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Object Recognition: 2000-2012
• Features 

– SIFT (Lowe 2004) 
– HoG (Dalal and Triggs 2005) 


• Classifiers 

– Bag-of-visual-words 
– Deformable part model 

(Felzenszwalb et al. 2008) 


• Databases 
– Caltech 101 
– PASCAL 
– ImageNet 

• Performance on PASCAL VOC started to plateau 2010-2012



Learning Deep Image Feature Hierarchies
• Deep learning gives ~ 10% improvement on ImageNet 

– 1.2 million images, 1000 categories, 60 million parameters

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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reduced three times prior to termination. We trained the network for roughly 90 cycles through the
training set of 1.2 million images, which took five to six days on two NVIDIA GTX 580 3GB GPUs.

6 Results

Our results on ILSVRC-2010 are summarized in Table 1. Our network achieves top-1 and top-5
test set error rates of 37.5% and 17.0%5. The best performance achieved during the ILSVRC-
2010 competition was 47.1% and 28.2% with an approach that averages the predictions produced
from six sparse-coding models trained on different features [2], and since then the best pub-
lished results are 45.7% and 25.7% with an approach that averages the predictions of two classi-
fiers trained on Fisher Vectors (FVs) computed from two types of densely-sampled features [24].

Model Top-1 Top-5
Sparse coding [2] 47.1% 28.2%

SIFT + FVs [24] 45.7% 25.7%

CNN 37.5% 17.0%

Table 1: Comparison of results on ILSVRC-
2010 test set. In italics are best results
achieved by others.

We also entered our model in the ILSVRC-2012 com-
petition and report our results in Table 2. Since the
ILSVRC-2012 test set labels are not publicly available,
we cannot report test error rates for all the models that
we tried. In the remainder of this paragraph, we use
validation and test error rates interchangeably because
in our experience they do not differ by more than 0.1%
(see Table 2). The CNN described in this paper achieves
a top-5 error rate of 18.2%. Averaging the predictions
of five similar CNNs gives an error rate of 16.4%. Training one CNN, with an extra sixth con-
volutional layer over the last pooling layer, to classify the entire ImageNet Fall 2011 release
(15M images, 22K categories), and then “fine-tuning” it on ILSVRC-2012 gives an error rate of
16.6%. Averaging the predictions of two CNNs that were pre-trained on the entire Fall 2011 re-
lease with the aforementioned five CNNs gives an error rate of 15.3%. The second-best con-
test entry achieved an error rate of 26.2% with an approach that averages the predictions of sev-
eral classifiers trained on FVs computed from different types of densely-sampled features [7].

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs [7] — — 26.2%

1 CNN 40.7% 18.2% —
5 CNNs 38.1% 16.4% 16.4%
1 CNN* 39.0% 16.6% —
7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.

Finally, we also report our error
rates on the Fall 2009 version of
ImageNet with 10,184 categories
and 8.9 million images. On this
dataset we follow the convention
in the literature of using half of
the images for training and half
for testing. Since there is no es-
tablished test set, our split neces-
sarily differs from the splits used
by previous authors, but this does
not affect the results appreciably.
Our top-1 and top-5 error rates
on this dataset are 67.4% and
40.9%, attained by the net described above but with an additional, sixth convolutional layer over the
last pooling layer. The best published results on this dataset are 78.1% and 60.9% [19].

6.1 Qualitative Evaluations

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The
network has learned a variety of frequency- and orientation-selective kernels, as well as various col-
ored blobs. Notice the specialization exhibited by the two GPUs, a result of the restricted connec-
tivity described in Section 3.5. The kernels on GPU 1 are largely color-agnostic, while the kernels
on on GPU 2 are largely color-specific. This kind of specialization occurs during every run and is
independent of any particular random weight initialization (modulo a renumbering of the GPUs).

