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Impact of Deep Learning in Computer Vision
• 2012-2014 classification results in ImageNet 

• 2015 results: ResNet under 3.5% error using 150 layers!

CNN 
non-CNN

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna



Impact of Deep Learning in Speech Recognition



Impact of Deep Learning in Game Playing
• AlphaGo: the first computer program to ever beat a 

professional player at the game of Go [1] 

• Similar deep reinforcement learning strategies  
developed to play Atari Breakout, Super Mario

Silver et al. Mastering the game of Go with deep neural networks and tree search, Nature 2016 
Artificial intelligence learns Mario level in just 34 attempts, https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/,  
https://github.com/aleju/mario-ai

https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai


Why These Improvements in Performance?
• Features are learned rather than hand-crafted 

• More layers capture more invariances [1]  

• More data to train deeper networks 

• More computing (GPUs) 

• Better regularization: Dropout 

• New nonlinearities 
– Max pooling, Rectified linear units (ReLU) [2]  

• Theoretical understanding of deep networks remains shallow

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14. 
[2] Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon 
circuit. Nature, 405(6789):947–951, 2000.



Key Theoretical Questions in Deep Learning
Questions in Deep Learning

Architecture Design Optimization Generalization

Slide courtesy of Ben Haeffele



Key Theoretical Questions: Architecture
• Are there principled ways to design networks? 

– How many layers? 

– Size of layers? 

– Choice of layer types? 

– What classes of functions  
can be approximated by a  
feedforward neural network? 

– How does the architecture  
impact expressiveness? [1]

Questions in Deep Learning
Are there principled ways to design networks?

• How many layers?

• Size of layers?

• Choice of layer types?

• How does architecture impact expressiveness? [1]

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016)

Slide courtesy of Ben Haeffele 

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016) 



Key Theoretical Questions: Architecture
• Approximation, depth, width and invariance: earlier work 

– Perceptrons and multilayer feedforward networks are universal 
approximators [Cybenko ’89, Hornik ’89, Hornik ’91, Barron ’93]

Theorem [C’89, H’91] Let ⇢() be a bounded, non-constant continuous func-

tion. Let Im denote the m-dimensional hypercube, and C(Im) denote the space

of continuous functions on Im. Given any f 2 C(Im) and ✏ > 0, there exists

N > 0 and vi, wi, bi, i = 1 . . . , N such that

F (x) =
X

iN

vi⇢(w
T
i x+ bi) satisfies

sup
x2Im

|f(x)� F (x)| < ✏ .



Key Theoretical Questions: Architecture
• Approximation, depth, width and invariance: earlier work 

– Perceptrons and multilayer feedforward networks are universal 
approximators [Cybenko ’89, Hornik ’89, Hornik ’91, Barron ’93]

Theorem [Barron’92] The mean integrated square error between the esti-
mated network F̂ and the target function f is bounded by
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where K is the number of training points, N is the number of neurons, m is the
input dimension, and Cf measures the global smoothness of f .



Key Theoretical Questions: Architecture
• Approximation, depth, width and invariance: earlier work 

– Perceptrons and multilayer feedforward networks are universal 
approximators [Cybenko ’89, Hornik ’89, Hornik ’91, Barron ’93] 

• Approximation, depth, width and invariance: recent work 
– Gaps between deep and shallow networks [Montufar’14, Mhaskar’16] 
– Deep Boltzmann machines are universal approximators [Montufar’15] 
– Design of CNNs via hierarchical tensor decompositions [Cohen ’17] 
– Scattering networks are deformation stable for Lipschitz non-linearities 

[Bruna-Mallat ’13, Wiatowski ’15, Mallat ’16] 
– Exponential # of units needed to approximate deep net [Telgarsky’16] 
– Memory-optimal neural network approximation [Bölcskei ’17]

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989. 
[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989. 
[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251–257, 1991. 
[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930–945, 1993. 
[5] Cohen et al. Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions arXiv preprint arXiv:1705.02302 
[6] Montúfar, Pascanu, Cho, Bengio, On the number of linear regions of deep neural networks, NIPS, 2014 
[7] Mhaskar, Poggio. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 2016.  
[8] Montúfar et al, Deep narrow Boltzmann machines are universal approximators, ICLR 2015, arXiv:1411.3784v3  
[9] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872–1886, 2013.  
[10] Wiatowski, Bölcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv2015. 
[11] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016. 
[12] Telgarsky, Benefits of depth in neural networks. COLT 2016.  
[13] Bölcskei, Grohs, Kutyniok, Petersen. Memory-optimal neural network approximation. Wavelets and Sparsity 2017.



Key Theoretical Questions: Generalization
• Classification performance guarantees?  

– How well do deep networks generalize? 

– How should networks be regularized? 

– How to prevent under or over fitting? 

Questions in Deep Learning
Performance Guarantees?

• How do networks generalize?

• How should networks be regularized?

• How to prevent overfitting?

X Complex9Simple

Questions in Deep Learning
Performance Guarantees?
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Key Theoretical Questions: Generalization
• Generalization and regularization theory: earlier work 

– # training examples grows polynomially with network size [1,2] 

• Regularization methods: earlier and recent work 
– Early stopping [3]  
– Dropout, Dropconnect, and extensions (adaptive, annealed) [4,5] 

• Generalization and regularization theory: recent work 
– Distance and margin-preserving embeddings [6,7] 
– Path SGD/implicit regularization & generalization bounds [8,9] 
– Product of norms regularization & generalization bounds [10,11] 
– Information theory: info bottleneck, info dropout, Fisher-Rao [12,13,14] 
– Rethinking generalization: [15]

[1] Sontag. VC Dimension of Neural Networks. Neural Networks and Machine Learning, 1998. 
[2] Bartlett, Maass. VC dimension of neural nets. The handbook of brain theory and neural networks, 2003. 
[3] Caruana, Lawrence, Giles. Overfitting in neural nets: Backpropagation, conjugate gradient & early stopping. NIPS01. 
[4] Srivastava. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.  
[5] Wan. Regularization of neural networks using dropconnect. ICML, 2013. 
[6] Giryes, Sapiro, Bronstein. Deep Neural Networks with Random Gaussian Weights. arXiv:1504.08291. 
[7] Sokolic. Margin Preservation of Deep Neural Networks, 2015 
[8] Neyshabur. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015 
[9] Behnam Neyshabur. Implicit Regularization in Deep Learning. PhD Thesis 2017 
[10] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of invariant classifiers. In AISTATS, 2017. 
[11 Sokolić, Giryes, Sapiro, Rodrigues. Robust Large Margin Deep Neural Networks. IEEE Transactions on Signal Processing, 2017.  
[12] Shwartz-Ziv, Tishby. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017.  
[13] Achille, Soatto. Information dropout: Learning optimal representations through noisy computation. arXiv: 2016. 
[14] Liang, Poggio, Rakhlin, Stokes. Fisher-Rao Metric, Geometry and Complexity of Neural Networks. arXiv: 2017. 
[15] Zhang, Bengio, Hardt, Recht, Vinyals. Understanding deep learning requires rethinking generalization. ICLR 2017. 



Key Theoretical Questions: Optimization
• How to train neural networks? 

– Problem is non-convex 

– What does the error surface  
look like? 

– How to guarantee optimality?  

– When does local descent succeed? 

Questions in Deep Learning

• Problem is non-convex.

• What does the loss surface look like? [1]

• Any guarantees for network training? [2]

• How to guarantee optimality?

• When will local descent succeed?

How to train neural networks?

X

[1] Choromanska, et al., "The loss surfaces of multilayer networks." Artificial Intelligence and Statistics. (2015)
[2] Janzamin, et al., "Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods." arXiv (2015).

