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High-Dimensional Data
• In many areas, we deal with high-dimensional data 

– Computer vision 
– Medical imaging 
– Medical robotics 
– Signal processing 
– Bioinformatics



High-Dimensional Data in Computer Vision

http://blog.1000memories.com/94-number-of-photos-ever-taken-digital-and-analog-in-shoebox



High-Dimensional Data in Computer Vision

http://tech.firstpost.com/news-analysis/now-upload-share-1-8-billion-photos-everyday-meeker-report-224688.html



• Body Level One 
– Body Level Two 

• Body Level Three 
– Body Level Four 

» Body Level Five

High-Dimensional Data in Computer Vision

– 140 billion images 
– 350 million new photos/day
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– 3.8 trillion of photographs 
– 10% in the past 12 months

– 120 million videos 
– 300 hours of video/minute

– 90% of the internet traffic will 
be video by the end of 2017

http://www.buzzfeed.com/hunterschwarz/how-many-photos-have-been-taken-ever-6zgv



• Lossy image representation

Low-Dimensional Manifolds
• Face clustering and classification
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Hybrid Linear Models 0 Versus Linear Models
A single linear model

stack
Linear

Hybrid linear

Hybrid linear models

stack

• Motion segmentation • DT segmentation • Video segmentation



Two Fundamental Tasks
• Clustering of data in low-dimensional manifolds 









• Classification of data in low-dimensional manifolds

 ?



Talk Outline
• Introduction to Subspace Clustering 


• Generalized Principal Component Analysis (GPCA) 

– Polynomial fitting and factorization 


• Sparse Subspace Clustering (SSC) 
– Matrix of coefficients is sparse 


• Low Rank Subspace Clustering (LRSC) 

– Matrix of coefficients is low-rank 


• Applications:  
– Face clustering 
– Motion/video segmentation

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA). CVPR 2003, CVPR 2004, PAMI 2005. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering (SSC). CVPR 2009, ICASSP 2010, PAMI 2013. 
P. Favaro, A. Ravichandran and R. Vidal. Low Rank Subspace Clustering (LRSC). CVPR 2011.



Introduction to Subspace Clustering

René Vidal



Principal Component Analysis (PCA)
• Given a set of points lying in one subspace, identify 

– Geometric PCA: find a subspace S passing through them 
– Statistical PCA: find projection directions that maximize the variance 






• Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36) 



• Applications: 
– Signal/image processing, computer vision (eigenfaces), machine 

learning, genomics, neuroscience (multi-channel neural recordings)
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Subspace Clustering Problem
• Given a set of points lying in multiple subspaces, identify 

– The number of subspaces and their dimensions 
– A basis for each subspace 
– The segmentation of the data points 


• Challenges 

– Model selection  
– Nonconvex 
– Combinatorial 


• More challenges 
– Noise 
– Outliers 
– Missing entries



Subspace Clustering Problem: Challenges
• Even more challenges 

– Angles between subspaces are small 
– Nearby points are in different subspacesCHAPTER 3. SPARSE SUBSPACE CLUSTERING
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Figure 3.9: Left: percentage of pairs of subspaces whose smallest principal angle is smaller
than a given value. Right: percentage of data points in pairs of subspaces whose K nearest
neighbors contain points from the other subspace.

solution of the low-rank optimization program prior to clustering.

Implementation details. We implement the SSC optimization algorithm in (3.55)

using the Alternating Direction Method of Multipliers (ADMM) framework [92, 93]

described in Section 3.5. In all motion segmentation experiments, we set (�e,�z) =

(+�, 10/µz) and in all face clustering experiments, we set (�e,�z) = (20/µe,+�).

For the state of the art, we use the codes provided by their authors. As LSA and

SCC need to know the number of subspaces a priori and determining the number

of subspaces from eigenspectrum in the noisy setting is more di�cult, in order to

have a fair comparison, we provide the number of subspaces as an input to all the

algorithms.

