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Brief History of Neural Networks
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Impact of Deep Learning in Computer Vision

« 2012-2014 classification results in ImageNet CNN
non-CNN

« 2015 results: ResNet under 3.5% error using 150 layers!

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna
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Impact of Deep Learning in Speech Recognition

Word error rate on Switchboard
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speech group:
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Impact of Deep Learning in Game Playing

« AlphaGo: the first computer program to ever beat a
professional player at the game of Go [1]
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« Similar deep reinforcement learning strategies
developed to play Atari Breakout, Super Mario

Silver et al. Mastering the game of Go with deep neural networks and tree search, Nature 2016

Artn‘"mal intelligence learns Mario level in just 34 attempts, https://www.engadget.co 6 Jper-mario-world-self-learning-ail/, : ' JOHNS HOPKINS
MATHEMATICAL INSTITUTE
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https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai

Why These Improvements in Performance?

 Features are learned rather than hand-crafted

mean AP

 More layers capture more invariances [1]

- More data to train deeper networks ijJ“/—/f

« More computing (GPUs) AN R
» Better regularization: Dropout
 New nonlinearities
— Max pooling, Rectified linear units (ReLU) [2]
0

« Theoretical understanding of deep networks remains shallow

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.
[2] Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon

=
circuit. Nature, 405(6789):947-951, 2000. @il}' JOHNS HOPKINS
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Key Theoretical Questions in Deep Learning

Architecture Design

Slide courtesy of Ben Haeffele

Optimization

Generalization
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Key Theoretical Questions: Architecture

e Are there principled ways to design networks?

— How many layers?

— Size of layers?

— Choice of layer types?

— What classes of functions
can be approximated by a :
feedforward neural network?

— How does the architecture % é
impact expressiveness? [1]
Slide courtesy of Ben Haeffele | ' | N J OHN S H OPKIN S
[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016) @i‘:" MATHEMATICAL INSTITUTE
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Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]

Theorem [C’89, H'91] Let p() be a bounded, non-constant continuous func-
tion. Let I,,, denote the m-dimensional hypercube, and C'(I,,) denote the space
of continuous functions on I,,. Given any f € C([,,) and € > 0, there exists
N >0 and v;,w;,b;, 1 =1..., N such that

F(x) = Z vip(w] x + b;) satisfies
i<N

sup |f(z) — F(z)| <e€.

x€l,,
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Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]

Theorem [Barron’92] The mean integrated square error between the esti-
mated network F' and the target function f is bounded by

C? Nm
—f LY
O<N>—I—O( e logK) :

where K is the number of training points, /V is the number of neurons, m is the
input dimension, and Cy measures the global smoothness of f.
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Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]

 Approximation, depth, width and invariance: recent work
— Gaps between deep and shallow networks [Montufar’14, Mhaskar’16]
— Deep Boltzmann machines are universal approximators [Montufar’15]
— Design of CNNs via hierarchical tensor decompositions [Cohen '17]

— Scattering networks are deformation stable for Lipschitz non-linearities
[Bruna-Mallat ’13, Wiatowski '15, Mallat *16]

— Exponential # of units needed to approximate deep net [Telgarsky’16]
— Memory-optimal neural network approximation [Bolcskei '17]

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989.

[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989.

[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251-257, 1991.

[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.
[5] Cohen et al. Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions arXiv preprint arXiv:1705.02302

[6] Montufar, Pascanu, Cho, Bengio, On the number of linear regions of deep neural networks, NIPS, 2014

[7] Mhaskar, Poggio. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 2016.

[8] Montufar et al, Deep narrow Boltzmann machines are universal approximators, ICLR 2015, arXiv:1411.3784v3

[9] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872—-1886, 2013. =
[10] Wiatowski, Bélcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv2015. JOHNS HOPKINS
[11] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016. %i‘:"

[12] Telgarsky, Benefits of depth in neural networks. COLT 2016. MATHEMATICAL INSTITUTE
[13] Bolcskei, Grohs, Kutyniok, Petersen. Memory-optimal neural network approximation. Wavelets and Sparsity 2017. for DATA SCIENCE



Key Theoretical Questions: Generalization

e Classification performance guarantees? v Simple
— How well do deep networks generalize? ° ‘.°.. '. o °

— How should networks be regularized?

— How to prevent under or over fitting? ° °© o o

Slide courtesy of Ben Haeffele
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Key Theoretical Questions: Generalization

 Generalization and regularization theory: earlier work
— # training examples grows polynomially with network size [1,2]

 Regularization methods: earlier and recent work
— Early stopping [3]
— Dropout, Dropconnect, and extensions (adaptive, annealed) [4,5]

 Generalization and regularization theory: recent work
— Distance and margin-preserving embeddings [6,7]
— Path SGD/implicit regularization & generalization bounds [8,9]
— Product of norms regularization & generalization bounds [10,11]
— Information theory: info bottleneck, info dropout, Fisher-Rao [12,13,14]
— Rethinking generalization: [15]

1] Sontag. VC Dimension of Neural Networks. Neural Networks and Machine Learning, 1998.