Slide courtesy of Ben Haeffele



Key Theoretical Questions: Optimization
• Optimization theory: earlier work 

– No spurious local minima for linear networks [Baldi-Hornik ’89] 
– Backprop fails to converge for nonlinear networks [Brady’89], converges 

for linearly separable data [Gori-Tesi’91-’92], or it gets stuck [Frasconi’97] 
– Local minima and plateaus in multilayer perceptrons [Fukumizu-Amari’00] 

• Optimization theory: recent work 
– Convex neural networks in infinite number of variables [Bengio ’05] 
– Networks with many hidden units can learn polynomials [Andoni ’14] 
– The loss surface of multilayer networks [Choromanska ’15] 
– Attacking the saddle point problem [Dauphin ’14] 
– Effect of gradient noise on the energy landscape: [Chaudhari ‘15] 
– Entropy-SGD is biased toward wide valleys: [Chaudhari ‘17] 
– Deep relaxation: PDEs for optimizing deep nets [Chaudhari ‘17] 
– Guaranteed training of NNs using tensor methods [Janzamin ’15] 
– No spurious local minima for large networks [Haeffele-Vidal’15 Soudry’16] 



Key Theoretical Questions are Interrelated
• Optimization can  

impact  
generalization [1,2] 

• Architecture has  
strong effect on  
generalization [3] 

• Some architectures  
could be easier to  
optimize than others [4]

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).  
[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 
[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017). 
[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

Architecture

Optimization
Generalization/
Regularization



Toward a Unified Theory?
• Dropout regularization 

is equivalent to 
regularization with 
products of weights [1,2] 

• Regularization with 
product of weights 
generalizes well [3,4] 

• No spurious local 
minima for product of 
weight regularizers [5]

[1] Cavazza, Lane, Moreiro, Haeffele, Murino, Vidal. An Analysis of Dropout for Matrix Factorization, AISTATS 2018. 
[2] Poorya Mianjy, Raman Arora, Rene Vidal. On the Implicit Bias of Dropout. ICML 2018. 
[3] Neyshabur, Salakhutdinov, Srebro. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015 
[4] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of Invariant Classifiers. AISTATS, 2017.  
[5] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

Architecture

Optimization
Generalization/
Regularization



Part I: Analysis of Optimization
• What properties of the 

network architecture 
facilitate optimization?  
– Positive homogeneity 
– Parallel subnetwork 

structure 

• What properties of the 
regularization function 
facilitate optimization?  
– Positive homogeneity 
– Adapt network 

structure to the data [1]

Today’s Talk: The Questions
• Are there properties of the network 

architecture that allow efficient 
optimization?

• Positive Homogeneity
• Parallel Subnetwork Structure

• Are there properties of the 
regularization that allow efficient 
optimization?

• Positive Homogeneity
• Adapt network architecture to data [1]

Optimization
Generalization/
Regularization

Architecture

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)Picture courtesy of Ben Haeffele 

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)  



Main ResultsToday’s Talk: The Results
Optimization

• A local minimum such that 
one subnetwork is all zero is 
a global minimum. 

Theorem 1:  
A local minimum such 
that all the weights from 
one subnetwork are zero 
is a global minimum 

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.



Main ResultsToday’s Talk: The Results

• Once the size of the network 
becomes large enough...

• Local descent can reach a 
global minimum from any 
initialization.

Optimization

Non-Convex Function Today’s Framework

Today’s Talk: The Results

• Once the size of the network 
becomes large enough...

• Local descent can reach a 
global minimum from any 
initialization.

Optimization

Non-Convex Function Today’s Framework

Theorem 2: 
If the size of the network 
is large enough, local 
descent can reach a 
global minimizer from 
any initialization

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.



Part II: Analysis of Dropout for Linear Nets
• What objective 

function is being 
minimized by 
dropout?  

• What type of 
regularization is 
induced by dropout?  

• What are the 
properties of the 
optimal weights? 

Picture courtesy of Ben Haeffele 

Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

Architecture

Optimization
Generalization/
Regularization



Main Results for Linear Nets

Theorem 4:  
Dropout induces explicit 
low-rank regularization 
(nuclear norm squared).

Jacopo Cavazza, Connor Lane, Benjamin D. Haeffele, Vittorio Murino, René Vidal. An Analysis of Dropout for Matrix Factorization. 
AISTATS 2018

Theorem 5:  
Dropout induces 
balanced weights.

Theorem 3:  
Dropout is SGD 
applied to a 
stochastic objective.



Global Optimality in Matrix and Tensor 
Factorization, Deep Learning & Beyond

Ben Haeffele and René Vidal 
Center for Imaging Science 

Mathematical Institute for Data Science 
Johns Hopkins University 



Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Key Property #1: Positive Homogeneity
• Start with a network 

• Scale the weights by 

• Output is scaled by        , where p = degree of homogeneity

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity
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Examples of Positively Homogeneous Maps
• Example 1: Rectified Linear Units (ReLU) 

• Linear + ReLU layer is positively homogeneous of degree 1

Most Modern Networks Are Positively Homogeneous

• Example: Rectified Linear Units (ReLUs)
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rectification



Examples of Positively Homogeneous Maps
• Example 2: Simple networks with convolutional layers, ReLU, 

max pooling and fully connected layers 

• Typically each weight layer increases degree of homogeneity 
by 1

Most Modern Networks Are Positively Homogeneous
• Simple Network

Input
Conv 

+ 
ReLU

Linear OutMax 
Pool

Conv 
+ 

ReLU
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Examples of Positively Homogeneous Maps
• Some Common Positively Homogeneous Layers  

– ︎Fully Connected + ReLU 

– Convolution + ReLU 

– Max Pooling 

– Linear Layers 

– Mean Pooling 

– Max Out 

– Many possibilities... 

Most Modern Networks Are Positively Homogeneous
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9Fully Connected + ReLU
9Convolution + ReLU
9Max Pooling
9Linear Layers
9Mean Pooling
9Max Out
9Many possibilities…

X Not Sigmoids
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Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Key Property #2: Parallel Subnetworks
• Subnetworks with identical structure connected in parallel 

• Simple example: single hidden network

Key Property 2: Parallel Subnetworks
• Subnetworks with identical architecture connected in parallel.
• Simple Example: Single hidden layer network

• Subnetwork: One ReLU hidden unit

Key Property 2: Parallel Subnetworks
• Subnetworks with identical architecture connected in parallel.
• Simple Example: Single hidden layer network

• Subnetwork: One ReLU hidden unitSubnetwork: 
one ReLU 
hidden unit



Key Property #2: Parallel Subnetworks
• Any positively homogeneous network can be used

Subnetwork: 
multiple  

ReLU layers

Key Property 2: Parallel Subnetworks

• Subnetwork: Multiple ReLU layers

• Any positively homogeneous subnetwork can be used

Key Property 2: Parallel Subnetworks

• Subnetwork: Multiple ReLU layers

• Any positively homogeneous subnetwork can be used



Key Property #2: Parallel Subnetworks
• Example: Parallel AlexNets [1]

Subnetwork: 
AlexNet

Key Property 2: Parallel Subnetworks

• Subnetwork: AlexNet

• Example: Parallel AlexNets[1]

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

Input Output

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.