5The error rates without averaging predictions over ten patches as described in Section 4.1 are 39.0% and
18.3%.
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Transfer from ImageNet to Smaller Datasets
• CNNs + SMVs [1] 






• Retrain top-layer [2] 





• CNNs + SVMs for object 
detection [3]

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (v5)

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
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African elephant

Wall clock

Green snake

Yorkshire terrier

Source task

Training images Sliding patches

FCa FCb

Chair

Background

Person

TV/monitor

Convolutional layers Fully-connected layers

Source task labels

Target task labels

Transfer 
parameters

1 : Feature 
learning

2 : Feature 
transfer

3 : Classifier 
learning C1-C2-C3-C4-C5 FC 6 FC 7

4096 or 
6144-dim

vector

4096 or 
6144-dim

vector

Target task

Training images

9216-dim
vector

4096 or 
6144-dim

vector New adaptation 
layers trained 
on target task

Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

(here object and action classification in Pascal VOC), as il-
lustrated in Figure 2. However, this is difficult as the la-
bels and the distribution of images (type of objects, typical
viewpoints, imaging conditions, etc.) in the source and tar-
get datasets can be very different, as illustrated in Figure 3.
To address these challenges we (i) design an architecture
that explicitly remaps the class labels between the source
and target tasks (Section 3.1), and (ii) develop training and
test procedures, inspired by sliding window detectors, that
explicitly deal with different distributions of object sizes,
locations and scene clutter in source and target tasks (Sec-
tions 3.2 and 3.3).

3.1. Network architecture

For the source task, we use the network architec-
ture of Krizhevsky et al. [24]. The network takes as
input a square 224 × 224 pixel RGB image and pro-
duces a distribution over the ImageNet object classes.
This network is composed of five successive convolu-
tional layers C1. . . C5 followed by three fully connected
layers FC6. . . FC8 (Figure 2, top). Please refer to [24]
for the description of the geometry of the five convolu-
tional layers and their setup regarding contrast normaliza-
tion and pooling. The three fully connected layers then
compute Y6=σ(W6Y5 +B6), Y7=σ(W7Y6 +B7),
and Y8=ψ(W8Y7 +B8), where Yk denotes the out-
put of the k-th layer, Wk, Bk are the trainable param-
eters of the k-th layer, and σ(X)[i]=max(0,X[i]) and
ψ(X)[i]=eX[i]/

∑
j e

X[j] are the “ReLU” and “SoftMax”
non-linear activation functions.

For target tasks (Pascal VOC object and action classifica-
tion) we wish to design a network that will output scores for
target categories, or background if none of the categories
are present in the image. However, the object labels in the
source task can be very different from the labels in the tar-
get task (also called a “label bias” [49]). For example, the
source network is trained to recognize different breeds of
dogs such as huskydog or australianterrier, but the
target task contains only one label dog. The problem be-
comes even more evident for the target task of action classi-
fication. What object categories in ImageNet are related to
the target actions reading or running ?

In order to achieve the transfer, we remove the output
layer FC8 of the pre-trained network and add an adaptation
layer formed by two fully connected layers FCa and FCb
(see Figure 2, bottom) that use the output vector Y7 of the
layer FC7 as input. Note that Y7 is obtained as a complex
non-linear function of potentially all input pixels and may
capture mid-level object parts as well as their high-level
configurations [27, 53]. The FCa and FCb layers compute
Ya=σ(WaY7 +Ba) and Yb=ψ(WbYa +Bb), where
Wa, Ba, Wb, Bb are the trainable parameters. In all our
experiments, FC6 and FC7 have equal sizes (either 4096 or
6144, see Section 4), FCa has size 2048, and FCb has a size
equal to the number of target categories.

The parameters of layers C1. . .C5, FC6 and FC7 are first
trained on the source task, then transferred to the target task
and kept fixed. Only the adaptation layer is trained on the
target task training data as described next.