2] Bartlett, Maass. VC dimension of neural nets. The handbook of brain theory and neural networks, 2003.

3] Caruana, Lawrence, Giles. Overfitting in neural nets: Backpropagation, conjugate gradient & early stopping. NIPS01.

4] Srivastava. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.

5] Wan. Regularization of neural networks using dropconnect. ICML, 2013.

6] Giryes, Sapiro, Bronstein. Deep Neural Networks with Random Gaussian Weights. arXiv:1504.08291.

7] Sokolic. Margin Preservation of Deep Neural Networks, 2015

8] Neyshabur. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015

9] Behnam Neyshabur. Implicit Regularization in Deep Learning. PhD Thesis 2017

10] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of invariant classifiers. In AISTATS, 2017. Q

11 Sokoli¢, Giryes, Sapiro, Rodrigues. Robust Large Margin Deep Neural Networks. IEEE Transactions on Signal Processing, 2017. JOHNS HOPKINS
12] ShwartzéZiv, Tishlf)y. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017. %i.:y'

13] Achille, Soatto. Information dropout: Learning optimal representations through noisy computation. arXiv: 2016.

14] Liang, Poggio, Rakhlin, Stokes. Fisher-Rao Metric, Geometry and Complexity of Neural Networks. arXiv: 2017. MATHEMATICAL INSTITUTE
15] Zhang, Bengio, Hardt, Recht, Vinyals. Understanding deep learning requires rethinking generalization. ICLR 2017. for DATA SCIENCE



Key Theoretical Questions: Optimization

 How to train neural networks?

— Problem is non-convex

— What does the error surface
look like?

— How to guarantee optimality?

— When does local descent succeed?

Slide courtesy of Ben Haeffele
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Key Theoretical Questions: Optimization

 Optimization theory: earlier work

No spurious local minima for linear networks [Baldi-Hornik '89]

Backprop fails to converge for nonlinear networks [Brady’89], converges
for linearly separable data [Gori-Tesi’'91-'92], or it gets stuck [Frasconi’97]

Local minima and plateaus in multilayer perceptrons [Fukumizu-Amari’00]

 Optimization theory: recent work

Convex neural networks in infinite number of variables [Bengio '05]
Networks with many hidden units can learn polynomials [Andoni 14]

The loss surface of multilayer networks [Choromanska '15]

Attacking the saddle point problem [Dauphin '14]

Effect of gradient noise on the energy landscape: [Chaudhari ‘15]
Entropy-SGD is biased toward wide valleys: [Chaudhari ‘17]

Deep relaxation: PDEs for optimizing deep nets [Chaudhari “17]
Guaranteed training of NNs using tensor methods [Janzamin '15]

No spurious local minima for large networks [Haeffele-Vidal’15 Soudry’16]

@ JOHNS HOPKINS
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Key Theoretical Questions are Interrelated

* Optimization can Architecture
Impact
generalization [1,2]
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* Architecture has
strong effect on Generalization/

generalization [3] Regularization

« Some architectures A

could be easier to N
optimize than others [4]

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).

[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 @ JOHNS HOPKINS

[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).
[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
for DATA SCIENCE



Toward a Unified Theory?

* Dropout regularization
IS equivalent to
regularization with
products of weights [1,2]

* Regularization with
product of weights
generalizes well [3,4] 0 0 Q¢

* No spurious local I
minima for product of '
weight regularizers [5]

[1] Cavazza, Lane, Moreiro, Haeffele, Murino, Vidal. An Analysis of Dropout for Matrix Factorization, AISTATS 2018.
[2] Poorya Mianjy, Raman Arora, Rene Vidal. On the Implicit Bias of Dropout. ICML 2018.

[3] Neyshabur, Salakhutdinov, Srebro. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015
[4] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of Invariant Classifiers. AISTATS, 2017.

[5] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Architecture

Generalization/
Regularization
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Part I. Analysis of Optimization

 What properties of the Architecture
network architecture
facilitate optimization?
— Positive homogeneity

— Parallel subnetwork
structure

?/tﬁ
NN
LXK

A ?V’\\\\
N

Generalization/

« What properties of the Regularization
regularization function -
facilitate optimization?  °_ °, - -

— Positive homogeneity =« ¢ .’

— Adapt network R
structure to the data [1] ° o ° o

Picture courtesy of Ben Haeffele
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[1] Bengio, et al., “Convex neural networks.” NIPS. (2005) @i‘:"



Main Results

Optimization Theorem 1:

A local minimum such
that all the weights from
one subnetwork are zero
IS a global minimum
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[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
IOV 14 T JOHNS HOPKINS

[2] Haeffele, V!dal. Global Op?ima!ity_in Tensor Factorizati_or_1, Deep Learning and Beyond, arXiv, '15 MATHEMATICAL INSTITUTE
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. for DATA SCIENCE



Main Results

Optimization Theorem 2:

If the size of the network
IS large enough, local
descent can reach a
global minimizer from
any initialization

Non-Convex Function Today’s Framework

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

ICML 14 @ JOHNS HOPKINS

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
for DATA SCIENCE



Part Il: Analysis of Dropout for Linear Nets

 What objective
function is being
minimized by
dropout?