Key Property 2: Parallel Subnetworks

• Subnetwork: AlexNet

• Example: Parallel AlexNets[1]

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

Input Output

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012 



Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

X U V >
⇡



Basic Regularization: Weight Decay

• Proposition non-matching degrees => spurious local minima

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity

⇥(W 1,W 2,W 3) = kW 1k2F + kW 2k2F + kW 3k2F

W 1 W 2 W 3

⇥(↵W 1,↵W 2,↵W 3) = ↵2⇥(W 1,W 2,W 3)

�(↵W 1,↵W 2,↵W 3) = ↵3�(W 1,W 2,W 3)



Regularizer Adapted to Network Size
• Start with a positively homogeneous network with parallel 

structure

Adapting the size of the network via regularization
• Start with a positively homogeneous network with parallel structure



Regularizer Adapted to Network Size
• Take the weights of one subnetwork and define a regularizer 

as                                                      with the properties: 

Adapting the size of the network via regularization
• Take the weights of one subnetwork.

• Positive semi-definite 
• Positively homogeneous with 

the same degree as network

• Example: product of norms
kW 1

1 kkW 2
1 kkW 3

1 kkW 4
1 kkW 5

1 k
W 1

1 W 2
1 W 3

1 W 4
1 W 5

1

✓(W 1
1 ,W

2
1 ,W

3
1 ,W

4
1 ,W

5
1 )

�(↵W ) = ↵p�(W )

✓(↵W ) = ↵p✓(W )



Regularizer Adapted to Network Size
• Sum over all subnetworks

Adapting the size of the network via regularization
• Start with a positively homogeneous network with parallel structure

• Allow r to vary 

• Adding a subnetwork is 
penalized by an additional 
term in the sum 

• Regularizer constraints 
number of subnetworks

⇥(W ) =
rX

i=1

✓(W i)

r = # subnets



Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

X U V >
⇡



Main Results: Matrix Factorization
• Convex formulations:               Factorized formulations 

• Variational form of the nuclear norm [1,2] 

• A natural generalization is the projective tensor norm [3,4]

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

[1] Burer, Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 2005. 
[2] Cabral, De la Torre, Costeira, Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition,” CVPR, 
2013, pp. 2488–2495. 
[3] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[4] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

kXk⇤ =
X

�i(X)

kXk⇤ = min
U,V

rX

i=1

kUik2kVik2 s.t. UV > = X



Main Results: Matrix Factorization
• Theorem 1: Assume    is convex and once differentiable in    . 

A local minimizer            of the non-convex factorized problem 
 
 
 
 
such that for some i                      , is a global minimizer. 
Moreover,           is a global minimizer of the convex problem

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

min
X

`(Y,X) + �kXku,v

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv

Ui = Vi = 0

`

UV >

(U, V )
X

X U V >



Main Results: Matrix Factorization
• Theorem 2: If the number of columns is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size of factorization and find descent direction (u,v)

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Example: Low-Rank Matrix Factorization
• Convex formulation of low-rank matrix approximation based 

on nuclear norm minimization admits closed form solution 

• r = rank (X*) = number of singular values above lambda

=)
Y = U⌃V >

X⇤ = US�(⌃)V
>

min
X

1
2kY �Xk2F + �kXk⇤

Shrink singular 
values by 
lambda



Example: Low-Rank Matrix Factorization
• Factorized formulation of low-rank matrix approximation 

• For fixed r: perform alternating proximal gradient 

• Check if r needs to be increased: solve polar problem 

– IF polar >= - lambda THEN stop; ELSE (u,v) gives descent direction

Ui  Ui � ⌘uS�kVik2

�
rUi`(Y, UV >)

�

Vi  Vi � ⌘vS�kUik2

�
rVi`(Y, UV >)

�

min
u,v

u>rX`(Y, UV >)v s.t. kuk2kvk2  1

min
U,V,r

1
2kY � UV >k2F + �

rX

i=1

kUik2kVik2

Shrink columns 
by lambda



Example: Low-Rank Matrix Factorization
Synthetic data 
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0

20

40
Data
Factorized
Shrink/thresh

Singular values 

0 20 40 60 80 100
2500

3000

3500
Size 1
Size 2
Size 3
Size 4
Size 5

Iteration 



From Matrix Factorization to Deep Learning

input weightsactivation

XW 1 W 2 1( ) 2( )�(X,W 1, . . . ,WK) =  K(· · · · · ·WK)

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity

W 1 W 2 W 3

X Y

output



Main Results: Tensor Fact. & Deep Learning
• In matrix factorization we had “generalized nuclear norm” 

• By analogy we define “nuclear deep net regularizer” 
 
 
 
 
where     is positively homogeneous of the same degree as 

• Proposition:                is convex 

• Intuition: regularizer      “comes from a convex function”

✓

⌦�,✓

�

⇥

kZku,v = min
U,V,r

rX

i=1

kUikukVikv s.t. UV > = Z

⌦�,✓(Z) = min
{Wk},r

rX

i=1

✓(W 1
i , . . . ,W

K
i ) s.t. �(W 1

i , . . . ,W
K
i ) = Z



Main Results: Tensor Fact. & Deep Learning

• Assumptions: 
–                 : convex and once differentiable in 
–      and     : sums of positively homogeneous functions of same degree 

• Theorem 1: A local minimizer such that for some i and all k  
                is a global minimizer 

• Theorem 2: If the size of the network is large enough, local 
descent can reach a global minimizer from any initialization 

� ⇥

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

�(↵W 1
i , . . . ,↵W

K
i ) = ↵p�(W 1

i , . . . ,W
K
i ) 8↵ � 0

min
{Wk}K

k=1

`(Y,�(X,W 1, . . . ,WK)) + �⇥(W 1, . . . ,WK)

`(Y, Z) Z

W k
i = 0



Conclusions and Future Directions
• Size matters 

– Optimize not only the network weights, but also the network size 
– Today: size = number of neurons or number of parallel networks 
– Tomorrow: size = number of layers + number of neurons per layer 

• Regularization matters 
– Use “positively homogeneous regularizer” of same degree as network 
– How to build a regularizer that controls number of layers + number of 

neurons per layer 

• Not done yet 
– Checking if we are at a local minimum or finding a descent direction 

can be NP hard 
– Need “computationally tractable” regularizers
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Typical Low-Rank Formulations
• Convex formulations: 

– Low-rank matrix approximation 
– Low-rank matrix completion 
– Robust PCA 

✓ Convex 
✴ Large problem size 
✴ Unstructured factors

• Factorized formulations: 

– Principal component analysis 
– Nonnegative matrix factorization 
– Sparse dictionary learning 

✴ Non-Convex 
✓ Small problem size 
✓ Structured factors

X U
V >

min
U,V

`(Y, UV >) + �⇥(U, V )

Typical Low Rank Formulations

min
X

`(Y,X) + �⇥(X) (1)

min
X

kY �Xk2F + �kXk⇤ (2)

min
X

kY �Xk1 + �kXk⇤ (3)



Convex Formulations of Matrix Factorization
• Convex formulations: 

–           : convex in 

• Low-rank matrix approximation:  

• Robust PCA:
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Low-Rank Matrix Recovery and Completion via Convex Optimization

Welcome!

Credits People

This website introduces new tools for recovering low-rank matrices from incomplete or corrupted observations.

Matrix of corrupted observations Underlying low-rank matrix 

+

Sparse error matrix

A common modeling assumption in many engineering applications is that the underlying data lies (approximately) on a
low-dimensional linear subspace. This property has been widely exploited by classical Principal Component Analysis
(PCA) to achieve dimensionality reduction. However, real-life data is often corrupted with large errors or can even be
incomplete. Although classical PCA is effective against the presence of small Gaussian noise in the data, it is highly
sensitive to even sparse errors of very high magnitude.