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14. 
[2] Oquab, Bottou, Laptev, Sivic. Learning and transferring mid-level image representations using convolutional neural networks CVPR’14 
[3] Girshick, Donahue, Darrell and Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR’14 

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with
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which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with

VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [20]† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [39] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [41] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [18]† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.
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Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per
method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table 8 and also included in the tech report source uploaded to arXiv.org; see R-CNN-ILSVRC2013-APs.txt). The red
line marks the median AP, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotted as a green dot over the whiskers (best viewed digitally with zoom).
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Figure 4: Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).
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Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.
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Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per
method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table 8 and also included in the tech report source uploaded to arXiv.org; see R-CNN-ILSVRC2013-APs.txt). The red
line marks the median AP, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotted as a green dot over the whiskers (best viewed digitally with zoom).
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Abstract

Recent results indicate that the generic descriptors ex-
tracted from the convolutional neural networks are very
powerful [10, 29, 48]. This paper adds to the mount-
ing evidence that this is indeed the case. We report on
a series of experiments conducted for different recogni-
tion tasks using the publicly available code and model of
the OverFeat network which was trained to perform ob-
ject classification on ILSVRC13. We use features extracted
from the OverFeat network as a generic image represen-
tation to tackle the diverse range of recognition tasks of
object image classification, scene recognition, fine grained
recognition, attribute detection and image retrieval applied
to a diverse set of datasets. We selected these tasks and
datasets as they gradually move further away from the orig-
inal task and data the OverFeat network was trained to
solve. Astonishingly, we report consistent superior results
compared to the highly tuned state-of-the-art systems in
all the visual classification tasks on various datasets. For
instance retrieval it consistently outperforms low memory
footprint methods except for sculptures dataset. The results
are achieved using a linear SVM classifier (or L2 distance
in case of retrieval) applied to a feature representation of
size 4096 extracted from a layer in the net. The representa-
tions are further modified using simple augmentation tech-
niques e.g. jittering. The results strongly suggest that fea-
tures obtained from deep learning with convolutional nets
should be the primary candidate in most visual recognition
tasks.

1. Introduction
“Deep learning. How well do you think it would work
for your computer vision problem?” Most likely this ques-
tion has been posed in your group’s coffee room. And
in response someone has quoted recent success stories
[29, 15, 10] and someone else professed skepticism. You
may have left the coffee room slightly dejected thinking
“Pity I have neither the time, GPU programming skills nor
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Figure 1: top) CNN representation replaces pipelines of s.o.a methods
and achieve better results. e.g. DPD [50].
bottom) Augmented CNN representation with linear SVM consistently
outperforms s.o.a. on multiple tasks. Specialized CNN refers to other
works which specifically designed the CNN for their task

large amount of labelled data to train my own network to
quickly find out the answer”. But when the convolutional
neural network OverFeat [38] was recently made pub-
licly available1 it allowed for some experimentation. In
particular we wondered now, not whether one could train
a deep network specifically for a given task, but if the fea-
tures extracted by a deep network - one carefully trained
on the diverse ImageNet database to perform the specific
task of image classification - could be exploited for a wide
variety of vision tasks. We now relate our discussions and
general findings because as a computer vision researcher
you’ve probably had the same questions:
Prof: First off has anybody else investigated this issue?
Student: Well it turns out Donahue et al. [10], Zeiler
and Fergus [48] and Oquab et al. [29] have suggested that
generic features can be extracted from large CNNs and pro-
vided some initial evidence to support this claim. But they
have only considered a small number of visual recognition

1There are other publicly available deep learning implementations such
as Alex Krizhevsky’s ConvNet and Berkeley’s Caffe. Benchmarking
these implementations is beyond the scope of this paper.

1

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

INRIA [32] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
NUS-PSL [44] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

PRE-1000C 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

NUS-PSL [49] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

INRIA [32] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
NUS-PSL [44] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

PRE-1000C 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

NUS-PSL [49] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with
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INRIA [32] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
NUS-PSL [44] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

PRE-1000C 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).
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NUS-PSL [49] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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INRIA [32] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
NUS-PSL [44] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

PRE-1000C 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

NUS-PSL [49] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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INRIA [32] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
NUS-PSL [44] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

PRE-1000C 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).
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NUS-PSL [49] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-



Why this Performance?
• More layers [1] 

– Multiple layers capture more invariances 
– Features are learned rather than hand-crafted 


• More data 

– There is more data to train deeper networks 


• More computing 
– GPUs go hand in hand with learning methods 


• First attempt at a theoretical justification [2] 

