Results: Deep Learning Case

« Theorem 1: Assume /(Y,Z) convex and differentiable in Z.
A local minimizer (W, ..., W) of the factorized formulation

{I‘I/‘lfilgl}f(Y,(I)(Wl, W) W L R

such that for some i and all k Wf = 0 is a global minimizer.
Moreover, Z = ®(W!, ..., W*) is a global minimizer of the

convex problem
mZin UY,Z) 4+ X2p0(Z)

 Examples
— Matrix factorization
— Tensor factorization
— Deep learning

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

ICML 14 @ JOHNS HOPKINS

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MAT?E%%E?EIIEI\?&IETUTE



Main Results: Deep Learning Case

« Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

e Meta-Algorithm:
— If not at a local minima, perform local descent
— At a local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size by 1 (add network in parallel) and continue
— Maximum r guaranteed to be bounded by the dimensions of the

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Conclusions and Future Directions

e Size matters
— Optimize not only the network weights, but also the network size
— Today: size = number of neurons or number of parallel networks
— Tomorrow: size = number of layers + number of neurons per layer

 Regularization matters
— Use “positively homogeneous regularizer” of same degree as network

— How to build a regularizer that controls number of layers + number of
neurons per layer

* Not done yet

— Checking if we are at a local minimum or finding a descent direction
can be NP hard

— Need “computationally tractable” regularizers
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Workshop Schedule

e Monday 9am-2pm: Tutorials
— René Vidal - Introduction to Analytic Foundations of Deep Learning
— René Vidal - Foundations of Feedforward Networks
— Alejandro Ribeiro - Foundations of Graph Neural Networks

e Tuesday 9am-2pm: Principled Design & Interpretability
— Max Welling, Gitta Kutyniok, Bin Yu, Yi Ma

e Wednesday 9am-2pm: Robustness & Fairness
— Peter Bartlett, Guillermo Sapiro, Soledad Villar, Tom Goldstein

 Friday 9am-2pm: Brainstorm and Discussion
— Edgar Dobriban - Robustness
— Gitta Kutyniok, Guillermo Sapiro - Fairness and Privacy
— Ben Haeffele, Chong You - Architecture Design
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Key Theoretical Questions in Deep Learning

Architecture Design

Slide courtesy of Ben Haeffele

Optimization

Generalization
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Key Theoretical Questions are Interrelated

Optimization can Architecture
Impact
generalization [1,2 £

Architecture has
strong effect on
generalization [3

Gen zation/
Regularization Optimization

Some architectures
could be easier to
optimize than others

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).

[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 @ JOHNS HOPKINS

[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).
[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
for DATA SCIENCE



Backpropagation vs Dropout Training

* Minimize empirical loss

N
j=1
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(a) Standard Neural Net
Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Backpropagation vs Dropout Training
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(a) Standard Neural Net

t+1 __ t € : ) t
W = W' — 5 > VY, (X, W)
]GB'[: out neurons to 0
Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014 — JOHNS HOPKINS
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Dropout Training

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014 — J
@w OHNS HOPKINS

MATHEMATICAL INSTITUTE
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Dropout Training: Better Learning Curve

Classification Error %

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Toward a Theoretical Analysis of Dropout

* |s dropout a valid
optimization algorithm?

* What type of
regularization does
dropout induce?

 What are the properties
of the optimal weights?

* Do results extend to
DropBlock, DropConnect
and deep networks?

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https:/arxiv.org/abs/1806.09777

[3] Ambar Pal, Connor Lane, René Vidal, Benjamin D. Haeffele. On the Regularization Properties of Structured Dropout, CVPR
(2020). https://arxiv.org/abs/1910.14186
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Dropout Induces Low-Rank Solutions

Dropout ~ (Nuclear Norm)-

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank —
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 %i"" JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Single-Hidden Layer Linear Networks

Ve R%XT z=VxeR’

y=UV'x

output layer
input layer U e R
hidden layer

* Input weights: . Training:
- V=[v,...,V]

* Qutput weights:
- U=1[U,,...,U]

[1] Jacopo Cavazza, Benjamin Haeffele, Pletro Morerlo Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank

Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 @ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE
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Deterministic vs Stochastic Factorization

« What objective function is being minimized by dropout?