Datasets and some statistics. For the motion segmentation problem, we consider

the Hopkins 155 dataset [94], which consists of 155 video sequences with 2 or 3 motions

in each video corresponding to 2 or 3 low-dimensional subspaces [2, 95]. For the face
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Prior Work: Iterative-Probabilistic Methods
• Approach 

– Given segmentation, estimate subspaces 
– Given subspaces, segment the data 
– Iterate till convergence 


• Representative methods 
– K-subspaces (Bradley-Mangasarian ’00, Kambhatla-Leen ’94,  

Tseng’00, Agarwal-Mustafa ’04, Zhang et al. ’09, Aldroubi et al. ’09) 
– Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’04,  

Kanatani ’04, Archambeau et al. ’08, Chen ’11)

Advantages Disadvantages / Open Problems

Simple, intuitive Known number of subspaces and dimensions

Missing data Sensitive to initialization and outliers



Prior Work: Algebraic-Geometric Methods
• Approach 

– Number of subspaces = degree of polynomial 
– Subspaces = factors of polynomial 



• Representative methods 
– Factorization (Boult-Brown’91, Costeira-Kanade’98, Gear’98,  

Kanatani et al.’01, Wu et al.’01, Sekmen’13)  

– GPCA (Shizawa-Maze ’91, Vidal et al. ’03 ’04 ’05, Huang et al. ’05,  
Yang et al. ’05, Derksen ’07, Ma et al. ’08, Ozay et al. ‘10)

Advantages Disadvantages / Open Problems

Closed form Complexity

Arbitrary dimensions Sensitive to noise, outliers, missing entries



Prior Work: Spectral-Clustering Methods
• Approach 

– Data points           = graph nodes 
– Pairwise similarity = edge weights 
– Segmentation       = graph cut 


• Representative methods 
– Local (Zelnik-Manor ’03, Yan-Pollefeys ’06, Fan-Wu ’06, Goh-Vidal ’07, Sekmen’12) 
– Global (Govindu ’05, Agarwal et al. ’05, Chen-Lerman ’08, Lauer-Schnorr ’09, Zhang et al. ’10)

Advantages Disadvantages / Open Problems

Efficient Known number of subspaces and dimensions

Robust Global methods are complex



Prior Work: Sparse and Low-Rank Methods
• Approach 

– Data are self-expressive 
– Global affinity by convex optimization 


• Representative methods 
– Sparse Subspace Clustering (SSC)  

(Elhamifar-Vidal ’09 ’10 ‘13, Candes ’12 ‘13)  

– Low-Rank Subspace Clustering (LRSC) 
(Liu et al. ’10 ‘13, Favaro-Vidal ’11 ’13) 

– Sparse + Low-Rank (Wang ‘13)

Advantages Disadvantages / Open Problems

Efficient, Convex Low-dimensional subspaces

Robust Missing entries



Prior Work on Subspace Clustering



Generalized Principal Component Analysis 
(GPCA)

 
René Vidal, Yi Ma and Shankar Sastry 





GPCA: Representing One Subspace
• One plane 




• One line 







• One subspace can be represented with 
– Set of linear equations 
– Set of polynomials of degree 1

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



GPCA: Representing a Union of Subspaces
• One subspace 






• Two subspaces 







• A union of n subspaces can be represented with a set of 
homogeneous polynomials of degree n 

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003. 
Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



De Morgan’s rule

GPCA: Representing n Subspaces
• Two planes 





• One plane and one line 
– Plane: 
– Line: 






• A union of n subspaces can be represented with a set of 
homogeneous polynomials of degree n

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



GPCA: Fitting Polynomials to Data Points
• Polynomials are linear in their coefficients 






• Coefficients can be computed linearly from the nullspace of 
the embedded data matrix 
– Solve using least squares 
– N = #data points 





• Number of subspaces can be found from rank of embedded 
data matrix

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003. 
Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.
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GPCA Algorithm by Polynomial Factorization
• Basis for each subspace 






• Polynomial Factorization Algorithm 
– Find roots of polynomial of degree n in one variable 
– Solve D-2 linear systems in n variables 


• Problems 

– Computing roots may be sensitive to noise 
– The estimated polynomial may not perfectly factor with noisy data

c

T ⌫n(x) = (bT1 x) · · · (b
T
nx)

c 2 RMn

b1 b2 · · · bn

R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003.