We propose powerful tools that exactly and efficiently correct large errors in such structured data. The basic idea is to
formulate the problem as a matrix rank minimization problem  and solve it efficiently by nuclear-norm minimization. Our
algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees. Please browse
the links to the left for more information. The introduction section provides a brief overview of the low-rank matrix
recovery problem and introduces state-of-the-art algorithms to solve. Please refer to our papers in the references section
for complete technical details, and to the sample code section for MATLAB packages. The applications section showcases
engineering problems where our techniques have been used to achieve state-of-the-art performance. 
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N00014-09-1-0230, NSF CCF 09-64215, NSF ECCS 07-01676, and NSF IIS 11-16012. Any opinions, findings, and
conclusions or recommendations expressed in our publications are those of the respective authors and do not necessarily
reflect the views of the National Science Foundation or Office of Naval Research.

Please direct your comments and questions to the webmaster - Kerui Min.
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2
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X
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✓ Convex 
✴ Large problem size 
✴ Unstructured factors

`,⇥

Candès, Recht. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 2009. 
Keshavan, Montanari, Oh. Matrix completion from a few entries. IEEE Transactions on Information Theory, 2010. 
Candès, Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions Information Theory, 2010 
Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011. 
Xu, Caramanis, Sanghavi. Robust PCA via outlier pursuit. NIPS 2010



Factorized Formulations Matrix Factorization
• Factorized formulations: 

–                 : convex in 

• PCA [1]: 

• NMF [2]: 

• SDL [3-5]:

`(Y,X) X

min
U,V

kY � UV >k2F s.t. U>U = I

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

`(Y, UV >) + �⇥(U, V )

✓ Small problem size 
✓ Structured factors

✴ Need to specify size a priori 
✴ Non-convex optimization problem

[1] Jolliffe. Principal component analysis. Springer, 1986 
[2] Lee, Seung. "Learning the parts of objects by non-negative matrix factorization." Nature, 1999 
[3] Olshausen, Field. “Sparse coding with an overcomplete basis set: A strategy employed by v1?,” Vision Research, 1997 
[4] Engan, Aase, Hakon-Husoy, “Method of optimal directions for frame design,” ICASSP 1999 
[5] Aharon, Elad, Bruckstein, "K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation", TSP 2006



Relating Convex & Factorized Formulations
• Convex formulations:               Factorized formulations 

• Variational form of the nuclear norm [1,2] 

• A natural generalization is the projective tensor norm [3,4]

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

[1] Burer and Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 103(3):427–444, 2005. 
[2] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-
rank matrix decomposition,” in IEEE International Conference on Computer Vision, 2013, pp. 2488–2495. 
[3] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[4] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.
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Main Results: Projective Tensor Norm Case
• Theorem 1: Assume    is convex and once differentiable in    . 

A local minimizer            of the non-convex factorized problem 
 
 
 
 
such that for some i                      , is a global minimizer. 
Moreover,           is a global minimizer of the convex problem 

• Proof sketch: 
– Convex problem gives global lower bound for non-convex problem 
– If            local min. of non-convex, then             global min. of convex

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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UV >
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Main Results: Projective Tensor Norm Case
• Theorem 1: Assume    is convex and once differentiable in    . 

A local minimizer            of the non-convex factorized problem 
 
 
 
 
such that for some i                      , is a global minimizer. 
Moreover,           is a global minimizer of the convex problem

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Main Results: Projective Tensor Norm Case
• Theorem 2: If the number of columns is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size of factorization and find descent direction (u,v)

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Example: Low-Rank Matrix Factorization
• Convex formulation of low-rank matrix approximation based 

on nuclear norm minimization admits closed form solution 

• r = rank (X*) = number of singular values above lambda

=)
Y = U⌃V >

X⇤ = US�(⌃)V
>

min
X

1
2kY �Xk2F + �kXk⇤

Shrink singular 
values by 
lambda



Example: Low-Rank Matrix Factorization
• Factorized formulation of low-rank matrix approximation 

• For fixed r: perform alternating proximal gradient 

• Check if r needs to be increased: solve polar problem 

– IF polar >= - lambda THEN stop; ELSE (u,v) gives descent direction

Ui  Ui � ⌘uS�kVik2

�
rUi`(Y, UV >)

�

Vi  Vi � ⌘vS�kUik2

�
rVi`(Y, UV >)

�
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min
U,V,r

1
2kY � UV >k2F + �

rX

i=1

kUik2kVik2

Shrink columns 
by lambda



Example: Low-Rank Matrix Factorization
Synthetic data 
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Main Results: Homogeneous Regularizers

• Theorems are also true for      = sum of positive semi-definite 
and positively homogeneous regularizers of degree 2 

• Examples 

• Such regularizers on (U,V) induce a convex regularizer on X

⇥

min
U,V

`(Y, UV >) + �⇥(U, V )

⇥(U, V ) =
rX

i=1

✓(Ui, Vi), ✓(↵u,↵v) = ↵2✓(u, v), 8↵ � 0

B. Haeffele, E. Young, R. Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image 
Processing. ICML 2014 
Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015
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Example: Nonnegative Matrix Factorization
• Original formulation 

• New factorized formulation 

– Note: regularization limits the number of columns in (U,V)

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V,r

kY � UV >k2F + �
rX

i=1

kUik2kVik2 s.t. U, V � 0



Example: Sparse Dictionary Learning
• Original formulation 

• New factorized formulation

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

kY � UV >k2F + �
X

i
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Example: Robust PCA
• Original formulation [1] 

• Equivalent formulation 

• New factorized formulation (with non-differentiable loss) 

• New factorized formulation (with differentiable loss)

min
X,E

kEk1 + �kXk⇤ s.t. Y = X + E

min
X

kY �Xk1 + �kXk⇤

min
U,V

kY � UV >k1 + �
X

i

|Ui|2|Vi|2

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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Low-Rank Matrix Recovery and Completion via Convex Optimization

Welcome!

Credits People

This website introduces new tools for recovering low-rank matrices from incomplete or corrupted observations.

Matrix of corrupted observations Underlying low-rank matrix 

+

Sparse error matrix

A common modeling assumption in many engineering applications is that the underlying data lies (approximately) on a
low-dimensional linear subspace. This property has been widely exploited by classical Principal Component Analysis
(PCA) to achieve dimensionality reduction. However, real-life data is often corrupted with large errors or can even be
incomplete. Although classical PCA is effective against the presence of small Gaussian noise in the data, it is highly
sensitive to even sparse errors of very high magnitude.

We propose powerful tools that exactly and efficiently correct large errors in such structured data. The basic idea is to
formulate the problem as a matrix rank minimization problem  and solve it efficiently by nuclear-norm minimization. Our
algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees. Please browse
the links to the left for more information. The introduction section provides a brief overview of the low-rank matrix
recovery problem and introduces state-of-the-art algorithms to solve. Please refer to our papers in the references section
for complete technical details, and to the sample code section for MATLAB packages. The applications section showcases
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Learning Problem for Neural Networks
• The learning problem is non-convex

VX1 1( )X2 2( )�(X1, . . . , XK) =  K(· · · · · ·XK)

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

features weightsnonlinearity

labels regularizerloss



From Matrix Factorizations to Deep Learning
• Two-layer NN 

– Input: 
– Weights:  
– Nonlinearity: ReLU 

• “Almost” like matrix factorization 
– r = rank 
– r = #neurons in hidden layer 
– ReLU + max pooling is positively homogeneous of degree 1

From Matrix Factorizations to Deep Learning
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From Matrix Factorizations to Deep Learning

 1(x) = max(x, 0) (10)
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From Matrix to Tensor Factorization

• Tensor product                                                 
is positively homogeneous of degree K

CHAPTER 4. GENERALIZED FACTORIZATIONS

X1
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2 X3
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2 X1

r

r

�(X1 32, X  ,X )r
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r r r

X1 X2 X3

d1 d2 d3

Figure 4.2: Rank-r CP decomposition of a 3rd order tensor.