« What type of
regularization is
induced by dropout?

 What are the
properties of the
optimal weights?

Picture courtesy of Ben Haeffele

Architecture

Generalization/
Regularization Optimization
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Main Results for Linear Nets

Theorem 3:

Dropout is SGD
Q applied to a
stochastic objective.

X

Theorem 4: Theorem 5:
Dropout induces explicit  Dropout induces

low-rank regularization balanced weights.
(nuclear norm squared).

Jacopo Cavazza, Connor Lane, Benjamin D. Haeffele, Vittorio Murino, René Vidal. An Analysis of Dropout for Matrix Factorization.
AISTATS 2018
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B _ - %i'!" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
131 P Y . for DATA SCIENCE



Key Property #1: Positive Homogeneity

o Start with a network

Lo
XK " REZ NS
L0 0K APV
8, BRI 22
/s ‘% Zr '\
. 7@*{'
. Scale the weights by A\ N\

a >0 aW?l aW? aW?

e Qutput is scaled by o, where p = degree of homogeneity
W, W2 W3 =Y
1 2 3y — P
b(aW, aW=, aW?) = a’Y
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Examples of Positively Homogeneous Maps

 Example 1: Rectified Linear Units (ReLU)

W1

max{oz, 0 }

_/]7 a >0

+

Does not change
rectification

AlW9

Qw3

* Linear + RelLU layer is positively homogeneous of degree 1

R/ JOHNS HOPKINS
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Examples of Positively Homogeneous Maps

« Example 2: Simple networks with convolutional layers, RelLU,
max pooling and fully connected layers

max{a’z1, a2y}

o Q! Y
e

aW?l aW? a W3

« Typically each weight layer increases degree of homogeneity
by 1

@ JOHNS HOPKINS
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Examples of Positively Homogeneous Maps

« Some Common Positively Homogeneous Layers
— Fully Connected + RelLU

— Convolution + RelLLU

— Max Pooling

— Linear Layers

6( Not Sigmoids\
— Mean Pooling
— Max Out
— Many possibilities... \ /

@ JOHNS HOPKINS
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B _ - %i'!" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
131 P Y . for DATA SCIENCE



Key Property #2: Parallel Subnetworks

« Subnetworks with identical structure connected in parallel
« Simple example: single hidden network
Subnetwork:

one RelLU
hidden unit

@ JOHNS HOPKINS
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Key Property #2: Parallel Subnetworks

* Any positively homogeneous network can be used

(o 0iil0
1 OESL S OESEER ,

/ & I~
I AN\ AN

Subnetwork:
multiple
RelLU layers

~ i
VA0S ORE
(M7 TN L 'Vg’?K
ARK - R5Z XX

N S IS wﬁgoz‘v
PN N 0
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Key Property #2: Parallel Subnetworks

« Example: Parallel AlexNets [1]

AlexNet

Subnetwork:

E;\@EHQ AN

i‘z“»:fff}‘i._‘__l 13 \ [\
) i —
R\ e 13
i 7 192

aaaaaa
pooling

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012

oooooooooo

y \dense
1000
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B _ - %i'!" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Basic Regularization: Weight Decay

OW, W= W?) = [[WHE + W37 + [IW7|%

W77

XL D RX KA |
NS
wtoow? o ws
D)
O(aW', aW? aW?) =laO(W*, W2, W?)
P(aW!, aW?, aW?) =0 j@(W, W=, W)

* Proposition non-matching degrees => spurious local minima
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Regularizer Adapted to Network Size

« Start with a positively homogeneous network with parallel
structure

»,‘ 4,/

.‘ ' ‘\‘ \
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Regularizer Adapted to Network Size

« Take the weights of one subnetwork and define a regularizer

as H(Wll, W12, W137 W14, W15) with the properties:

 Positive semi-definite

* Positively homogeneous with
the same degree as network

S (aW) =aPid(W)
0(aW) =laPP(W)
« Example: product of norms

WL IIWE W |

N\
2
{
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N
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Regularizer Adapted to Network Size

Sum over all subnetworks

’(

A\

/

v
4
)

\
1/
N

v

R
1%

/

D
\

¢

AR
(ORKE
Z

A

\ 4&’ (/

A X7

O

] () »
AU

/

O(W) = ZH(W@')

r = # subnets

Allow r to vary

Adding a subnetwork is
penalized by an additional
term in the sum

Regularizer constraints
number of subnetworks
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B _ - %i'!" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Main Results: Matrix Factorization

e Convex formulations: Factorized formulations

min (Y, X) + A X[, min (Y, UV 4+ Xo(U, V)

« Variational form of the nuclear norm [1,2]

X[ J=min 137Ul Villo| st UV =X

0 @%%Hﬁ]rarl gggﬁélfgz})ion Is the projective tensor norm [3,4]
|

—mmZHUH 1Vill, st. UV =X

[1] Burer, Monteiro. Local minima and convergence d fini p ogra g. rog., 2005. =

[2] Cabral, De la Torre, Costeira, Bernardino, “Unifying nuclear and bI f pp aches for low-rank matrix decom ” CVPR, JOI—INS HOPKINS
2013, pp. 2488-2495. @il:y'