GPCA Algorithm Polynomial Differentiation

• To learn a mixture of subspaces we just need one positive 
example per class

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



GPCA Algorithm Polynomial Differentiation
• With noise and outliers  

– Polynomials may not be a perfect union of subspaces 









– Normals can estimated correctly by choosing points optimally 
• Distance to closest subspace without knowing segmentation?

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005..



GPCA: Algorithm for Hyperplane Clustering
• Coefficients of the polynomial can be computed from null 

space of embedded data matrix 
– Solve using least squares 
– N = #data points 


• Number of subspaces can be computed from the rank of 

embedded data matrix 



• Normal to the subspaces      can be computed 
from the derivatives of the polynomial

Vidal, Ma, Piazzi, Sastry. A new GPCA Algorithm for Clustering Subspaces by Fitting, Differentiating and Dividing Polynomials, CVPR 04. 
R. Vidal, Y. Ma, S. Sastry. Generalized Principal Component Analysis (GPCA), PAMI 2005.



Temporal Video Segmentation by GPCA



Temporal Video Segmentation by GPCA
• Empty living room 
• Middle-aged man enters 
• Woman enters 
• Young man enters, introduces the 

woman and leaves 
• Middle-aged man flirts with 

woman and steals her tiara

• Middle-aged man checks the 
time, rises and leaves 

• Woman walks him to the door 
• Woman returns to her seat 
• Woman misses her tiara 
• Woman searches her tiara 
• Woman sits and dismays



Sparse Subspace Clustering 
(SSC)

 
Ehsan Elhamifar and René Vidal 





• Spectral clustering 
– Represent data points as nodes in graph  
– Connect nodes     and     with weight  
– Infer clusters from Laplacian of  







• How to define a good affinity matrix       
for subspaces? 
– points in the same subspace:  
– points in different subspaces:  

Sparse Subspace Clustering: Spectral Clustering

G
i j cij

G

cij = 0
cij 6= 0

C



• Spectral curvature clustering (SCC) (Chen-Lerman ’08) 
– Define multiway similarity as normalized volume of d+1 points 





• Local subspace affinity (LSA) (Yan-Pollefeys ’06) 
– Use the angles between locally fitted subspaces as similarity

Sparse Subspace Clustering: Spectral Clustering



Sparse Subspace Clustering: Intuition

• Data in a union of subspaces are self-expressive 




• Union of subspaces admits subspace-sparse representation 







• Under what conditions on the subspaces and the data 
– L0 = subspace sparse? 


– L1 = subspace sparse?

S1

S3 S2
S2

S3

S1

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009. 
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.

P1 : min kcik1 s.t. yi = Y ci, cii = 0

yi =
NX

j=1

cjiyj =) yi = Y ci =) Y = Y C



Sparse Subspace Clustering: Noiseless Data

• Theorem 1:      recovers a subspace-sparse representation if 
– Subspaces are independent:

dim
⇣ nM

i=1

Si

⌘
=

nX

i=1

dim(Si)

S1

S2

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009.

P1

P1 : min kcik1 s.t. yi = Y ci, cii = 0



Sparse Subspace Clustering: Noiseless Data

• Theorem 2:      recovers a subspace-sparse representation if 
– Subspaces are disjoint: 


– Subspaces are sufficiently well separated 

and data are sufficiently well distributed 




•     is the smallest subspace angle between subspaces i and j 
– subspace angles decrease            harder recovery 


•            is the smallest singular value in each subspace 

– data closer to a degenerate subspace            harder recovery

Si � Sj = {0}

max

rank(Ȳ i)=di

⇥di(
¯Y i) >

p
di max

j 6=i
cos(�ij)

✓ij

�di(Ȳi)

S2

S3

S1

E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.