– Theoretical support for invariance via scattering transform 
– Each layer must be a contraction to keep data volume bounded 
– Optimization issues are not discussed: stage-wise learning is used

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14. 
[2] Mallat and Waldspurger. Deep Learning by Scattering, arXiv 2013



What About Optimization?
• The learning problem is non-convex

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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What About Optimization?
• The learning problem is non-convex 





– Back-propagation, alternating minimization, descent method 


• To get a good local minima 
– Random initialization 
– If training error does not decrease fast enough, start again 
– Repeat multiple times 


• Mysteries 
– One can find many solutions with similar objective values 
– Rectified linear units work better than sigmoid/hyperbolic tangent

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)



Contributions




• Assumptions: 
–      is convex and once differentiable 
–      and       are sums of positively homogeneous functions 




• Theorem 1: A local minimizer such that for some i and all k  
               , then it is a global minimizer 


• Theorem 2: If the size of the network is large enough, local 
descent can reach a global minimizer from any initialization 

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

Xk
i = 0

� ⇥

f(↵X1, . . . ,↵XK) = ↵pf(X1, . . . , XK) 8↵ � 0

`



Outline
• Globally Optimal Low-Rank Matrix Factorizations [1,2] 

– PCA, Robust PCA, Matrix Completion 
– Nonnegative Matrix Factorization 
– Dictionary Learning 
– Structured Matrix Factorization 







• Globally Optimal Positively Homogeneous Factorizations [2] 
– Tensor Factorization 
– Deep Learning

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ‘15



Globally Optimal Matrix Factorizations
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Low Rank Modeling
• Models involving factorization are ubiquitous 

– PCA 
– Robust PCA 
– Matrix Completion 
– Nonnegative Matrix Factorization 
– Dictionary Learning

http://perception.csl.illinois.edu/matrix-rank/home.html



Typical Low-Rank Formulations
• Convex formulations 









– Robust PCA 
– Matrix Completion 


• Convex 
• Large problem size 
• Unstructured factors

• Factorized formulations 








– Nonnegative matrix factorization 
– Dictionary learning 


• Non-Convex 
• Small problem size 
• Structured factors

X U
V >

min
U,V

`(Y, UV >) + �⇥(U, V )

Typical Low Rank Formulations

min
X

`(Y,X) + �⇥(X) (1)

min
X

kY �Xk2F + �kXk⇤ (2)

min
X

kY �Xk1 + �kXk⇤ (3)



Why Do We Need Structure?
• Given a low-rank video 












• U: spatial basis 
– Low total-variation 
– Non-negative













• V: temporal basis 
– Sparse on particular basis set 
– Non-negative 

(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

Convex optimization (this work) Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence
taken in an airport [32]. (a) Frames of original video M . (b)-(c) Low-rank L̂ and sparse
components Ŝ obtained by PCP, (d)-(e) competing approach based on alternating minimization
of an m-estimator [47]. PCP yields a much more appealing result despite using less prior
knowledge.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to a state-of-
the-art technique from the computer vision literature, [47].12 That approach also aims at robustly
recovering a good low-rank approximation, but uses a more complicated, nonconvex m-estimator,
which incorporates a local scale estimate that implicitly exploits the spatial characteristics of natural
images. This leads to a highly nonconvex optimization, which is solved locally via alternating
minimization. Interestingly, despite using more prior information about the signal to be recovered,
this approach does not perform as well as the convex programming heuristic: notice the large
artifacts in the top and bottom rows of Figure 2 (d).

In Figure 3, we consider 250 frames of a sequence with several drastic illumination changes.
Here, the resolution is 168 ⇥ 120, and so M is a 20, 160 ⇥ 250 matrix. For simplicity, and to
illustrate the theoretical results obtained above, we again choose � = 1/

p
n

1

.13 For this example,
on the same 2.66 GHz Core 2 Duo machine, the algorithm requires a total of 561 iterations and 36
minutes to converge.