[3] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. MATHEMATICAL INSTITUTE
[4] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. for DATA SCIENCE



Main Results: Matrix Factorization

« Theorem 1: Assume / is convex and once differentiable in X.
A local minimizer (U, V') of the non-convex factorized problem

. T . .
min (Y, UV >+A;HU@HUH%HU

such that for some i U; = V; = 0, is a global minimizer.
Moreover, UV ! is a global minimizer of the convex problem

min £(Y, X) + Al X[|u.0
I—‘T

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =N
ICML 14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15 @i‘:"
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Main Results: Matrix Factorization

« Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

e Meta-Algorithm:
— If not at a local minima, perform local descent
— At local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size of factorization and find descent direction (u,v)

rr+1 U<+ U u|l V|V o

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Example: Low-Rank Matrix Factorization

« Convex formulation of low-rank matrix approximation based
on nuclear norm minimization admits closed form solution

min L Y — XH% + Al X ||

Shrink singular

YUV e
X*=US\(X)V'

* r=rank (X*) = number of singular values above lambda

@ JOHNS HOPKINS
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Example: Low-Rank Matrix Factorization

* Factorized formulation of low-rank matrix approximation
T

min g[|Y — UV TI[E + A Uiz Vil
T i=1

* For fixed r: perform alternating proximal gradient

U, + U,; — 77uSA||%||2 (VUiZ(Y, UVT))
Vi < Vi — 77v8)\||U7;||2 (szé(Yv UVT))

 Check if r needs to be |ncreased: solve polar problem

minu' Vx (Y, UV v st. ||ulz]v|2 <1

U,V

Shrink columns
— |IF polar >= - lambda THENRE#SH; ELSE (u,v) gives descent direction

@ JOHNS HOPKINS
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Example: Low-Rank Matrix Factorization

Synthetic data Singular values
40 1
—©—-Data
—O— Factorized
50| -G Shrink/thresh
0 — =0 -O- -O- -0 -0
0 2 4 6 8 10
3500 r
—Size 1
—— Size 2
Size 3
3000 N —Size 4
o—
2500 ' ' o— S ; ©
0 20 40 60 80 100
Iteration
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From Matrix Factorization to Deep Learning

7 R NS
Za ZRXEA
A““%E«":E“'}““:ﬁ<

wt o w?  w?

(X, W WH) =g (- b (L (XWHW?) - WH)
~ N

output activation input weights
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Main Results: Tensor Fact. & Deep Learning

* In matrix factorization we had “generalized nuclear norm”

T
|Zln = grin S NUVil st UVT =2
1=

« By analogy we define “nuclear deep net regularizer”

Qy.0(Z) = min oWt .. WE)Yst. d(WE, ... WEY =2

1

where 0 is positively homogeneous of the same degree as ¢

* Proposition: Q¢,9 IS convex

e Intuition: regularizer © “comes from a convex function”

@ JOHNS HOPKINS
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Main Results: Tensor Fact. & Deep Learning

{ r%%n (Y, (X, W WE) 0wt L W)
WrEE_,

e Assumptions:
- £(Y, Z): convex and once differentiable in 7
— ® and ©: sums of positively homogeneous functions of same degree

p(aWlh, ..., aWH) =aPop(Wl, ..., W) VYa >0

e Theorem 1: A local minimizer such that for some j and all k
Wf — ()is a global minimizer

« Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

i =

{g]l\{l-ll_ 1f‘ftl Vidal. Global Optimality in T Factorization, Deep L i d B d, arXiv, ‘15 %i‘:" JOHNS HOPKINS
aeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv,

[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE

for DATA SCIENCE



Conclusions and Future Directions

e Size matters
— Optimize not only the network weights, but also the network size
— Today: size = number of neurons or number of parallel networks
— Tomorrow: size = number of layers + number of neurons per layer

 Regularization matters
— Use “positively homogeneous regularizer” of same degree as network

— How to build a regularizer that controls number of layers + number of
neurons per layer

* Not done yet

— Checking if we are at a local minimum or finding a descent direction
can be NP hard

— Need “computationally tractable” regularizers
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Typical Low-Rank Formulations

e Convex formulations:

m}}nf(Y, X)+ \O(X)

X

— Low-rank matrix approximation
— Low-rank matrix completion
— Robust PCA

v Convex
* Large problem size
* Unstructured factors

 Factorized formulations:

min /(Y. UV')+X0(U,V)

VT

— Principal component analysis
— Nonnegative matrix factorization
— Sparse dictionary learning

* Non-Convex
v Small problem size
v Structured factors

@ JOHNS HOPKINS
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Convex Formulations of Matrix Factorization

« Convex formulations: :
- ¢, © :convexin X m)%n (Y, X)+ X O(X)

« Low-rank matrix approximation:
1 )
min = [[Y = X3 + A1 X | J—{1x]1 = Yo%)

