Global Optimality in Structured Matrix Factorization

René Vidal Center for Imaging Science Institute for Computational Medicine

THE DEPARTMENT OF BIOMEDICAL ENGINEERING

JHU Vision lab

The Whitaker Institute at Johns Hopkins

High-Dimensional Data

- · In many areas, we deal with high-dimensional data
 - Signal processing
 - Speech processing
 - Computer vision
 - Medical imaging
 - Medical robotics
 - Bioinformatics

The Language of Surgery

Modeling the skills of human expert surgeons to train a new generation of students. [more]

Low Rank Modeling

- Models involving factorization are ubiquitous
 - PCA
 - Nonnegative Matrix Factorization
 - Dictionary Learning
 - Matrix Completion
 - Robust PCA

Face clustering and classification

Affine structure from motion

Convex Formulations of Matrix Factorization

- Nuclear Norm Matrix Approximation $\min_{X} \frac{1}{2} \|Y - X\|_{F}^{2} + \lambda \|X\|_{*} = \sum \sigma_{i}(X)$
- Robust Principal Component Analysis $\min_{X} \|Y - X\|_1 + \lambda \|X\|_*$

Non-Convex Formul. of Matrix Factorization

Principal Component Analysis

$$\min_{U,V} \|Y - UV^{\top}\|_F^2 \quad \text{s.t.} \quad U^{\top}U = I$$

Nonnegative Matrix Factorization

$$\min_{U,V} \|Y - UV^{\top}\|_{F}^{2} \quad \text{s.t.} \quad U \ge 0, V \ge 0$$

Sparse Dictionary Learning

 $\min_{U,V} \|Y - UV^{\top}\|_F^2 \quad \text{s.t.} \quad \|U_i\|_2 \le 1, \|V_i\|_0 \le r$

Typical Low-Rank Formulations

- Convex formulations $\min_{X} \ell(Y, X) + \lambda \Theta(X)$
 - X
 - Robust PCA
 - Matrix completion
- Convex
- Large problem size
- Unstructured factors

• Factorized formulations $\min_{U,V} \ell(Y, UV^{\top}) + \lambda \Theta(U, V)$

- Nonnegative matrix factorization
- Dictionary learning
- Non-Convex
- Small problem size
- Structured factors

Why Do We Need Structured Factors?

• Given a low-rank video $Y \in \mathbb{R}^{p \times t}$ $\min \|Y - X\|_1 + \lambda \|X\|_*$

(a) Original frames

(b) Low-rank \hat{L}

(c) Sparse \hat{S}

 $\min_{U,V} \ell(Y, UV^{\top}) + \lambda \Theta(U, V)$

- U: spatial basis
 - Low total-variation
 - Non-negative

- V: temporal basis
 - Sparse on particular basis set
 - Non-negative

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.

Why Do We Need Structured Factors?

- Nonnegative matrix factorization $\min_{U,V} \|Y UV^{\top}\|_F^2 \quad \text{s.t.} \quad U \ge 0, V \ge 0$
- Sparse dictionary learning

 $\min_{U,V} \|Y - UV^{\top}\|_F^2 \quad \text{s.t.} \quad \|U_i\|_2 \le 1, \|V_i\|_0 \le r$

Challenges to state-of-the-art methods

- Need to pick size of U and V a priori
- Alternate between U and V, without guarantees of convergence to a global minimum

Why do We Care About Convexity?

• A local minimizer of a convex problem is a global minimizer.

http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug_optgp_sect001.htm

Why is Non Convexity a Problem?