» Deterministic Matrix Factorization (DMF)

min ||Y — UVTH%

U,v / \

#outputs x #neurons #neurons X #inputs

« Stochastic Matrix Factorization (SMF)

: 1 : T 12
minlE, ||Y —— Udiag(z)V ' ||5%, z;~Ber(8), 6€(0,1)
T
/ T
#neurons >z UV,
=1

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank /=

Regularizer for Matrix Factorization, AISTATS (2018), https:/arxiv.org/abs/1710.03487 %i'!" JOHNS HOPKINS
MATHEMATICAL INSTITUTE
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Dropout is SGD for SMF

« Stochastic matrix factorization objective

. | T2
%1’1‘]}1Ez||Y— EUdlag(z)V | %

« Stochastic gradient descent with mini batch of size 1 gives

Uttt Ut N (Y —LUtdiag(zH)VIT)VE
Vel (VE 0 [(Y = LU diag(zh)VET) TU!

diag(z")

« This is an instance of backpropagation with dropout

A > VY, e(X;, W 2Y) @ 2
JjEB?

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487
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Dropout as an Explicit Regularizer for SMF

. Using the definition of variance [E(y*) = E(y)? 4+ Var(y)
we can show that dropout induces an explicit regularizer

E.|[Y - 1Udiag(z)V ||, =

1 — 0 «
Y —UV' |7 - 5 ZHUAI%H%H%
1=1

« The second term Iooks like the nuclear norm (low-rank req.)

1 Xl = mmZHUH [Villz st. UV =X

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank
Reqularizer for Matrix Factorization, AISTATS (2018), hitpsarxiv.org/abs/1710.03487 %i':" JOHNS HOPKINS
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Dropout as an Explicit Regularizer for SMF

. Using the definition of variance [E(y*) = E(y)? 4+ Var(y)
we can show that dropout induces an explicit regularizer

E.|Y — %Udiag(z)VTHi, _

1 — 0 «
Y —UV' |7 - 5 ZHUAI%HWH%

1=1

« Conjecture: If (U,V,r) minimizes the above, then X = UVT
minimizes 1 — 6

. . 2 |
min|Y - X[} + —

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank /=
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 %w JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE
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Relating Convex & Factorized Formulations

S, V)

F(X)

Convex lower bound: F(X) < f(U,V) UV'=X

Global minima agree: min F(X) = min f(U,V)
X UvT=x
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Dropout with Fixed Rate Fails to Regularize

* The dropout regularizer

o, V) =) |Uil3IVil’3
1=1

fails to regularize the size of the factorization because we can
lower the objective by doubling the size of the factorization

1

v v]) = 6. V)

@(L[U 0],

V2

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank /=
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 %i"" JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Dropout with Variable Rate Fixes the Issue

* Recall the dropout regularizer with regularization parameter

1—0 ¢
\O(U,V) = —— > |Uil3IIVill3
1=1

 What if dropout rate varies?

1—0, 1—46
)\T: =T 1:7“)\1

0, 01

 Then, pat(olfgical case disai)pears

0 (o [U U] [V v});xr@(um

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank /=
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 %i'!" JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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Dropout with Variable Rate => Low Rank

* Proposition: Dropout with variable rate induces a regularizer

1 -0, - 2 2 T
QX) = min — ;HU@HQH%IIQ st. UV =X
whose convex envelope is the (nuclear norm)?2 7 | X |5
1

 Theorem: Let (U*,V*,r*) be a global minimum of

16, <
. T2 r 2 2
(;5{1‘1/3HY—UV |7 + 0 Z;HU'L”2||VzH2

UV =S (Y | 1—6
Then, =) gy - X+ 0 xe
is a global minjsHum \of X 04

=X
singular value thresholding tau depends on svalues of Y LY iﬂiﬁlgﬁlﬁﬁf
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What About Dropout with Fixed Rate?