 Robust PCA:
min [[Y" = Xl + A | XL

| i

v Convex
* Large problem size
* Unstructured factors

Candés, Recht. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 2009. =N

Keshavan, Montanari, Oh. Matrix completion from a few entries. IEEE Transactions on Information Theory, 2010. JOHNS HOPKINS

Candés, Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions Information Theory, 2010 @i‘:"

Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011. MATHEMATICAL INSTITUTE
for DATA SCIENCE

Xu, Caramanis, Sanghavi. Robust PCA via outlier pursuit. NIPS 2010



Factorized Formulations Matrix Factorization

- Factorized formulations: |min (Y, UVT) + A0(U,V)
- £(Y, X): convexin X u,v

.« PCA[1] I(Eli‘;lHY—UVTH% st. U'U=1

+ NMF [2] r(rjli‘}aHY—UVTH% st. U>0,V>0

* SDL[3-5]: min |V - UV'|% st ||Uill2 <1,|Villo < r

v Small problem size * Need to specify size a priori
v Structured factors * Non-convex optimization problem

[1] Jolliffe. Principal component analysis. Springer, 1986 [/

[2] Lee, Seung. "Learning the parts of objects by non-negative matrix factorization." Nature, 1999 JOHNS HOPKINS
[3] Olshausen, Field. “Sparse coding with an overcomplete basis set: A strategy employed by v1?,” Vision Research, 1997

[4] Engan, Aase, Hakon-Husoy, “Method of optimal directions for frame design,” ICASSP 1999 MATHEN}[)/XF%E?%II]}:\II\?”CF]IETUTE
[5]1 Aharon, Elad. Bruckstein. "K-SVD: An Algorithm for Desianing Overcomplete Dictionaries for Sparse Representation", TSP 2006 for



Relating Convex & Factorized Formulations

e Convex formulations: Factorized formulations

min (Y, X) + A X[ mind(Y.UVT)+ XO(U,V)

« Variational form of the nuclear norm [1,2]

4 T
11X )=min | > [1Uilla ]| Vil

U,V

st. UV'=X

~
=1 Y
. @%%Hﬁ]rarl ggéfﬁé(ﬁ%)ion Is the projective tensor norm [3,4]

wo =min Y |Uillu|Ville st. UV =X
=1

1X]

uv «

[1] Burer and Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 103(3):427—444, 2005. =
[2] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low- JOHNS HOPKINS
rank matrix decomposition,” in IEEE International Conference on Computer Vision, 2013, pp. 2488—2495. @i‘:"
[3] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. MATHEMATICAL INSTITUTE
[4] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. for DATA SCIENCE



Main Results: Projective Tensor Norm Case

« Theorem 1: Assume / is convex and once differentiable in X.
A local minimizer (U, V') of the non-convex factorized problem

. T . .
min (Y, UV >+A;HU@HUH%HU

such that for some i U; = V; = 0, is a global minimizer.
Moreover, UV ! is a global minimizer of the convex problem

n}}n (Y, X) 4+ X X||w.0

 Proof sketch:

— Convex problem gives global lower bound for non-convex problem
— If (U, V) local min. of non-convex, then UV ' global min. of convex

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

o R/ JOHNS HOPKINS

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15 MATHEMATICAL INSTITUTE
for DATA SCIENCE



Main Results: Projective Tensor Norm Case

« Theorem 1: Assume / is convex and once differentiable in X.
A local minimizer (U, V') of the non-convex factorized problem

. T . .
min (Y, UV >+A;HU@HUH%HU

such that for some i U; = V; = 0, is a global minimizer.
Moreover, UV ! is a global minimizer of the convex problem

min £(Y, X) + Al X[|u.0
I—‘T

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15 @i‘:"

JOHNS HOPKINS
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Main Results: Projective Tensor Norm Case

« Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Critical Points of Non-Convex Function Guarantees of Our Framework

e Meta-Algorithm:
— If not at a local minima, perform local descent
— At local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size of factorization and find descent direction (u,v)

rr+1 U<+ U u|l V|V o

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Example: Low-Rank Matrix Factorization

« Convex formulation of low-rank matrix approximation based
on nuclear norm minimization admits closed form solution

min L Y — XH% + Al X ||

Shrink singular

YUV e
X*=US\(X)V'

* r=rank (X*) = number of singular values above lambda

@ JOHNS HOPKINS
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Example: Low-Rank Matrix Factorization

* Factorized formulation of low-rank matrix approximation
T

min g[|Y — UV TI[E + A Uiz Vil
T i=1

* For fixed r: perform alternating proximal gradient

U, + U,; — 77uSA||%||2 (VUiZ(Y, UVT))
Vi < Vi — 77v8)\||U7;||2 (szé(Yv UVT))

 Check if r needs to be |ncreased: solve polar problem

minu' Vx (Y, UV v st. ||ulz]v|2 <1

U,V

Shrink columns
— |IF polar >= - lambda THENRE#SH; ELSE (u,v) gives descent direction

@ JOHNS HOPKINS
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Example: Low-Rank Matrix Factorization