Figure 3 (a) shows three frames taken from the original video, while (b) and (c) show the
recovered low-rank and sparse components, respectively. Notice that the low-rank component
correctly identifies the main illuminations as background, while the sparse part corresponds to the

12We use the code package downloaded from http://www.salleurl.edu/

~

ftorre/papers/rpca/rpca.zip, modi-
fied to choose the rank of the approximation as suggested in [47].

13For this example, slightly more appealing results can actually be obtained by choosing larger � (say, 2/
p

n
1

).
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Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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Typical Low Rank Formulations
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Need for Structured Factors
• Nonnegative matrix factorization 





• Sparse dictionary learning 





• Challenges to state-of-the-art methods  
– Need to pick size of U and V a priori 
– Alternate between U and V, without guarantees of convergence to a 

global minimum

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r



Tackling Non-Convexity: Nuclear Norm Case
• Convex problem                     Factorized problem 





• Variational form of the nuclear norm 






• Theorem: Assume loss    is convex and once differentiable. A  
local minimizer of the factorized problem such that for some i 
                         is a global minimizer of the convex problem 


• Intuition: regularizer      “comes from a convex function”

Ui = Vi = 0

⇥

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

kXk⇤ = min
U,V

rX

i=1

|Ui|2|Vi|2 s.t. UV > = X

`



Tackling Non-Convexity: General Case
• A natural generalization is the projective tensor norm [1,2] 






• Theorem [3,4]: A local minimizer of the factorized problem 
 
 
 
 
such that for some i                        , is a global minimizer of 
both the factorized problem and of the convex problem

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. 
[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

kXku,v = min
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Ui = Vi = 0



Example: Nonnegative Matrix Factorization
• Original formulation 







• New factorized formulation 






– Note: regularization limits the number of columns in (U,V)

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F + �
X

i

|Ui|2|Vi|2 s.t. U, V � 0



Example: Sparse Dictionary Learning
• Original formulation 







• New factorized formulation

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

kY � UV >k2F + �
X

i

|Ui|2(|Vi|2 + �|Vi|1)



Non Example: Robust PCA
• Original formulation [1] 






• Equivalent formulation 





• New factorized formulation 




• Not an example because loss is not differentiable

min
X,E

kEk1 + �kXk⇤ s.t. Y = X + E

min
X

kY �Xk1 + �kXk⇤

min
U,V

kY � UV >k1 + �
X

i

|Ui|2|Vi|2

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.



Optimization




• Convex in U given V and vice versa 


• Alternating proximal gradient descent 
– Calculate gradient of smooth term 
– Compute proximal operator 
– Acceleration via extrapolation 


• Advantages 

– Easy to implement 
– Highly parallelizable 
– Guaranteed convergence to Nash equilibrium (may not be local min)

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv



Neural Calcium Image Segmentation
• Find neuronal shapes and spike trains in calcium imaging

Data

Neuron Shape

True Signal

Spike Times

Time Time
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Why Do We Need Structure?
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p = number of pixels

t = number of video frames
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Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)
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Neural Calcium Image Segmentation

Neural Calcium Image Segmentation
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Raw Data Sparse + Low Rank +Total Variation

Neural Calcium Image Segmentation
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Neural Calcium Image Segmentation



Hyperspectral Compressed Recovery
• Prior method: NucTV (Golbabaee et al., 2012) 







• 180 Wavelengths 
• 256 x 256 Images 
• Computation per Iteration 

– SVT of whole image volume 
– 180 TV Proximal Operators 
– Projection onto Constraint Set

Hyperspectral Compressed Recovery

min
X

kXk⇤ + �
tX

i=1

kXikTV s.t. kY � �(X)k2F  ✏ (7)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(8)



Hyperspectral Compressed Recovery
• Our method 





• (U,V) have 15 columns 
• Problem size reduced by 91.6% 
• Computation per Iteration 

– Calculate gradient 
– 15 TV Proximal Operators 

• Random Initializations

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)



Hyperspectral Compressed Recovery

Hyperspectral Compressed Recovery

min
X

kXk⇤ + �
tX

i=1

kXikTV s.t. kY � �(X)k2F  ✏ (7)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(8)

kXtrue � UV >kF
kXtruekF

(9)