Contributions

$$\min_{U,V} \ell(Y, UV^{\top}) + \lambda \Theta(U, V)$$

• Assumptions:

- $\ell(Y,X)$: convex and once differentiable in X
- Θ : sum of positively homogeneous functions of degree 2

$$f(\alpha X^1, \dots, \alpha X^K) = \alpha^p f(X^1, \dots, X^K) \quad \forall \alpha \ge 0$$

- Theorem 1: A local minimizer (U,V) such that for some i $U_i = V_i = 0$ is a global minimizer
- **Theorem 2:** If the size of the factors is large enough, local descent can reach a global minimizer from any initialization

Contributions

$$\min_{U,V} \ell(Y, UV^{\top}) + \lambda \Theta(U, V)$$

Assumptions:

- $\ell(Y,X)$: convex and once differentiable in X
- Θ : sum of positively homogeneous functions of degree 2

$$f(\alpha X^1, \dots, \alpha X^K) = \alpha^p f(X^1, \dots, X^K) \quad \forall \alpha \ge 0$$

• Theorem 2:

Tackling Non-Convexity: Nuclear Norm Case

• Convex problem $\min_{X} \ell(Y, X) + \lambda \|X\|_{*}$ Factorized problem $\min_{U,V} \ell(Y, UV^{\top}) + \lambda \Theta(U, V)$

Variational form of the nuclear norm

$$||X||_* = \min_{U,V} \left[\sum_{i=1}^r |U_i|_2 |V_i|_2 \right]$$
 s.t. $UV^\top =$

- Theorem: Assume loss ℓ is convex and once differentiable in X. A local minimizer of the factorized problem such that for some i $U_i = V_i = 0$ is a global minimizer of both problems
- Intuition: regularizer Θ "comes from a convex function"

X

Tackling Non-Convexity: Nuclear Norm Case

• Convex problem $\min_{X} \ell(Y, X) + \lambda \|X\|_{*}$ Factorized problem $\min_{U,V} \ell(Y, UV^{\top}) + \lambda \Theta(U, V)$

• Theorem: Assume loss ℓ is convex and once differentiable in X. A local minimizer of the factorized problem such that for some i $U_i = V_i = 0$ is a global minimizer of both problems

Tackling Non-Convexity: Tensor Norm Case

- A natural generalization is the projective tensor norm [1,2] $\|X\|_{u,v} = \min_{U,V} \sum_{i=1}^{r} \|U_i\|_u \|V_i\|_v \quad \text{s.t.} \quad UV^{\top} = X$
- Theorem 1 [3,4]: A local minimizer of the factorized problem $\min_{U,V} \ell(Y, UV^{\top}) + \lambda \sum_{i=1}^r \|U_i\|_u \|V_i\|_v$

such that for some i $U_i = V_i = 0$, is a global minimizer of both the factorized problem and of the convex problem

$$\min_{X} \ell(Y, X) + \lambda \|X\|_{u, v}$$

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008.

[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.

[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML '14

[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv '15

Tackling Non-Convexity: Tensor Norm Case

• Theorem 2: If the number of columns is large enough, local descent can reach a global minimizer from any initialization

• Meta-Algorithm:

- If not at a local minima, perform local descent to reach a local minima
- If optimality condition is satisfied, then local minima is global
- If condition fails, choose descent direction (u,v), and set

$$r \leftarrow r+1 \quad U \leftarrow \begin{bmatrix} U & u \end{bmatrix} \quad V \leftarrow \begin{bmatrix} V & v \end{bmatrix}$$

Optimization

$$\min_{U,V} \ell(Y, UV^{\top}) + \lambda \sum_{i=1}^{r} \|U_i\|_u \|V_i\|_v$$

- Convex in U given V and vice versa
- Alternating proximal gradient descent
 - Calculate gradient of smooth term
 - Compute proximal operator
 - Acceleration via extrapolation
- Advantages
 - Easy to implement
 - Highly parallelizable
 - Guaranteed convergence to Nash equilibrium (may not be local min)

Example: Nonnegative Matrix Factorization

Original formulation

 $\min_{U,V} \|Y - UV^{\top}\|_F^2 \quad \text{s.t.} \quad U \ge 0, V \ge 0$

New factorized formulation

$$\min_{U,V} \|Y - UV^{\top}\|_F^2 + \lambda \sum_i |U_i|_2 |V_i|_2 \quad \text{s.t.} \quad U, V \ge 0$$

Note: regularization limits the number of columns in (U,V)