P1

P1 : min kcik1 s.t. yi = Y ci, cii = 0



Sparse Subspace Clustering: Noiseless Data

• Theorem 3:  
– n d-dimensional subspaces chosen independently, uniformly at random 
– r d + 1 points per subspace chosen independently, uniformly at random 
–       recovers a subspace-sparse representation with high probability ifP1

A geometric analysis of subspace clustering with outliers. M. Soltanolkotabi and E. J. Candes. Annals of Statistics 40(4), 2195–2238.

d <
c2(r) log ⇢

12 logN
D

P1 : min kcik1 s.t. yi = Y ci, cii = 0



Sparse Subspace Clustering: Data with Outliers

• Assumptions 
– n d-dimensional subspaces chosen independently, uniformly at random 
– r d + 1 inliers per subspace chosen independently, uniformly at random 
– Noutliers outliers chosen independently and uniformly at random 
– Declare point i as an outlier if the solution to P1 satisfies 



• Theorem 4: 
–       correctly detects all outliers with high probability if 



–       does not detect any inlier as an outlier if

P1

A geometric analysis of subspace clustering with outliers. M. Soltanolkotabi and E. J. Candes. Annals of Statistics 40(4), 2195–2238.
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P1 : min kcik1 s.t. yi = Y ci, cii = 0



Sparse Subspace Clustering: Corrupted Data

• When the data are corrupted with noise 



• When the data have missing entries 
– Let                          be the indices of the missing entries in 
– Form                    and                           by eliminating rows of       and  

     indexed by   , and solve the same optimization problems 


• When the data are corrupted with outlying entries 
– Let                                                    be corrupted by a vector 


– The vector                      is still sparse and can be recovered from

min⇥ci⇥1 + µ ⇥yi � Y ci⇥2

I � {1, . . . , D} y � RD

ỹ � RD�|I| Ỹ � RD�|I|⇥N
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ỹ = y + e

S. Rao, R. Tron, R. Vidal and Y. Ma. Robust Motion Segmentation, CVPR 2008, PAMI 2009. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009. 
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010.



Sparse Subspace Clustering: Algorithm

• Represent data points as nodes in graph 



• Find the sparse coefficient vectors                




• Connect nodes    and    by an edge with  
weight  



• Spectral clustering: apply K-means to the 
smallest eigenvectors of the Laplacian of

i

{ci}N
i=1

G

G

j

|cij | + |cji|

min⇥ci⇥1 + µ ⇥yi � Y ci⇥2



Low Rank Subspace Clustering 
(LRSC)

 
Paolo Favaro and René Vidal 





• Spectral clustering 
– Represent data points as nodes in graph  
– Connect nodes     and     with weight  
– Infer clusters from Laplacian of  







• How to define a good affinity matrix       
for subspaces? 
– points in the same subspace:  
– points in different subspaces:  

Sparse Subspace Clustering: Spectral Clustering

G
i j cij

G

cij = 0
cij 6= 0

C



Sparse Subspace Clustering: Intuition

• Data in a union of subspaces are self-expressive 




• Union of subspaces admits subspace-sparse representation 







• Sparse Subspace Clustering

S1

S3 S2
S2

S3

S1

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009. 
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.

P1 : min kcik1 s.t. yi = Y ci, cii = 0

yi =
NX

j=1

cjiyj =) yi = Y ci =) Y = Y C



Subspace Clustering by Matrix Factorization
• Data from i-th subspace can be factorized as 








• Segmentation of the data can be obtained from 
– Leading singular vector of               (Boult and Brown ’91)  
– Shape interaction matrix                  (Costeira & Kanade ’95, Gear ’94) 


•              if points i and j lie in two  
independent subspaces (Kanatani et al. ’01, Vidal et al. ’08)

C = VV>

Cij = 0

Y � = [Y1, Y2, . . . , Yn] = [U1, U2, . . . , Un]

2
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V >
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Yi = UiV
>
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Low Rank Subspace Clustering
• Data in a union of subspaces are self-expressive 






• Low Rank Subspace Clustering (noiseless case) 