Synthetic data Singular values
40 1
—©—-Data
—O— Factorized
50| -G Shrink/thresh
0 — =0 -O- -O- -0 -0
0 2 4 6 8 10
3500 r
—Size 1
—— Size 2
Size 3
3000 N —Size 4
o—
2500 ' ' o— S ; ©
0 20 40 60 80 100
Iteration
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Main Results: Homogeneous Regularizers

min £(Y, UV")+20(U,V)

 Theorems are also true for © = sum of positive semi-definite
and positively homogeneous regularizers of degree 2

OU,V) = ZH(UZ-, Vi), O(au,av) = o*0(u,v),Va >0
i=1

* Examples Product of norms Conic constraints
0(u,v) = [[ull[]v]] u, v 20

« Such regularizers on (U,V) induce a convex regularizer on X

Qp(X) = inf O(U,V) st. X=UV"

U,v
B. Haeffele, E. Young, R. Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image =
Processing. ICML 2014 JOHNS HOPKINS
Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015 @i‘:" MATHEMATICAL INSTITUTE

for DATA SCIENCE



Example: Nonnegative Matrix Factorization

 QOriginal formulation

min ¥ - UV'|I|%2 st. U>0,V >0

 New factorized formulation

min [V — UV + A; |Ui|l2||Vill2 st UV >0

— Note: regularization limits the number of columns in (U,V)

@ JOHNS HOPKINS
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Example: Sparse Dictionary Learning

 QOriginal formulation

min [V —UVT |3 st |[Uilla < 1, |Viflo <

 New factorized formulation

in||Y — T3 i i i
min |V — UV HF+>\Z:’U’2(|V|2+7|V\1)

@ JOHNS HOPKINS
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Example: Robust PCA

* Original formulation [1]

min |El; + M| X|l, st. YV =X+ F
X.E

* Equivalent formulation

 New factorEz - lble loss)

%{i‘ﬁluy —~UV |1 + AZ U |2|Vil2

* New factorized formulation (with differentiable loss)

: B 2
| . Ty — _E
min [Ell+A) _[Uila|Vil: + 5|V - UV - B|7

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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* The learning problem is non-convex

d(X?, b (- V2V (VXHX?). - X
el

t N

nonlinearity features  weights

0

min LY, P(X', .., X))+ A0(X . X
X1....X p " o

loss labels regularizer

JOHNS HOPKINS
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From Matrix Factorizations to Deep Learning

+ Two-layer NN X1 e parxr X? e Rb2x7
— Input: V e RV>@
— Weights: X% e RI*X"
— Nonlinearity: RelLU

output layer
input layer

P1(z) = %ﬂaX(:v, 0) hidden layer
 “Almost” like matrix factorization

~ r=rank O(X X2 = (VXY (XHT

— r =#neurons in hidden layer
— RelLU + max pooling is positively homogeneous of degree 1

@ JOHNS HOPKINS
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From Matrix to Tensor Factorization

S e

X? & X?

d2 d3 Xll 1 X21 i Xrl r
I

r |

« Tensor product ¢(X',.... X" =X'® - @ X"
is positively homogeneous of degree K

(X', XF) =D o(X), . X))
1=1

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



From Matrix Factorizations to Deep Learning

X!t X2 x3 x! Multilayer ReLU
Parallel Network

(XL X2 X3 X1)

Rectified Linear Unit (ReLU)

}— = / O(X\ X2 X3 X1
0 ".

@ JOHNS HOPKINS
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Key Ingredient: Proper Regularization

* In matrix factorization we had “generalized nuclear norm”

Xuv: . HullVillv 1. T:X
X ], %17151;\\(]” |Villo st UV

« By analogy we define “nuclear deep net regularizer”

('a

Qpo(X) = {mikn} O(X}, ..., X )st. (XY, ... . XF) =X
X
1=1

where 0 is positively homogeneous of the same degree as ¢
* Proposition: Q¢,9 IS convex

e Intuition: regularizer © “comes from a convex function”

@ JOHNS HOPKINS
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Main Results

« Theorem 1: Assume ¢ is convex and once differentiable in X.
A local minimizer (X', ... X*)of the factorized formulation

in ((Y, (X! X)) ey et xE
i (0730 )+ 226 |

such that for some i and all k X = (is a global minimizer.
Moreover, X = ®(X*, .. XK) is a global minimizer of the
convex problem

II}}H K(Y, X) + )\qu,@(X)

« Examples
— Matrix factorization
— Tensor factorization
— Deep learning

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

i =

{g]l\{l-ll_ 1f‘ftl Vidal. Global Optimality in T Factorization, Deep L i d B d, arXiv, ‘15 %i‘:" JOHNS HOPKINS
aeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv,

[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
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Main Results

« Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

e Meta-Algorithm:
— If not at a local minima, perform local descent
— At a local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size by 1 (add network in parallel) and continue

— Maximum r guaranteed to be bounded by the dimensions of the
network output

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Experimental Results

» Better performance with less training examples [Sokolic,
Giryes, Sapiro, Rodrigues, 2017]
— WD = weight decay
— LM = Jacobian regularizer ~ product of weights regularizer