* Results so far tell us what the optimal product is for variable r,
but do not tell us what the optimal factors look like for fixed r.

« The weights (U, V) are balanced if the product of the norms of
Incoming and outgoing weights are equal for all neurons

[Uill2||Vill2 = [|Ujll21|Vjll2 Vi, =1,...,7

« Theorem [balance via rotation] For any pair (U, V) there exists
a rotation R such that the rotated pair (U’,V’)= (UR,VR) gives
the same product, i.e., UVT = U’V’T, and (U’,V’) are balanced.

« Algorithm to compute (U’,V’,R): based on Gram matrices,

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777
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Dropout Minima are Low Rank & Balanced

min [|Y — UV |7 + A IUB IVl
’ 1=1

 Theorem: (U*,V*) is a global minimum iff it is balanced and

U veT =8, (Y)

where tau and optimal r depend on singular values of Y

« Algorithm: A global optimum (U*,V*) can be found as follows

S7(Y)

— Find any factorization (U,V) of "

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), : i
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Effect of Dropout Rate on the Landscape

e Linear 1no dl"OpOU_t
auto-encoder

* 1input

2 hidden neurons

* 1 output

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https:/arxiv.org/abs/1806.09777
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Effect of Dropout Rate on the Landscape

. Linear small dropout rate
auto-encoder

* 1input

2 hidden neurons

* 1 output

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https:/arxiv.org/abs/1806.09777
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Effect of Dropout Rate on the Landscape

* Linear large dropout rate
auto-encoder

* 1input

2 hidden neurons

* 1 output

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https:/arxiv.org/abs/1806.09777
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Synthetic Experiments for Fixed Size

« Comparing stochastic dropout and closed form solution for
factorizing a 120 x 80 matrix with fixed size r = 20.

A=1 A=0.5

20 " —DPropout!
_Il?rop;]out 15
15 rut
10
o) o
Z10¢ 2 |
o | o |
-m -m
o o
O [ O 5 L
5l I
10° 10" 102 103 10* 10° 10° 10" 102 103 10* 10°
lteration lteration
[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777
Q%w JOHNS HOPKINS
MATHEMATICAL INSTITUTE
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Synthetic Experiments for Fixed Size

» Showing that stochastic dropout achieves balanced weights
when factorizing 120x80 matrix with fixed size r=20 and r=80.

10° )
3 210
o . S
3107 g
e 2
g107 8
} — - 1 -
S 310
E10° E |
el ‘510
T (-4 o f
10 =
> 10-5 ? I I I \
10O | 101 | 102 | 103 | 104 105 10° 10’ 102 103 10* 10°
Iteration lteration
[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777
R JOHNS HOPKINS
MATHEMATICAL INSTITUTE
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DropBlock

* Motivation: Prevent co-adaptation of correlated units

 Instead of dropping units independently, blocks of a fixed size
are dropped together

Vanilla Dropout DropBlock

No Dropout

@ JOHNS HOPKINS
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Dropout as an Explicit Regularizer for SMF

* Recall: Dropout is an SGD method for minimizing
#neurons  weights

Ez HY Udlag VT HF * i-th neuron

1 — 0 —
Y —UV "||% A ; > Us3IVilI3

e Theorem: DropBlock is an SGD method for minimizing

E,||Y — LU (diag(w) ® I,) VTXHF #wﬁi
Y —UV' % - Z”UHFHVHF

R/ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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DropBlock induces r-support regularization

* Proposition: DropBlock induces spectral r-support norm

s 1_‘97“ -
QUX) = min —— 3 |Ul|Z[IVillF - UV = X
o =1

2
IMax O
pE{l,Q,...,T} Z ‘ r — p _I_ 1

. Tradeoff between fzz and 7 12 penalties

. If p* = 1 then Q(X) is the scaled Nuclear norm || X]|?
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DropBlock Induces Balance & Low-Support