• Low Rank Subspace Clustering (noisy case)

yi =
NX

j=1

cjiyj =) yj = Y ci =) Y = Y C
– C is sparse 
– C is low-rank

min
C

kCk⇤ s.t. Y = Y C
C = VV>
Y = U�V>

=)

min
C

kCk⇤ +
�

2
kY � Y Ck2F C = V(I � 1

�
��2)V>=)



Applications in Computer Vision



Experiments on 3D Motion Segmentation
• Motion segmentation problem 

– Input: multiple images of a scene with multiple rigid-body motions 
– Output: number of motions, motion model parameters, segmentation 







• Motion of a rigid-body: 4D subspace (Boult and Brown ’91, Tomasi and Kanade ’92) 
– P = #points 
– F = #frames
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Vidal et al., ECCV02, IJCV06; Vidal, Ma and Sastry CVPR03, PAMI05; Vidal and Sastry CVPR03; 
Vidal and Ma ECCV04, JMIV06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPR07; Li et al. 
CVPR07; Goh and Vidal CVPR07; Vidal and Hartley, PAMI08; Vidal, Tron and Hartley IJCV08; 
Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09, TPAMI 13; Vidal SPM11; Tsakiris ‘15



Experiments on 3D Motion Segmentation
• Misclassification rates on Hopkins 155 database

R. Tron and R. Vidal. A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms. CVPR 2007.
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Vidal and Ma ECCV04, JMIV06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPR07; Li et al. 
CVPR07; Goh and Vidal CVPR07; Vidal and Hartley, PAMI08; Vidal, Tron and Hartley IJCV08; 
Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09, TPAMI 13; Vidal SPM11; Tsakiris ‘15



Experiments on Video Segmentation
• Model each video segment as a low-dimensional subspace 
• Cluster video frames into multiple segments 












• Advantages 
– SSC easily detects sharp transitions in the video 
– SSC can handle camera motion and scene variations



Experiments on Video Segmentation
• Model each video segment as a low-dimensional subspace 
• Cluster video frames into multiple segments 












• Advantages 
– SSC easily detects sharp transitions in the video 
– SSC can handle camera motion and scene variations



Experiments on Face Clustering







• Faces under varying illumination 
– 9D subspace 

• Extended Yale B dataset 
– 38 subjects 
– 64 images per subject 

• Clustering error 
– SSC < 2.0% error for 2 subjects 
– SSC < 11.0% error for 10 subjects

E. Elhamifar and R. Vidal, Sparse Subspace Clustering: Algorithm, Theory, and Applications, TPAMI13.
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Conclusions
• Many problems in computer vision can be posed as subspace 

clustering and classification problems 
– Spatial and temporal video segmentation 
– Face clustering under varying illumination 
– Face classification 


• These problems can be solved using 

– Generalized Principal Component Analysis (GPCA) 
– Sparse Subspace Clustering (SSC) 
– Low Rank Subspace Clustering (LRSC) 


• This algorithms is provably correct when 

– Subspaces are sufficiently separated 
– Data are well distributed within each subspace



What’s Next
• Big Data (Peng ’13, Dyer ’13, You ’15) 








• Missing Data: (Grubber ’04, Eriksson ’12, Balzano ’12, Pimentel ’14, Candes ’14, Yang’15) 


GPCA SSC OMP ?

Dimension of the data 10 10,000 10,000 1M

Number of data points 1000 10,000 100,000 1M Chong You

Congyuan 
Yang
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See All by Looking at A Few: Sparse 
Modeling for Finding Data Exemplars


Ehsan Elhamifar (Berkeley), Guillermo Sapiro (Duke) and René Vidal (Hopkins)



Problem Statement
• Given a set of points                        select a subset of                

points that efficiently represent the whole data set
k ⌧ N{y1, . . . ,yN}

G1

G3

G2

– Summarize/visualize text/images/videos – Reduce computational time 
and memory requirements 
of classification algorithms