256 samples 512 samples 1024 samples
loss #layers noregg. WD LM noregz WD LM noreg. WD LM

hinge 2 88.37 89.88 9383 9399 9462 9549 9579 96.57 97.45
hinge 3 87.22 8931 9322 9341 9397 9576 9546 9645 97.60
CCE 2 88.45 8845 9277 9229 93.14 9525 9538 95.79 96.89
CCE 3 89.05 89.05 93.10 91.81 93.02 9532 9511 9586 97.14

[Sokolic, Giryes, Sapiro, Rodrigues, 2017]
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Conclusions and Future Directions

e Size matters
— Optimize not only the network weights, but also the network size
— Today: size = number of neurons or number of parallel networks
— Tomorrow: size = number of layers + number of neurons per layer

 Regularization matters
— Use “positively homogeneous regularizer” of same degree as network

— How to build a regularizer that controls number of layers + number of
neurons per layer

* Not done yet

— Checking if we are at a local minimum or finding a descent direction
can be NP hard

— Need “computationally tractable” regularizers

@ JOHNS HOPKINS
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Backpropagation vs Dropout Training

e Minimize empirical loss

=
<E
2|~
[]=
~
<
=
B
3

« Backpropagation with stochastic gradient descent (SGD)

WL =W — &y VY, B(X;, W)
jeb
« Backpropagation with dropout Zp ~~ Ber(@), 6 € (O, 1)
Wit — Wt—ﬁ ZV@(Yj,CI)(Xj,Wt,z)) R z
N——— —~

. B .
S set output of drop set gradient

out neurons to O of dropout

neurons to O
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Dropout Training

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Dropout Training: Better Learning Curve

2.5

2.0

Classification Error %

1.0f

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Withoﬁt dropoilt

KAALDALIN
ORI

{) ‘)Q“‘l‘\qv‘}\é&\'—f/?WkA».‘,
/ 4 \L " ’\ N
e s e e
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Dropout Training: Better Performance

Method Test Classification error %
L2 1.62
L2 + L1 applied towards the end of training 1.60
L2 + KL-sparsity 1.55
Max-norm 1.35
Dropout + L2 1.25
Dropout + Max-norm 1.05

Table 9: Comparison of different regularization methods on MNIST.

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Dropout Training: More ﬁ@t,r c‘t%}ﬁ@gﬁFilt rs
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(a) Without dropout (b) Dropout with p = 0.5.

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Dropout Training: More Compact Models

Mean Act. Value

| ||| .

14

Mean Act. Value |

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Toward a Theoretical Analysis of Dropout

« What kind of regularization does dropout induce?

» Can the regularized be characterized explicitly/analytically?

« Theorem: dropout with variable rate induces a low-rank
regularizer (nuclear norm squared) for matrix factorization.

@ JOHNS HOPKINS
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Deterministic vs Stochastic Factorization

« Deterministic Matrix Factorization (DMF)

n |V — UV "7
min | I

« Stochastic Matrix Factorization (SMF)

1
minE, Y — = Udiag(2)V' ||%, 2z ~Ber(6), 6(0,1)
U,v O e —

>z, U VT
i—1

@ JOHNS HOPKINS
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Dropout is SGD for SMF

« Stochastic matrix factorization objective

|
minE, ||[Y — ~Udiag(2)V T ||

U,v

0

* Dropout is a stochastic gradient descent method for SMF

Ut—l—l Ut €
yeet | T vt g

(Y — %Utdiag(zt)VtT)Vt_

di t
(Y —sUtdiag(z")Vt")U? lag(=")

« Compare to backpropagation with dropout

W =W — > V(Y (X, W 2) © 2

jEB
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Dropout as an Explicit Regularizer for SMF

. Using the definition of variance E(y?) = E(y)? + Var(y)
we can show that dropout induces an explicit regularizer

E.|Y — 1Udiag(z)V ||} =

1 — 0 —
Y —UV '||% A ; > U31Vill3

It really looks like the nuclear norm!!

1 Xl = mmZHUH [Vilz st. UV =X

R/ JOHNS HOPKINS
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Dropout with Fixed Rate Fails to Regularize

« The dropout regularizer

o, V) =) |Uil3IVil’3
1=1

fails to regularize the size of the factorization because we can
lower the objective by doubling the size of the factorization

1 1 1
@(ﬁ v U]V V]):§@(U,V)
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Dropout with Variable Rate Works

* Recall the dropout regularizer with regularization parameter
1 — 9 z 2 2
\O(U,V) = —— > |Uil3IIVill3
i=1

« What if dropout rate varies?
C1-6,  1-06

)\7“ — HT =T 91 — 7“)\1
* Then, pathological case disappears
1 1
A, O|—=|U U|,— |V V|| =N0OUV
20 (5[ U 5[V V])=rey)
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Dropout with Variable Rate Works

* Proposition: Dropout with variable rate induces a regularizer

1—6, «
Q(X) = 4 U; 1121 Vi |5 s.t. =X
(X) = pin 57 STIVIBIVIE st UV
. 1 — 91 2
whose convex envelope is the (nuclear norm)? 5 | X2
1

