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Features
— SIFT (Lowe 2004)
— HoG (Dalal and Triggs 2005) 8

Classifiers
— Bag-of-visual-words

— Deformable part model
(Felzenszwalb et al. 2008)

Databases e
— Caltech 101 zzi,
— PASCAL . . .
= Image Root filter Part filters  Deformation
— |mageNet (Coarse (Fine Models
resolution) resolution)

Performance on PASCAL VOC started to plateau 2010-2012



Learning Deep Image Feature Hierarchies

* Deep learning gives ~ 10% improvement on ImageNet

— 1.2 million images, 1000 categories, 60 million parameters

Table 1: Comparison of results on ILSVRC-

2010 test set.
achieved by others.

In italics are best results
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| Model | Top-1 (val) | Top-5 (val) | Top-5 (test) |
Model Top-1 Top-5 SIFT + FVs [7] — — 26.2%
- 1 CNN 40.7% 18.2% —
Sparse coding [2] | 47.1% | 28.2% 5 CNNs 38.1% 16.4% 16.4%
SIFT + FVs [24] | 45.7% | 25.7% 1 CNN* 39.0% 16.6% —
CNN 37.5% | 17.0% 7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk™ were “pre-trained” to classify the entire ImageNet 2011 Fall

release. See Section

[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12.
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR’14.
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML'14.

6 for details.



Transfer from ImageNet to Smaller Datasets

)
CNN
¢ C N N S + S MVS [ 1 ] (_Representation |
Pascal VOC 2007 mAP Learn Extract Features
Annstaartﬁons Sgspng Normallzed RGB gradient, [ SVM

GHM]?] 64.7 Pose LBP
AGS[11] 71.1
NUS[2Y] 70.5
CNN-SVM 73.9 Training images I Source task | Source task labels
CNNaug-SVM 77.2 Convolutional layers Fully-connected layers Iy African elephant

. Wall clock

1: Feature
s | Green snake
vector

* Retrain top-layer [2]
Y Yorkshire terrier

- Pascal VOC 2012 | mAP 2: Feature Transfer
Pascal VOC 2007 | mAP NUS-PSL [ 49] 820 transfer parameters

INRIA[ ] 59.4 NO PRETRAIN | 700 - B e

<

C1-C2-C3-C4-C5

y

FC6 P FC7 || FC8 ||

4096 or
6144-dim

NUS-PSL [44] | 70.5 PRE-1000C 78.7 e Background
PRE- 1 OOOC 77.7 PRE-1 OOOR 763 : Iecalrninfg lm C1-C2-C3-C4-C5 B 'FCG FC7 64133:?;' FCa —> FCb —> -
PRE-1512 82.8 T oaedm (Ll oo
Training images  Sliding patches I Target task - | N.‘Zyeff fr?.ite'ﬂn Target ta S: | a:) els
« CNNs + SVMs for object
d ete Ct| on [3] VOC 2010 test || mAP R-CNN: Regions wzth CNN features

DPM v5 [20]F || 33.4 o L Zalep s Wapedregion
UVA [39] 35.1

Regionlets [41] || 39.7 ]

SegDPM [18]t || 40.4 e o dWRw- T T T S
R-CNN 50.2 1. Input 2. Extract region 3. Compute 4. Classify
R-CNN BB 53.7 image proposals (~2k) CNN features regions

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.

[2] Oquab, Bottou, Laptev, Sivic. Learning and transferring mid-level image representations using convolutional neural networks CVPR’14 Cemter f

[3] Girshick, Donahue, Darrell and Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR’'14 AGIN G
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Why this Performance?

* More layers [1] A B il
— Multiple layers capture more invariances 0.8 —
— Features are learned rather than hand-crafted o.csf_/f |
0.4 ~ « | ,
* More data 0a

3 7 11 15 19 23
— There is more data to train deeper networks level

* More computing
— GPUs go hand in hand with learning methods

* First attempt at a theoretical justification [2]
— Theoretical support for invariance via scattering transform
— Each layer must be a contraction to keep data volume bounded
— Optimization issues are not discussed: stage-wise learning is used

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.
[2] Mallat and Waldspurger. Deep Learning by Scattering, arXiv 2013




What About Optimization?

* The learning problem is non-convex
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What About Optimization?