– Produce a clustering of the data



State of the Art
• Methods based on low-rank representations 

– Rank revealing QR [Chan ‘87, Gu-Eisenstat ‘96] 
– NNMF [Esser et al. ‘12, Bittorf et al. ‘12]  

– CUR [Mahoney-Drineas ‘09] 
– Randomized/greedy algorithms [Tropp ‘09, Boutsidis et al. ’09, Balzano ’10] 


• Methods based on clustering 

– Central clustering: k-medoids [Kaufman ‘87] 
– Set cover optimization [Bien-Tibshirani ’11] 
– Affinity propagation [Frey-Duek ‘06,’07; Givoni et al. ‘11] 


• Challenges 

– Depend on initialization (local minima), return approximate solutions 
– Require prior knowledge about the dimensions, number of groups, etc.

S



Contributions
• Goals 

– Develop efficient (convex) algorithms 
– Analyze the geometry of solution  
– Have theoretical guarantees 


• Part I: Sparse Representation of the Data [1] 






• Part II: Sparse Representation of Dissimilarities [2]

[1] E. Elhamifar, G. Sapiro, and R. Vidal. See All by Looking at A Few: Sparse Modeling for Finding Representative Objects. CVPR 2012. 
[2] E. Elhamifar, G. Sapiro, and R. Vidal. Finding Exemplars from Pairwise Dissimilarities via Simultaneous Sparse Recovery. NIPS 2012.
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Exemplars from Linear Data Relationships
• Input: set of data points 
• Output: set of exemplars 


• Classical PCA: find                    and                    such that 


–   


– columns of U need not coincide with the data 


• Our approach:  

– Choose the smallest number of columns k such that
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Exemplars from Linear Data Relationships
• Use the entire data matrix as a dictionary and let the  

nonzero rows indicate the exemplars 






• Choose smallest k => minimize number of nonzero rows of C  
[Chen-Huo'05, Tropp'06, Jenatton-Audibert-Bach'11] 







• Find exemplars by solving the convex problem 
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Theoretical Guarantees



• Theorem 1: 
– H = convex hull of data Y 
– k = number of vertices of H 
– Data lie in an affine subspace of dim k-1 
– k nonzero rows of C* = k vertices of H 




• Theorem 2:  
– Data lie in union of independent subspaces 
– Nonzero rows of C* include at least  

dim(Si) + 1 exemplars for subspace Si
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Beyond Linear Relationships
• Linear relationship model can be restrictive 








• Consider dissimilarities between pairs of data points 






–        = cost of encoding point        with exemplar 
– Euclidean/geodesic distance, KL divergence, etc. 
– Dissimilarities need not come from a metric
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Exemplars from Pairwise Dissimilarities
• Let                   denote whether      is chosen to encode  


• The total encoding cost is given by 


• Choose smallest k => minimize number of nonzero rows of Z 

[Chen-Huo'05, Tropp'06, Jenatton-Audibert-Bach'11] 






• Find exemplars by solving the convex problem
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Theoretical Guarantees




• Theorem 1: If      is too big, only one exemplar is chosen; and 
if      is too small, each point chooses itself as an exemplar 


–   


–   


• Theorem 2: if                  and the data  

partitions into n clusters, the optimal Z  
is such that data points within each  
cluster select exemplars  
from that cluster only
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Experiments on Synthetic Data
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Figure 1: Data points (blue dots) in two clusters and the representatives (red circles) found by the proposed
optimization program in (4) for several values of � with �max,q defined in (6). Top: q = 2, Bottom: q = �.
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where zi ⇤ RN denotes the i-th row of Z. We interpret zij as the probability that data point i be a
representative for data point j, hence zij ⇤ [0, 1]. A data point j can have multiple representatives in
which case zij > 0 for all the indices i of the representatives. As a result, we must have

⌥N
i=1 zij =

1, which ensures that the total probability of data point j choosing all its representatives is equal
to one. Our goal is to select a few representatives that well encode the data collection according to
the dissimilarities. To do so, we propose a row-sparsity regularized trace minimization program on
Z that consists of two terms. First, we want the representatives to encode well all data points via
dissimilarities. If the data point i is chosen to be a representative of a data point j with probability
zij , the cost of encoding j with i is dijzij ⇤ [0, dij ]. Hence, the total cost of encoding j using all
its representatives is