Example: Sparse Dictionary Learning

Original formulation

 $\min_{U,V} \|Y - UV^{\top}\|_F^2 \quad \text{s.t.} \quad \|U_i\|_2 \le 1, \|V_i\|_0 \le r$

New factorized formulation

$$\min_{U,V} \|Y - UV^{\top}\|_F^2 + \lambda \sum_i |U_i|_2 (|V_i|_2 + \gamma |V_i|_1)$$

Non Example: Robust PCA

• Original formulation [1]

 $\min_{X,E} \|E\|_1 + \lambda \|X\|_* \quad \text{s.t.} \quad Y = X + E$

• Equivalent formulation

$$\min_{X} \|Y - X\|_1 + \lambda \|X\|_*$$

• New factorized formulation

$$\min_{U,V} \|Y - UV^{\top}\|_1 + \lambda \sum_i |U_i|_2 |V_i|_2$$

• Not an example because loss is not differentiable

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.

Neural Calcium Image Segmentation

Find neuronal shapes and spike trains in calcium imaging

In Vivo Results (Small Area)

$$\min_{U,V} \|Y - \Phi(UV^{\top})\|_{F}^{2} + \lambda \sum_{i=1}^{r} \|U_{i}\|_{u} \|V_{i}\|_{v} \\
\| \cdot \|_{u} = \| \cdot \|_{2} + \| \cdot \|_{1} + \| \cdot \|_{TV} \\
\| \cdot \|_{v} = \| \cdot \|_{2} + \| \cdot \|_{1}$$
60 microns

Raw Data

+ Low Rank

+Total Variation

In Vivo Results

- PCA
 - Sensitive to noise
 - Hard to interpret

Mean Fluorescence

Feature obtained by PCA

- Proposed method
 - Found 46/48 manually identified active regions
 - Features are easy to interpret
 - Minimal postprocessing for segmentation

Example Image Frames

Features by Our Method

Neural Calcium Image Segmentation

- $Y \in \mathbb{R}^{p \times t}$: hyperspectral image of a certain area at multiple (t>100) wavelengths of light
- Different regions in space correspond to different materials
 - rank(Y) = number of materials
- U: spatial features
 - Low total-variation
 - Non-negative
- V: spectral features
 Non-negative

$\min_{U,V} \ell(Y, UV^{\top}) + \lambda \Theta(U, V)$

MAGING

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.

• Prior method: NucTV (Golbabaee et al., 2012)

$$\min_{X} \|X\|_{*} + \lambda \sum_{i=1}^{\circ} \|X_{i}\|_{TV} \quad \text{s.t.} \quad \|Y - \Phi(X)\|_{F}^{2} \le \epsilon$$

- 180 Wavelengths
- 256 x 256 Images
- Computation per Iteration
 - SVT of whole image volume
 - 180 TV Proximal Operators
 - Projection onto Constraint Set

• Our method

$$\min_{U,V} \|Y - \Phi(UV^{\top})\|_F^2 + \lambda \sum_{i=1} \|U_i\|_u \|V_i\|_v$$

- (U,V) have 15 columns
- Problem size reduced by 91.6%
- Computation per Iteration
 - Calculate gradient
 - 15 TV Proximal Operators
- Random Initializations

$$\frac{\|X_{true} - UV^{\top}\|_F}{\|X_{true}\|_F}$$

Conclussions

- Structured Low Rank Matrix Factorization
 - Structure on the factors captured by the Projective Tensor Norm
 - Efficient optimization for Large Scale Problems

• Local minima of the non-convex factorized form are global minima of both the convex and non-convex forms

- Advantages in Applications
 - Neural calcium image segmentation
 - Compressed recovery of hyperspectral images

Acknowledgements

PhD Students
 Ben Haeffele, JHU

Collaborators

 Eric Young, JHU

- Grants
 - NIH DC00115
 - NIH DC00032
 - NSF 1218709
 - NSF 1447822

More Information,

Vision Lab @ Johns Hopkins University http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University http://www.cis.jhu.edu

Thank You!