* The learning problem is non-convex

min (Y, ®(X', ... . X))+ 09X, .., X5)
X1, XK

— Back-propagation, alternating minimization, descent method

* To get a good local minima
— Random initialization
— If training error does not decrease fast enough, start again
— Repeat multiple times

* Mysteries
— One can find many solutions with similar objective values
— Rectified linear units work better than sigmoid/hyperbolic tangent

0




Contributions

min (Y, ®(X',.. ., X5+ O(X, ..., X5)
X1,... XK

e Assumptions:
— ¥ is convex and once differentiable
— P and O are sums of positively homogeneous functions

flaXt ... aX®)=a?f(X', ..., X") VYa>0

e Theorem 1: A local minimizer such that for some j and all k
Xf = (), then it is a global minimizer

 Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization




Outline

* Globally Optimal Low-Rank Matrix Factorizations [1,2]
— PCA, Robust PCA, Matrix Completion
— Nonnegative Matrix Factorization
— Dictionary Learning arustnd ot et

calcium imaging dataset
resulting optimization SEHUCtUred low-rank matrix

- StrUCtU red Matrlx FaCtorlzatlon bio—medical video segmentationgﬁsﬂes|emma

Image Processing data sizes pihYPersPédral imaging

xels local minimizer

general norms Comprgssed Recgvgry Proximal Operators
columman wHyI;:erspectral Compressed. .o pebiers

Low-Rank Matrix Factorization
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low total variationprOjective tensor norm
sparseness row s&aces convex functions

hyperspectral com resseql recovery
. oMe s M . u r
nuclear normsp| ki n&da cti v|ty Iinea|:'1 matrix equations

factorized formula Combining these results

complex spatio-temporal structures

compact level sets example regionstotal variation regularization
Golbabaee Vandergheynst
rankdecient local minimum

« Globally Optimal Positively Homogeneous Factorizations [2]
— Tensor Factorization
— Deep Learning

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ‘15
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Low Rank Modeling

« Models involving factorization are ubiquitous
— PCA
— Robust PCA
— Matrix Completion
— Nonnegative Matrix Factorization
— Dictionary Learning

NETELIX
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Typical Low-Rank Formulations

» Convex formulations * Factorized formulations

min (Y, X) + XO(X) minl(Y,UV ")+ XO(U,V)

X U,v
VT
X

— Robust PCA — Nonnegative matrix factorization

— Matrix Completion — Dictionary learning
» Convex  Non-Convex
« Large problem size « Small problem size

 Unstructured factors o Structured factors




Why Do We Need Structure?

 Given a low-rank video Y € RP*? m}}nHY—X|\1+)\HXH*

(c) Sparse S

min (Y, UV ") + X0 (U, V)

U,v
« U: spatial basis * V:temporal basis
— Low total-variation — Sparse on particular basis set
— Non-negative — Non-negative

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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Need for Structured Factors

* Nonnegative matrix factorization

min || — UV'|%2 st. U>0,V>0

« Sparse dictionary learning

min [V ~UVT 3 st [Uill2 < 1, [Villo <7

« Challenges to state-of-the-art methods
— Need to pick size of U and V a priori

— Alternate between U and V, without guarantees of convergence to a
global minimum




Tackling Non-Convexity: Nuclear Norm Case

« Convex problem Factorized problem
in (Y, X X, minlY,UV'
min (Y, X) + A X[l min ((V,UVT) +XO(U, V)

 Variational form of the nuclear norm

r )
| Xl = min é\%\wz st. UV =X
1= y,

« Theorem: Assume loss ¢ is convex and once differentiable. A
local minimizer of the factorized problem such that for some |
U; = V;, = 0 is a global minimizer of the convex problem

e Intuition: regularizer ® “comes from a convex function”




Tackling Non-Convexity: General Case

* A natural generalization Is the projective tensor norm [1,2]

12X |0 —mmZHUHuHVHU st. UV =X

 Theorem [3,4]: A local minimizer of the factorized problem

T . .
%nélz(y UV + AZ Uil Villo

such that for some i U; = V; = 0, is a global minimizer of
both the factorized problem and of the convex problem

m)}né(Y, X) 4+ M| X |0

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008.

[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.

[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Example: Nonnegative Matrix Factorization

 QOriginal formulation

min || — UV'|% st. U>0,V>0

 New factorized formulation

%11‘]}1 Y —UV % + AZ Uil2|Vil2 s.t. U,V >0

— Note: regularization limits the number of columns in (U,V)




Example: Sparse Dictionary Learning

 QOriginal formulation

min [V UV st [Uilla < 1,[Villo <7

 New factorized formulation

. T2 | . .
min Y — UV \|F+A;\Uzlz(lmlz+vmh)




Non Example: Robust PCA

 QOriginal formulation [1]

min |E|l; + \| X[, st. Y =X+E
X.E

« Equivalent formulation

min [[Y" = X[y + A[lX].