« Theorem: A global minimum (U*, V*, r*) of DropBlock

. 1 o (97“ :
min [[Y - UV +—— ) Uil&|Vill7
Uv =X b=l

. T T T
is balanced: ||U;"V;X< |F = ||U£“V£X< lp=... = |UVE ||p

Moreover, X* = U*V*' can be computed in closed form
and is the global minimum of

1—6
. B 2 1
min [[Y" — X|7 A

(91 HXH'IQ“—support
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Towards a Unified Dropout Framework

« There are multiple variants of Dropout in use
— DropConnect [1]
— DropBlock [2]
— Spatial Dropout [3]
— Curriculum Dropout [4]

« Can we have a single theoretical framework to understand
all?

« Can we characterize this general regularizer explicitly/
analytically?

[1] Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus, Regularization of neural networks using dropconnect. ICML 17 /=

[2] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc. V Le, Dropblock: A regularization method for convolutional networks, NeurlPS 18 JOHNS HOPKINS

[3] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, Efficient object localization using convolutional networks. CVPR 15 %i‘:"

[4] Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, Rene Vidal, and Vittorio Murino, Curriculum dropout. CVPR 17 MATHEMATICAL INSTITUTE
for DATA SCIENCE



General Dropout Training

Obijective without Dropout

min ||A — UVTH%
UV

* Obijective after applying Dropout

minE, | A — Udiag(y) ™" diag(z) V" [|i

- 7 is the dropout variable having a general covariance C and
mean [

* Vanilla Dropout
— 7 is sampled i.i.d. Ber(80)
— uisall @
— Cis 8(1 — 0) on the diaaonal. and 0 otherwise

Ambar Pal, Connor Lane, René Vidal and Benjamin Haeffele — On the Regularization Properties of Structured Dropout, arxiv.org/abs/ N

1910.14186 %w JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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Explicit Regularizer for Generalised Dropout

 We can show that Generalized dropout induces an explicit
regularizer

|A — Udiag(p) ' diag(z) V' |7 =

min [,
U,V

|A -UV [ +Qc,u(U,V)

* The regularizer is a weighted sum of the inner products of the
weiaht matrix columns

.
11 u vV, V —
Qc (U, V) = chw i %) 3)=<C,UTU@VTV>
Dol Hill;
Ambar Pal, Connor Lane, René Vidal, Benjamin D. Haeffele. On the Regularization Properties of Structured Dropout. hitps://arxiv.org/ g~y

abs/1910 14166 SR JOHNS HOPKINS
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Special Case: Vanilla Dropout

minE, | A — Udiag(y) " diag(z) V' [[&

Z is sampled element-wise i.i.d Ber(0)

uisall @

C is a diagonal matrix with diagonal 8(1 — 0)

Plugging into general form, we get a regularizer that is a sum
of the Frobenius norm of the products of columns of the

1-6 , =08, o
ropou(Us V) = —= 2 luvillg = ——= 2 IuilI3lvil1
i=1

1=1

Ambar Pal, Connor Lane, René Vidal, Benjamin D. Haeffele. On the Regularization Properties of Structured Dropout. https://arxiv.org/ = OHNS HOPKINS
" LR
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Special Case: DropBlock

%11\1[1E |A — Udiag(p) 'diag(z)V '3

Blocks of z are sampled i.i.d. Ber(0)

uisall @
C is a block diagonal matrix with blocks 9(1 — @)11"

Plugging into general form, we get a regularizer that is a sum
of the Frobenius norm of the products of blocks of the weight

QDropBlock([I V Z HU VTHF

Ambar Pal, Connor Lane, René Vidal, Benjamin D. Haeffele. On the Regularization Properties of Structured Dropout. https:/arxiv.org/ /=

abs/1910 14166 SR JOHNS HOPKINS
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Conclusions

no dropout small dropout rate

- N W b

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, Rene Vidal, Dropout as a Low-Rank —
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 JOHNS HOPKINS
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