(where ⌦ denotes the tensor outer product) results in �r(X1, . . . , XK) being the

mapping used in the rank-r CANDECOMP/PARAFAC (CP) tensor decomposition

model [29], which is visualized for a 3rd order tensor in figure 4.2. Further, instead

of choosing � to be a simple outer product, we can also generalize this to be any

multilinear function of the factor slices (X1
i
, . . . , XK

i
). For example, the output could

be formed by taking convolutions between the factor slices. We note that more

general tensor decompositions, such as the general form of the Tucker decomposition,

do not explicitly fit inside the framework we describe here; however, by using similar

arguments to the ones we will develop here, it is possible to show analogous results to

those we derive in this paper for more general tensor decompositions, and we briefly

discuss these extensions in section 4.6.2.
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From Matrix Factorizations to Deep Learning

CHAPTER 4. GENERALIZED FACTORIZATIONS

V �4
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4
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Σ
0

ReLU Network with One Hidden Layer

Rectified Linear Unit (ReLU)

Multilayer ReLU 
Parallel Network

Figure 4.3: Example ReLU networks. (Left panel) ReLU network with a single hidden
layer with the mapping described by the equation in (4.10) with (r = 4, d1 = 3, d2 =
2). Each color corresponds to one element of the elemental mapping �(X1

i
, X2

i
). The

colored hidden units have rectifying non-linearities, while the black units are linear.
(Right panel) Multilayer ReLU network with 4 fully connected parallel subnetworks
(r=4) with elemental mappings defined by (4.11) with (d1 = 5, d2 = 3, d3 = 5, d4 =
1, d5 = 2). Each color corresponds to the subnetwork described by one element of the
elemental mapping �(X1

i
, X2

i
, X3

i
, X4

i
).

the hidden layer units. In this case, the network has the architecture that there are r,

4 layer fully-connected subnetworks, with each subnetwork having the same number

of units in each layer as defined by the dimensions {d2, d3, d4}. The r subnetworks

are all then fed into a fully connected linear layer to produce the output. This is

visualized in figure 4.3 for (d1, d2, d3, d4, d5) = (5, 3, 5, 1, 2) and with r = 4.

More general still, since any positively homogenous transformation is a potential

elemental mapping, by an appropriate definition of �, one can describe neural net-

works with very general architectures, provided the non-linearities in the network are

compatible with positive homogeneity (ReLUs are one example, but non-linearities

100
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Key Ingredient: Proper Regularization
• In matrix factorization we had “generalized nuclear norm” 

• By analogy we define “nuclear deep net regularizer” 
 
 
 
 
where     is positively homogeneous of the same degree as 

• Proposition:                is convex 

• Intuition: regularizer      “comes from a convex function”

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

✓

⌦�,✓(X) = min
{Xk}

rX

i=1

✓(X1
i , . . . , X

K
i ) s.t. �(X1, . . . , XK) = X

⌦�,✓

�

⇥



Main Results
• Theorem 1: Assume    is convex and once differentiable in    . 

A local minimizer                         of the factorized formulation  
 
 
 
 
such that for some i and all k                 is a global minimizer. 
Moreover,                                       is a global minimizer of the 
convex problem 

• Examples 
– Matrix factorization 
– Tensor factorization 
– Deep learning

min
{Xk}

`
�
Y,

rX

i=1

�(X1
i , . . . , X

K
i )

�
+ �

rX

i=1

✓(X1
i , . . . , X

K
i )

Xk
i = 0

min
X

`(Y,X) + �⌦�,✓(X)

` X
(X1, . . . , XK)

X = �(X1, . . . , XK)

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.



Main Results
• Theorem 2: If the size of the network is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At a local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size by 1 (add network in parallel) and continue 
– Maximum r guaranteed to be bounded by the dimensions of the 

network output

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Experimental Results
• Better performance with less training examples [Sokolic, 

Giryes, Sapiro, Rodrigues, 2017] 
– WD = weight decay 
– LM = Jacobian regularizer ~ product of weights regularizer

[Sokolic, Giryes, Sapiro, Rodrigues, 2017]



Conclusions and Future Directions
• Size matters 

– Optimize not only the network weights, but also the network size 
– Today: size = number of neurons or number of parallel networks 
– Tomorrow: size = number of layers + number of neurons per layer 

• Regularization matters 
– Use “positively homogeneous regularizer” of same degree as network 
– How to build a regularizer that controls number of layers + number of 

neurons per layer 

• Not done yet 
– Checking if we are at a local minimum or finding a descent direction 

can be NP hard 
– Need “computationally tractable” regularizers
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Backpropagation vs Dropout Training
• Minimize empirical loss 

• Backpropagation with stochastic gradient descent (SGD) 

• Backpropagation with dropout 

W t+1 = W t � ✏
|B|

X

j2B
r`

�
Yj ,�(Xj ,W

t)
�

min
W

1
N

NX

j=1

`(Yj ,�(Xj ,W ))

zk ⇠ Ber(✓), ✓ 2 (0, 1)

W t+1 = W t� ✏
|B|

X

j2B
r`

�
Yj ,�(Xj ,W

t, z)
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Dropout Training

Srivastava et al. – Dropout: A simple way to prevent neural networks from overfitting – JMLR 2014



Dropout Training: Better Learning Curve

Srivastava et al. – Dropout: A simple way to prevent neural networks from overfitting – JMLR 2014



Dropout Training: Better Performance

Srivastava et al. – Dropout: A simple way to prevent neural networks from overfitting – JMLR 2014



Dropout Training: More Structured Filters

Srivastava et al. – Dropout: A simple way to prevent neural networks from overfitting – JMLR 2014



Dropout Training: More Compact Models

Mean Act. Value Mean Act. Value Count of Activations Count of Activations Count of Activations Count of Activations 

Srivastava et al. – Dropout: A simple way to prevent neural networks from overfitting – JMLR 2014



Toward a Theoretical Analysis of Dropout

• What kind of regularization does dropout induce?  

• Can the regularized be characterized explicitly/analytically? 

• Theorem: dropout with variable rate induces a low-rank 
regularizer (nuclear norm squared) for matrix factorization.



Deterministic vs Stochastic Factorization
• Deterministic Matrix Factorization (DMF) 

• Stochastic Matrix Factorization (SMF)

min
U,V

kY � UV >k2F

min
U,V

EzkY � 1

✓
Udiag(z)V >
| {z }

rP
i=1

ziUiV >
i

k2F , zi⇠Ber(✓), ✓2(0, 1)



Dropout is SGD for SMF
• Stochastic matrix factorization objective 

• Dropout is a stochastic gradient descent method for SMF 

• Compare to backpropagation with dropout

min
U,V

EzkY � 1

✓
Udiag(z)V >k2F

"
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#
=
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V t
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Dropout as an Explicit Regularizer for SMF
• Using the definition of variance 

we can show that dropout induces an explicit regularizer 

• It really looks like the nuclear norm!!