 Theorem: Let (U*,V*,r*) be a global minimum of

| 1 —6, <
min [|[Y — UV "||% 7 Z”UzHgHVzH%
"=

U,V,r
T 1—46
Then, X= = U"V" —min |y — X||F + —— || X||?
is a global minimum of X 01

@ JOHNS HOPKINS
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Global Optima are Low Rank

1 —6, «
. T2 r 2 2
(E{%%HY_UV I 0. ;HUz”2HVzH2

 Theorem: (U*,V*,r*) is a global minimum iff
U v =8.(Y)

where tau and r* depends on singular values of Y

 Open issues:
— Results are valid for variable r, but not for a fixed r
— How to find the optimal (U*, V*) ?
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Synthetic Experiments for Fixed Size

e Comparing deterministic and stochastic dropout for
factorizing a 100 x 100 matrix with fixed size r = 160.

* Run 10,000 iterations of GD with diminishing step size.

g = Dropout

— 1014} — Dropout - 7

| (moving avg)

R —— Deterministic

g 5 - -

O

QL

Q

O O | | | | | |
O Iteration# 10k O 10k O 10k

6 =0.1 6 =0.3 0 =0.5
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Synthetic Experiments for Variable Size

« Comparing dropout with fixed rate (black), adaptive rate
(gray) and closed form solution (green) for factorizing 100 x
100 matrix of rank 10 + noise.

10° ===y -
107 - : .
10—12 _ - -
1 1 1 1 1 IMI
0 D 10 0 10 20 0 20 40
r=10 r=20 r=40
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Conclusions

* Dropout for matrix factorization is an SGD method
« Dropout for matrix factorization induces explicit regularization

« Dropout for matrix factorization with a fixed dropout rate does
not limit the size of the factorization

« Dropout for matrix factorization with a dropout rate that
increases with the size of the factorization induces low-rank
factorizations
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What Solutions does Dropout Favor?

* Recall dropout is an instance of SGD on the objective

, 1 — 60 «
E.[|Y - jUdiag(z)V |} = Y = UV 5+ ——= > IU: 3Vl

1=1

Results so far guarantee global optimality when optimizing
over (U,V,r) provided that r “large enough”

Results so far tell us what the optimal product is, but do not
tell us what the optimal factors look like

Question 1: Can we find the global minimum for any fixed r ?

Question 2: What optimal solutions does dropout favor?
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Any Factorization Can Be Equalized

« The network with weights (U,V) is said to be equalized if the
product of the norms of incoming and outgoing weights are
equal for all hidden nodes, i.e.

|Uill2|Vill2 = [1Ujl|21|Vjll2 Ve, =1,...,7

« Theorem: For any pair (U, V) there is another pair (U’,V’) such
that UVT = U'V'T and (U’,V’) can be equalized by a rotation R,
l.e., there is a rotation R such that (U'R, V'R) are equalized.

« Algorithm to compute (U’,V’,R): based on Gram matrices,
eigenvalue decompositions and matrix diagonalization
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Global Minima are Equalized

 Theorem: global optima of dropout problem are equalized
T
min ||V — UV % +2 Y [Tl Vil3
’ i=1

LU,V

eU,V)
- Loss is rotationally invariant: (U, V) =¢(UR,VR) VR

* Regularizer minimized when network is equalized by rotation

o = ([UL[[Val 102l Valls - (1O V)

2
2> (S Uil Vill2)
1=1
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Global Optima are Low Rank

n ||Y — T3 i i
win [ - UV |’F+>‘;"UH2|’VH2

 Theorem: (U*,V*) is a global minimum iff it is equalized and
U v =8.(Y)

where tau and optimal r depends on singular values of Y

« Algorithm: A global optimum (U*,V*) can be found as follows
— Find any factorization (U,V) of 87- (Y)
— Equalize the factors to obtain (U*, V*) = (UR, VR)
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Effect of Dropout Rate on the Landscape

Linear no dropout
auto-encoder

1 input

2 hidden neurons 4~

1 output
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Effect of Dropout Rate on the Landscape

Linear small dropout rate
auto-encoder

1 input

2 hidden neurons

1 output
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Effect of Dropout Rate on the Landscape

Linear large dropout rate
auto-encoder

1 input

2 hidden neurons

1 output
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Synthetic Experiments

« Comparing stochastic dropout and closed form solution for
factorizing a 120 x 80 matrix with fixed size r = 20.

A=1 A=0.5
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Synthetic Experiments

« Showing that stochastic dropout achieves equalization when
factorizing a 120 x 80 matrix with fixed size r = 20 and r = 80.
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Conclusions

« Dropout with fixed size also induces a low-rank regularizer

« The global optima for any fixed r are equalized and low-rank

no dropout small dropout rate large dropout rate
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More Information,

Vision Lab @ JHU
http://www.vision.jhu.edu

Center for Imaging Science @ JHU
http://www.cis.jhu.edu

Mathematical Institute for Data Science @ JHU
http://www.minds.jhu.edu

Thank You!
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