 New factorized formulation

min [|Y - UV ' |1 + AZ Uil2|Vil2

* Not an example because loss is not differentiable

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.




Optimization

. T _ .
min (Y, UV >+A;HU@HUHW|U

« Convexin U given V and vice versa

* Alternating proximal gradient descent
— Calculate gradient of smooth term
— Compute proximal operator
— Acceleration via extrapolation

* Advantages
— Easy to implement
— Highly parallelizable
— Guaranteed convergence to Nash equilibrium (may not be local min)




Find neuronal shapes and spike trains In calcium imaging
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min [V — UV )| + A NUllIVillo
’ 1=1

Nw =12+ 10 [+

TV

Raw Data Sparse + Low Rank +Total Variation



Sparse +
Low-Rank

Sparse +
Low-Rank + TV %



Hyperspectral Compressed Recovery

* Prior method: NucTV (Golbabaee et al., 2012)

t
min [ X, + A Xy st Y = (X)|[f < e

1=1

« 180 Wavelengths
« 256 x 256 Images

« Computation per lteration
— SVT of whole image volume
— 180 TV Proximal Operators
— Projection onto Constraint Set

ccccccccc

CCCCCCC



Hyperspectral Compressed Recovery

Our method

U,v

(U,V) have 15 columns
Problem size reduced by 91.6%

Computation per lteration
— Calculate gradient
— 15 TV Proximal Operators

Random Initializations

1=1

min [V — UV )|[E+A Y |UillullVill
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Hyperspectral Compressed Recovery
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Conclussions

« Structured Low Rank Matrix Factorization
— Structure on the factors captured by the Projective Tensor Norm
— Efficient optimization for Large Scale Problems

« Local minima of the non-convex factorized form are global
minima of the convex form

* Advantages in Applications
— Neural calcium image segmentation
— Compressed recovery of hyperspectral images
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From Matrix Factorizations to Deep Learning

- Two-layer NN Y1 () = max(x,0)
(X1, X%) =t (VX (X'

Xl c Rd1><7“ X2 c RdeT

V € RVxd

output layer
input layer
hidden layer




From Matrix Factorizations to Deep Learning

* Recall the generalized factorization problem

min (Y, ®(X*', ..., X))+ 20X, .., X5)
X1,... XK

« Matrix factorization is a particular case where K=2
T T
O(U,V)=> UV,", 0UV) =) [UlullVill.
i=1 i=1

» Both ® and © are sums of positively homogeneous functions
flaX!,...,aX®)=a?f(X', ..., X") Va>0

* Other examples
— Redctified linear unit + max pooling is pos. homogeneous of degree 1




“Matrix Multiplication” for K > 2

* |n matrix factorization we have
QU V)=UVT =) UV;'

« By analogy we define r

(X', X)) =) o(X!, ... X[

where X*k IS a tensor, XlC IS its I-th slice along its last
dimension, and @ is a posmvely homogeneous function

 Examples
— Matrix multiplication:
— Tensor product:
— RelLU neural network:




“Projective Tensor Norm™ for K > 2

 |n matrix factorization we have

| _mmZHUHuHVHU st. UV =X

« By analogy we define

T

Qpo(X) = {IIH]% O(X;, ..., X ) st (X, ..., X")=X
X
1=1

where 0 is a positively homogeneous function

* Proposition: Qqs,e IS convex




Main Result

e Theorem: A local minimizer of the factorized formulation

min ¢ yz¢ L X AR X

such that for some i and for all k we have Xf — (), gives a
global minimizer for both the factorized formulation and the
convex formulation

H}(i}’l (Y, X)+ Ay 0 (X)

« Examples
— Matrix factorization
— Tensor factorization




Conclussions

* For many non-convex factorization problems, such as matrix
factorization, tensor factorization, and deep learning, a local
minimizer for the factors gives a global minimizer

* For matrix factorization, this
— allows one to incorporate structure on the factors, and
— gives efficient optimization method suitable for large problems

* For deep learning, this provides theoretical insights on why
— many local minima give similar objective values
— RelLU works better than sigmoidal functions

* While alternating minimization is efficient and guaranteed to
converge, it is not guaranteed to converge to a local minimum
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More Information,

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu

Thank You!