E(y2) = E(y)2 +Var(y)

Ez

��Y � 1
✓Udiag(z)V >��2

F
=

kY � UV >k2F +
1� ✓

✓

rX

i=1

kUik22kVik22

kXk⇤ = min
U,V,r

rX

i=1

kUik2kVik2 s.t. UV > = X



Dropout with Fixed Rate Fails to Regularize
• The dropout regularizer  
 
 
 
 
 
fails to regularize the size of the factorization because we can 
lower the objective by doubling the size of the factorization

⇥(U, V ) =
rX

i=1

kUik22kVik22

⇥

✓
1p
2

⇥
U U

⇤
,
1p
2

⇥
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⇤◆
=

1

2
⇥(U, V )



Dropout with Variable Rate Works
• Recall the dropout regularizer with regularization parameter 

• What if dropout rate varies? 

• Then, pathological case disappears
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U U
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Dropout with Variable Rate Works
• Proposition: Dropout with variable rate induces a regularizer  
 
 
 
 
whose convex envelope is the (nuclear norm)2 

• Theorem: Let (U*,V*,r*) be a global minimum of  
 
 
 
 
Then,  
is a global minimum of

min
U,V,r

kY � UV >k2F +
1� ✓r
✓r

rX

i=1

kUik22kVik22

⌦(X) = min
U,V,r

1� ✓r
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rX
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kY �Xk2F +
1� ✓1
✓1

kXk2⇤X⇤ = U⇤V ⇤>



Global Optima are Low Rank

• Theorem: (U*,V*,r*) is a global minimum iff 
 
 
where tau and r* depends on singular values of Y 

• Open issues: 

– Results are valid for variable r, but not for a fixed r 

– How to find the optimal (U*, V*) ?

U⇤V ⇤> = S⌧ (Y )

min
U,V,r

kY � UV >k2F +
1� ✓r
✓r

rX
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kUik22kVik22



Synthetic Experiments for Fixed Size
• Comparing deterministic and stochastic dropout for 

factorizing a 100 x 100 matrix with fixed size r = 160. 
• Run 10,000 iterations of GD with diminishing step size.



Synthetic Experiments for Variable Size
• Comparing dropout with fixed rate (black), adaptive rate 

(gray) and closed form solution (green) for factorizing 100 x 
100 matrix of rank 10 + noise.

Jacopo Cavazza
1
, Pietro Morerio

1
, Benjamin Hae�ele

2
, Connor Lane

2
, Vittorio Murino

1
, René Vidal

2

Figure 2: Experiments on MNIST dataset, whose original images are reported in the first column. For each of
those, we compute dropout for MF with ◊ = 0.5 and ◊ = 0.8 - second and fourth columns respectively - and the
two relative closed form solutions (18) - third and fifth columns. Additional digits in the Supplementary Material.

Figure 3: Singular values corresponding to the optimal
solutions of the three regularization schemes consid-
ered: fixed dropout rate of ◊ = 0.9 (black), adaptive
dropout ◊ = ◊(d) as (16) with p = 0.9 (gray), and the
nuclear-norm squared closed-form optimization as in
Proposition 2 (green). Best viewed in color.

and deterministic dropout formulations for di�erent
choices of the dropout rate ◊ = 0.1, 0.3, 0.5, 0.7, 0.9
and factorization size d = 10, 40, 160. We observe that
across all choices of parameters ◊ and d, the determin-
istic objective (1) tracks the apparent expected value
that is computed in (3). This provides experimental
evidence for the fact that the two formulations are
equivalent, as predicted.

Evaluating the connections with nuclear norm.

As a second experiment, we want to support the con-
nection between �dropout and the squared nuclear norm,
in the case of a factorization with a variable size.

We constructed a synthetic dataset X consisting of
a low-rank matrix combined with dense Gaussian
noise. Specifically, we let X = U0V

€
0 + Z0 where

U0, V0 œ R100◊10 contain entries drawn from a normal
distribution N (0, Î

2), with Î = 0.1. The entries of the
noise matrix Z0 were drawn from a normal distribution
with Î = 0.01. We fixed the dropout parameter ◊̄ = 0.9
and run Algorithm 1.

Figure 3 plots the singular values for the optimal so-
lution to each of the three problems. We observe first
that without adjusting ◊, dropout regularization has
little e�ect on the rank of the solution. The smallest
singular values are still relatively high and not mod-
ified significantly compared to the singular values of
the original data. On the other hand, by adjusting
the dropout rate based on the size of the factoriza-
tion we observe that the method correctly recovers the
rank of the noise-free data which also closely matches
the predicted convex envelope with the nuclear-norm

r=10 r=20 r=40



Conclusions
• Dropout for matrix factorization is an SGD method  

• Dropout for matrix factorization induces explicit regularization 

• Dropout for matrix factorization with a fixed dropout rate does 
not limit the size of the factorization 

• Dropout for matrix factorization with a dropout rate that 
increases with the size of the factorization induces low-rank 
factorizations
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What Solutions does Dropout Favor? 
• Recall dropout is an instance of SGD on the objective 

• Results so far guarantee global optimality when optimizing 
over (U,V,r) provided that r “large enough” 

• Results so far tell us what the optimal product is, but do not 
tell us what the optimal factors look like 

• Question 1: Can we find the global minimum for any fixed r ? 

• Question 2: What optimal solutions does dropout favor?
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Any Factorization Can Be Equalized
• The network with weights (U,V) is said to be equalized if the 

product of the norms of incoming and outgoing weights are 
equal for all hidden nodes, i.e.  

• Theorem: For any pair (U,V) there is another pair (U’,V’) such 
that UVT = U’V’T and (U’,V’) can be equalized by a rotation R, 
i.e., there is a rotation R such that (U’R, V’R) are equalized. 

• Algorithm to compute (U’,V’,R): based on Gram matrices, 
eigenvalue decompositions and matrix diagonalization

kUik2kVik2 = kUjk2kVjk2 8i, j = 1, . . . , r



Global Minima are Equalized
• Theorem: global optima of dropout problem are equalized 

• Loss is rotationally invariant: 

• Regularizer minimized when network is equalized by rotation

min
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rX

i=1
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Global Optima are Low Rank

• Theorem: (U*,V*) is a global minimum iff it is equalized and 
 
 
where tau and optimal r depends on singular values of Y 

• Algorithm: A global optimum (U*,V*) can be found as follows 

– Find any factorization (U,V) of  

– Equalize the factors to obtain (U*, V*) = (UR, VR)

U⇤V ⇤> = S⌧ (Y )

min
U,V

kY � UV >k2F + �
rX

i=1

kUik2kVik2

S⌧ (Y )



Effect of Dropout Rate on the Landscape
• Linear  

auto-encoder 

• 1 input 

• 2 hidden neurons 

• 1 output

On the Implicit Bias of Dropout

Poorya Mianjy, Raman Arora and René Vidal

Johns Hopkins University

Motivation

• Dropout has enjoyed tremendous success in

training deep neural networks

• Theoretical understanding of how dropout provides

regularization remains limited

Problem Setup

• Single hidden layer linear networks:

Hr := {hU,V : x ‘æ UV
€
x, U œ Rd1◊r, V œ Rd2◊r

}

x1 · · · xd2

h1 h2 · · · hr≠1 hr

y1 · · · yd1

• x ≥ D, E[xx
€
] = I

• y = h0(x), h0 œ Hr0
,

r0 unknown

• Learning problem:

minimize the squared loss:

¸(U, V) := Ex≥D[Îy ≠ hU,V(x)Î
2
]

What is Dropout?