Conclussions
• Structured Low Rank Matrix Factorization 

– Structure on the factors captured by the Projective Tensor Norm 
– Efficient optimization for Large Scale Problems 



• Local minima of the non-convex factorized form are global 
minima of the convex form 




• Advantages in Applications 
– Neural calcium image segmentation  
– Compressed recovery of hyperspectral images
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From Matrix Factorizations to Deep Learning
• Two-layer NN

From Matrix Factorizations to Deep Learning

V 2 RN⇥d1
(10)

X1 2 Rd1⇥r
(11)

X2 2 Rd2⇥r
(12)
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From Matrix Factorizations to Deep Learning

 1(x) = max(x, 0) (10)

V 2 RN⇥d1
(11)

X

1 2 Rd1⇥r
(12)

X

2 2 Rd2⇥r
(13)

�(X

1
, X

2
) =  1(V X

1
)(X

2
)

>
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From Matrix Factorizations to Deep Learning
• Recall the generalized factorization problem 





• Matrix factorization is a particular case where K=2 





• Both     and     are sums of positively homogeneous functions  



• Other examples 
– Rectified linear unit + max pooling is pos. homogeneous of degree 1

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

� ⇥

f(↵X1, . . . ,↵XK) = ↵pf(X1, . . . , XK) 8↵ � 0

�(U, V ) =
rX

i=1

UiV
>
i , ⇥(U, V ) =

rX

i=1

kUikukVikv



“Matrix Multiplication” for K > 2
• In matrix factorization we have 





• By analogy we define 
 
 
 
where        is a tensor,        is its i-th slice along its last 
dimension, and      is a positively homogeneous function 


• Examples 

– Matrix multiplication: 
– Tensor product: 
– ReLU neural network:

�(U, V ) = UV > =
rX

i=1

UiV
>
i

Xk Xk
i

�

�(X1, . . . , XK) =
rX

i=1

�(X1
i , . . . , X

K
i )

�(X1, X2) = X1X2>

�(X1, . . . , XK) = X1 ⌦ · · ·⌦XK

�(X1, . . . , XK) =  K(· · · 2( 1(V X1)X2) · · ·XK)



“Projective Tensor Norm” for K > 2
• In matrix factorization we have 






• By analogy we define 
 
 
 
 
where      is a positively homogeneous function 


• Proposition:                is convex

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

✓

⌦�,✓(X) = min
{Xk}

rX

i=1

✓(X1
i , . . . , X

K
i ) s.t. �(X1, . . . , XK) = X

⌦�,✓



Main Result
• Theorem: A local minimizer of the factorized formulation 
 
 
 
 
such that for some i and for all k we have                  , gives a 
global minimizer for both the factorized formulation and the 
convex formulation 




• Examples 
– Matrix factorization 
– Tensor factorization 

min
{Xk}

`
�
Y,

rX

i=1

�(X1
i , . . . , X

K
i )

�
+ �

rX

i=1

✓(X1
i , . . . , X

K
i )

Xk
i = 0

min
X

`(Y,X) + �⌦�,✓(X)



Conclussions
• For many non-convex factorization problems, such as matrix 

factorization, tensor factorization, and deep learning, a local 
minimizer for the factors gives a global minimizer 


• For matrix factorization, this  

– allows one to incorporate structure on the factors, and  
– gives efficient optimization method suitable for large problems 


• For deep learning, this provides theoretical insights on why 

– many local minima give similar objective values 
– ReLU works better than sigmoidal functions 


• While alternating minimization is efficient and guaranteed to 

converge, it is not guaranteed to converge to a local minimum



• Body Level One 
– Body Level Two 

• Body Level Three 
– Body Level Four 

» Body Level Five

• PhD Students 
– Ben Haeffele, JHU
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More Information,


Vision Lab @ Johns Hopkins University 
http://www.vision.jhu.edu 


Center for Imaging Science @ Johns Hopkins University 

http://www.cis.jhu.edu 


Thank You!