⌥N
i=1 dijzij . Second, we would like to have as few representatives as possible

for all the data points. When the data point i is a representative of some of the data points, we have
zi ⌅= 0, i.e., the i-th row of Z is nonzero. Having a few representatives then corresponds to having
a few nonzero rows in the matrix Z. Putting these two goals together, we consider the following
minimization program

min
N�
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I(⌃zi⌃q) s. t. zij � 0, ⇧i, j;
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where I(·) denotes the indicator function, which is zero when its argument is zero and is one other-
wise. The first term in the objective function corresponds to the total cost of encoding all data points
using the representatives and the second term corresponds to the cost associated with the number
of the representatives. The parameter � > 0 sets the trade-off between the two terms. Since the
minimization in (3) that involves counting the number of nonzero rows of Z is, in general, NP-hard,
we consider the following standard convex relaxation
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N�

j=1

N�

i=1

dijzij + �
N�

i=1

⌃zi⌃q s. t. zij � 0, ⇧i, j;
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where, instead of counting the number of nonzero rows of Z, we use the sum of the ⇥q-norms of the
rows of Z. Typically, we choose q ⇤ {2,⇥} for which the optimization program (4) is convex.2
Note that the optimization program (4) can be rewritten in the matrix form as

min tr(D⇥Z) + �⌃Z⌃1,q s. t. Z � 0, 1⇥Z = 1⇥, (5)

where tr(·) denotes the trace operator, ⌃Z⌃1,q , ⌥N
i=1 ⌃zi⌃q , and 1 denotes an N -dimensional

vector whose elements are all equal to one.
2It is typically the case that q = � favors having 0 and 1 elements for Z, while q = 2 allows elements that

more often take other values in [0, 1]. Note that q = 1 also imposes sparsity in the nonzero rows of Z, which
is not desirable since it promotes only a few data points to be associated with each representative.
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Figure 1: Data points (blue dots) in two clusters and the representatives (red circles) found by the proposed
optimization program in (4) for several values of � with �max,q defined in (6). Top: q = 2, Bottom: q = �.
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where zi ⇤ RN denotes the i-th row of Z. We interpret zij as the probability that data point i be a
representative for data point j, hence zij ⇤ [0, 1]. A data point j can have multiple representatives in
which case zij > 0 for all the indices i of the representatives. As a result, we must have

⌥N
i=1 zij =

1, which ensures that the total probability of data point j choosing all its representatives is equal
to one. Our goal is to select a few representatives that well encode the data collection according to
the dissimilarities. To do so, we propose a row-sparsity regularized trace minimization program on
Z that consists of two terms. First, we want the representatives to encode well all data points via
dissimilarities. If the data point i is chosen to be a representative of a data point j with probability
zij , the cost of encoding j with i is dijzij ⇤ [0, dij ]. Hence, the total cost of encoding j using all
its representatives is

⌥N
i=1 dijzij . Second, we would like to have as few representatives as possible

for all the data points. When the data point i is a representative of some of the data points, we have
zi ⌅= 0, i.e., the i-th row of Z is nonzero. Having a few representatives then corresponds to having
a few nonzero rows in the matrix Z. Putting these two goals together, we consider the following
minimization program

min
N�
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where I(·) denotes the indicator function, which is zero when its argument is zero and is one other-
wise. The first term in the objective function corresponds to the total cost of encoding all data points
using the representatives and the second term corresponds to the cost associated with the number
of the representatives. The parameter � > 0 sets the trade-off between the two terms. Since the
minimization in (3) that involves counting the number of nonzero rows of Z is, in general, NP-hard,
we consider the following standard convex relaxation

min
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where, instead of counting the number of nonzero rows of Z, we use the sum of the ⇥q-norms of the
rows of Z. Typically, we choose q ⇤ {2,⇥} for which the optimization program (4) is convex.2
Note that the optimization program (4) can be rewritten in the matrix form as