• Dropout is an instance of SGD on

f (U, V) := Eb≥Ber(◊)

x≥D

Îy ≠
1

◊
U diag(b)V

€
xÎ

2

• Dropout is trying to minimize

f (U, V) = ¸(U, V) + ⁄
r
�
i=1

ÎuiÎ
2
ÎviÎ

2

¸ ˚˙ ˝

=:R(U,V)

induced regularizer

Contributions

• We characterize the global optima of f (U, V)

• We characterize the landscape of f (U, U)

Key Ideas

• Rotation invariance of the loss:
¸(U, V) = ¸(UQ, VQ), for arbitrary rotation Q

• Lower bound on the regularizer:
R(U, V) Ø

1

rÎUV
€
Î

2
ú

equality i� ÎuiÎÎviÎ = Îu1ÎÎv1Î for all i œ [r]

Auto-Encoder with Tied Weights

f (U, U) = ¸(U, U) + ⁄
r
�
i=1

ÎuiÎ
4

Single Hidden-Layer Network

f (U, V) = ¸(U, V) + ⁄
r
�
i=1

ÎuiÎ
2
ÎviÎ

2

Equalization

A network hU,V is equalized if the product of the norms of incoming/outgoing weights are equal

for all hidden nodes, i.e. ÎuiÎÎviÎ = Îu1ÎÎv1Î for all i œ [r].

All Networks are Equalizable

Thm. For any network hU,V, there exist an equalized network h
Ū,V̄ such that h

Ū,V̄ = hU,V.

Implicit Bias of Dropout

Thm. All global optima are equalized.

no dropout small dropout rate large dropout rate

Global Optimality

Thm. (Uú, Vú) is a global optimum i� it is equalized and UúV
€

ú
= shrink-threshold(M, · )

• shrinkage parameter is given by · =
⁄

r+⁄rú

rú

�
i=1

‡i(M), where rú := max{j œ [r] : ‡j(M) > ⁄
r+⁄j

j
�
i=1

‡i(M)}

• shrink-threshold(M, · ) shrinks the singular values of M by · and thresholds at zero.

Dropout Promotes Low-rank Weights

The larger the dropout rate ◊, the lower the rank of the optimal weights Uú, Vú.

Local Minima Inherits the Bias

Thm. All local minima of f (U, U) are equalized.

=∆ dropout converges to an equalized network

Dropout Provides Generalization
R(U, V) = (path-regularization)

2

=∆ size-independent capacity control [1]

Optimization Landscape Results
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• All minima of f (U, U) are global,
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Dropout Finds a Global Optimum
• Strict saddle property enables SGD to escape

saddle points and find a local optima [2]

• No spurious local minima for su�ciently small

dropout rate!

Matrix Factorization

• The loss is closely related to matrix factorization:

E[xx
€
] = I =∆ ¸(U, V) = ÎM ≠ UV
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• Dropout for matrix factorization amounts to [3]

min
UœRd1◊r,VœRd2◊r

ÎM ≠ UV
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• similarity: equivalent to minimizing f (U, V)

• di�erence: the model (matrix M) is given

• question: can it be solved in polynomial time?

Polynomial Time Solver

Input: M œ Rd2◊d1, factor size r, dropout rate ◊
1: (U, V) Ω shrink-threshold(M).

2: (U
ú, V

ú
) Ω equalize(U, V)

Output: U
ú, V

ú
{global optimum of Problem 1}
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regularization remains limited
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minimize the squared loss:
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Equalization
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Ū,V̄ such that h
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• similarity: equivalent to minimizing f (U, V)

• di�erence: the model (matrix M) is given

• question: can it be solved in polynomial time?

Polynomial Time Solver
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Synthetic Experiments
• Comparing stochastic dropout and closed form solution for 

factorizing a 120 x 80 matrix with fixed size r = 20.On the Implicit Bias of Dropout
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Figure 3: Dropout converges to global optima for different values of � 2 {0.1, 0.5, 1} and different widths of the hidden
layer r = 20 (top) and r = 80 (bottom). The right column shows the variance of the product of column-wise norms for each
of the weight matrices. As can be seen, the weight matrices become equalized very quickly since variance goes to zero.

is distributed according to the standard Normal distribu-
tion. The output y 2 R120 is generated as y = Mx, where
M 2 R120⇥80 is drawn randomly by uniformly sampling
the right and left singular subspaces and with a spectrum
decaying exponentially. Figure 3 illustrates the behavior of
Algorithm 1 for different values of the regularization param-
eter (� 2 {0.1, 0.5, 1}), and for different sizes of factors
(r 2 {20, 80}). The curve in blue shows the objective value
for the iterates of dropout, and the line in red shows the
optimal value of the objective (i.e. objective for a global
optimum found using Theorem 3.6). All plots are averaged
over 50 runs of Algorithm 1 (averaged over different random
initializations, random realizations of Bernoulli dropout, as
well as random draws of training examples).

To verify that the solution found by dropout actually has
equalized factors, we consider the following measure. At
each iteration, we compute the “importance scores”, ↵(i)

t =
kutikkvtik, i 2 [r], where uti and vti are the i-th columns
of Ut and Vt, respectively. The rightmost panel of Figure 3
shows the variance of ↵(i)

t ’s, over the hidden nodes i 2 [r],
at each iterate t. Note that a high variance in ↵t corresponds
to large variation in the values of kutikkvtik. When the
variance is equal to zero, all importance scores are equal,
thus the factors are equalized. We see that iterations of Algo-
rithm 1 decrease this measure monotonically, and the larger
the value of �, the faster the weights become equalized.

7. Discussion

There has been much effort in recent years to understand
the theoretical underpinnings of dropout (see Baldi and Sad-

owski (2013); Gal and Ghahramani (2016); Wager et al.
(2013); Helmbold and Long (2015)). In this paper, we study
the implicit bias of dropout in shallow linear networks. We
show that dropout prefers solutions with minimal path reg-
ularization which yield strong capacity control guarantees
in deep learning. Despite being a non-convex optimization
problem, we are able to fully characterize the global optima
of the dropout objective. Our analysis shows that dropout
favors low-rank weight matrices that are equalized. This
theoretical finding confirms that dropout as a procedure uni-
formly allocates weights to different subnetworks, which is
akin to preventing co-adaptation.

We characterize the optimization landscape of learning au-
toencoders with dropout. We first show that the local optima
inherit the same implicit bias as global optimal, i.e. all local
optima are equalized. Then, we show that for sufficiently
small dropout rates, there are no spurious local minima
in the landscape, and all saddle points are non-degenerate.
These properties suggest that dropout – as an optimization
procedure – can efficiently converge to a globally optimal
solution specified by our theorems.

Understanding dropout in shallow linear networks is a pre-
requisite for understanding dropout in deep learning. We
see natural extensions of our results in two directions: 1)
shallow networks with non-linear activation function such
as rectified linear units (ReLU) which have been shown to
enable faster training (Glorot et al., 2011) and are better un-
derstood in terms of the family of functions represented by
ReLU-nets (Arora et al., 2018), and 2) exploring the global
optimality in deeper networks, even for linear activations.



Synthetic Experiments
• Showing that stochastic dropout achieves equalization when 

factorizing a 120 x 80 matrix with fixed size r = 20 and r = 80.On the Implicit Bias of Dropout
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Figure 3: Dropout converges to global optima for different values of � 2 {0.1, 0.5, 1} and different widths of the hidden
layer r = 20 (top) and r = 80 (bottom). The right column shows the variance of the product of column-wise norms for each
of the weight matrices. As can be seen, the weight matrices become equalized very quickly since variance goes to zero.

is distributed according to the standard Normal distribu-
tion. The output y 2 R120 is generated as y = Mx, where
M 2 R120⇥80 is drawn randomly by uniformly sampling
the right and left singular subspaces and with a spectrum
decaying exponentially. Figure 3 illustrates the behavior of
Algorithm 1 for different values of the regularization param-
eter (� 2 {0.1, 0.5, 1}), and for different sizes of factors
(r 2 {20, 80}). The curve in blue shows the objective value
for the iterates of dropout, and the line in red shows the
optimal value of the objective (i.e. objective for a global
optimum found using Theorem 3.6). All plots are averaged
over 50 runs of Algorithm 1 (averaged over different random
initializations, random realizations of Bernoulli dropout, as
well as random draws of training examples).
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t =
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Figure 3: Dropout converges to global optima for different values of � 2 {0.1, 0.5, 1} and different widths of the hidden
layer r = 20 (top) and r = 80 (bottom). The right column shows the variance of the product of column-wise norms for each
of the weight matrices. As can be seen, the weight matrices become equalized very quickly since variance goes to zero.

is distributed according to the standard Normal distribu-
tion. The output y 2 R120 is generated as y = Mx, where
M 2 R120⇥80 is drawn randomly by uniformly sampling
the right and left singular subspaces and with a spectrum
decaying exponentially. Figure 3 illustrates the behavior of
Algorithm 1 for different values of the regularization param-
eter (� 2 {0.1, 0.5, 1}), and for different sizes of factors
(r 2 {20, 80}). The curve in blue shows the objective value
for the iterates of dropout, and the line in red shows the
optimal value of the objective (i.e. objective for a global
optimum found using Theorem 3.6). All plots are averaged
over 50 runs of Algorithm 1 (averaged over different random
initializations, random realizations of Bernoulli dropout, as
well as random draws of training examples).

To verify that the solution found by dropout actually has
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each iteration, we compute the “importance scores”, ↵(i)

t =
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shows the variance of ↵(i)
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show that dropout prefers solutions with minimal path reg-
ularization which yield strong capacity control guarantees
in deep learning. Despite being a non-convex optimization
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akin to preventing co-adaptation.

We characterize the optimization landscape of learning au-
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inherit the same implicit bias as global optimal, i.e. all local
optima are equalized. Then, we show that for sufficiently
small dropout rates, there are no spurious local minima
in the landscape, and all saddle points are non-degenerate.
These properties suggest that dropout – as an optimization
procedure – can efficiently converge to a globally optimal
solution specified by our theorems.

Understanding dropout in shallow linear networks is a pre-
requisite for understanding dropout in deep learning. We
see natural extensions of our results in two directions: 1)
shallow networks with non-linear activation function such
as rectified linear units (ReLU) which have been shown to
enable faster training (Glorot et al., 2011) and are better un-
derstood in terms of the family of functions represented by
ReLU-nets (Arora et al., 2018), and 2) exploring the global
optimality in deeper networks, even for linear activations.



Conclusions
• Dropout with fixed size also induces a low-rank regularizer 

• The global optima for any fixed r are equalized and low-rank
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Motivation

• Dropout has enjoyed tremendous success in

training deep neural networks

• Theoretical understanding of how dropout provides

regularization remains limited

Problem Setup

• Single hidden layer linear networks:

Hr := {hU,V : x ‘æ UV
€
x, U œ Rd1◊r, V œ Rd2◊r

}

x1 · · · xd2

h1 h2 · · · hr≠1 hr

y1 · · · yd1

• x ≥ D, E[xx
€
] = I

• y = h0(x), h0 œ Hr0
,

r0 unknown

• Learning problem:

minimize the squared loss:

¸(U, V) := Ex≥D[Îy ≠ hU,V(x)Î
2
]

What is Dropout?

• Dropout is an instance of SGD on

f (U, V) := Eb≥Ber(◊)

x≥D

Îy ≠
1

◊
U diag(b)V

€
xÎ

2

• Dropout is trying to minimize

f (U, V) = ¸(U, V) + ⁄
r
�
i=1

ÎuiÎ
2
ÎviÎ

2

¸ ˚˙ ˝

=:R(U,V)

induced regularizer

Contributions

• We characterize the global optima of f (U, V)

• We characterize the landscape of f (U, U)

Key Ideas

• Rotation invariance of the loss:
¸(U, V) = ¸(UQ, VQ), for arbitrary rotation Q

• Lower bound on the regularizer:
R(U, V) Ø

1

rÎUV
€
Î

2
ú

equality i� ÎuiÎÎviÎ = Îu1ÎÎv1Î for all i œ [r]

Auto-Encoder with Tied Weights

f (U, U) = ¸(U, U) + ⁄
r
�
i=1

ÎuiÎ
4

Single Hidden-Layer Network

f (U, V) = ¸(U, V) + ⁄
r
�
i=1

ÎuiÎ
2
ÎviÎ

2

Equalization

A network hU,V is equalized if the product of the norms of incoming/outgoing weights are equal

for all hidden nodes, i.e. ÎuiÎÎviÎ = Îu1ÎÎv1Î for all i œ [r].

All Networks are Equalizable

Thm. For any network hU,V, there exist an equalized network h
Ū,V̄ such that h

Ū,V̄ = hU,V.

Implicit Bias of Dropout

Thm. All global optima are equalized.

no dropout small dropout rate large dropout rate

Global Optimality

Thm. (Uú, Vú) is a global optimum i� it is equalized and UúV
€

ú
= shrink-threshold(M, · )

• shrinkage parameter is given by · =
⁄

r+⁄rú

rú

�
i=1

‡i(M), where rú := max{j œ [r] : ‡j(M) > ⁄
r+⁄j

j
�
i=1

‡i(M)}

• shrink-threshold(M, · ) shrinks the singular values of M by · and thresholds at zero.

Dropout Promotes Low-rank Weights

The larger the dropout rate ◊, the lower the rank of the optimal weights Uú, Vú.

Local Minima Inherits the Bias

Thm. All local minima of f (U, U) are equalized.

=∆ dropout converges to an equalized network

Dropout Provides Generalization
R(U, V) = (path-regularization)

2

=∆ size-independent capacity control [1]

Optimization Landscape Results

Thm. For su�ciently small dropout rate,

• All minima of f (U, U) are global,

• All saddle points of f (U, U) are strict.

large dropout rate small dropout rate equalization
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Dropout Finds a Global Optimum
• Strict saddle property enables SGD to escape

saddle points and find a local optima [2]

• No spurious local minima for su�ciently small

dropout rate!

Matrix Factorization

• The loss is closely related to matrix factorization:

E[xx
€
] = I =∆ ¸(U, V) = ÎM ≠ UV

€
Î

2

F

• Dropout for matrix factorization amounts to [3]

min
UœRd1◊r,VœRd2◊r

ÎM ≠ UV
€
Î

2

F + ⁄
r
�
i=1

ÎuiÎ
2
ÎviÎ

2

• similarity: equivalent to minimizing f (U, V)

• di�erence: the model (matrix M) is given

• question: can it be solved in polynomial time?

Polynomial Time Solver

Input: M œ Rd2◊d1, factor size r, dropout rate ◊
1: (U, V) Ω shrink-threshold(M).

2: (U
ú, V

ú
) Ω equalize(U, V)

Output: U
ú, V

ú
{global optimum of Problem 1}

References

[1] Neyshabur et al. Norm-based capacity control in neural
networks. COLT, 2015.

[2] Ge et al. Escaping from saddle points - online stochastic
gradient for tensor decomposition. COLT, 2015.

[3] Cavazza et al. Dropout as a Low-Rank Regularizer for
Matrix Factorization. AISTATS, 2018.



More Information,

Vision Lab @ JHU 
http://www.vision.jhu.edu 

Center for Imaging Science @ JHU 
http://www.cis.jhu.edu 

Mathematical Institute for Data Science @ JHU 
http://www.minds.jhu.edu 

Thank You!

http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php
http://www.minds.jhu.edu