min tr(D⇥Z) + �⌃Z⌃1,q s. t. Z � 0, 1⇥Z = 1⇥, (5)

where tr(·) denotes the trace operator, ⌃Z⌃1,q , ⌥N
i=1 ⌃zi⌃q , and 1 denotes an N -dimensional

vector whose elements are all equal to one.
2It is typically the case that q = � favors having 0 and 1 elements for Z, while q = 2 allows elements that

more often take other values in [0, 1]. Note that q = 1 also imposes sparsity in the nonzero rows of Z, which
is not desirable since it promotes only a few data points to be associated with each representative.
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Number of Exemplars/Cluster vs Lambda
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Figure 4: Number of representatives obtained by the proposed optimization program in (4) for data points in
the two clusters shown in Fig. 1 as a function of the regularization parameter ⇥ = �⇥max,q with q ⇥ {2,�}.
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Figure 5: Representatives and the probability matrix Z obtained by our proposed algorithm in (4) for q = �.
20 random data points are added to 120 data points generated by a mixture of 3 Gaussian distributions.

⇥max,q(Ci) denotes the threshold on ⇥ after which we obtain only one representative from Ci, then
for maxi ⇥max,q(Ci) ⇥ ⇥ < ⇥c, the data points in each Ci select only one representative that is in
Ci. As we will show in the experiments, such an interval often exists and can, in fact, be large.

For a sufficiently small value of ⇥, where we put less emphasis in the row-sparsity term in the
optimization program (4), each data point becomes a representative, i.e., zii = 1 for all i. In such
a case, each data point forms its own cluster. From the result in Theorem 2, we obtain a threshold
⇥min such that for ⇥ ⇥ ⇥min the solution Z is equal to the identity matrix.

Corollary 1 Let ⇥min,q , minj(mini �=j dij � djj) for q ⌅ {2,⇤}. For ⇥ ⇥ ⇥min,q , the solution
of the optimization program (4) for q ⌅ {2,⇤} is equal to the identity matrix. In other words, each
data point is the representative of itself.

4 Experiments
In this section, we evaluate the performance of the proposed algorithm on synthetic and real datasets.
As scaling of D and ⇥ by the same value does not change the solution of (4), we always scale
dissimilarities to lie in [0, 1] by dividing the elements of D by its largest element. Unless stated
otherwise, we typically set ⇥ = �⇥max,q with � ⌅ [0.01, 0.1], for which we obtain good results.

4.1 Experiments on Synthetic Data
We consider the synthetic dataset shown in Figure 1 that consists of data points distributed around
two clusters. We run the proposed optimization program in (4) for both q = 2 and q = ⇤ for several
values of ⇥. Figures 1 and 2 show the representatives and the matrix of variables Z, respectively, for
several values of the regularization parameter. Notice that, as discussed before, for small values of ⇥,
we obtain more representatives and as we increase ⇥, the number of representatives decreases. When
the regularization parameter reaches ⇥max,q , computed using our theoretical analysis, we obtain
only one representative for the dataset. It is important to note that, as we showed in the theoretical
analysis, when the regularization parameter is sufficiently small, data points in each cluster only
select representatives from that cluster (see Figure 2), i.e., Z has a block-diagonal structure when
its columns are permuted according to the clusters. Moreover, as Figure 2 shows, for a sufficiently
large range of the regularization parameter, we obtain only one representative from each cluster. To
better see this, we run the optimization program with ⇥ = �⇥max,q for different values of �. The
two left-hand side plots in Figure 4 show the number of the representatives for q = 2 and q = ⇤,
respectively, from each of the two clusters.

As shown, when ⇥ gets larger than ⇥max,q , we obtain only one representative from the right cluster
and no representative from the left cluster, i.e., as expected, we obtain one representative for all
the data points. Also, when ⇥ gets smaller than ⇥min,q , all data points become representatives, as
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NN NS SRC SVM

Rand 76.4% 84.9% 83.5% 98.6%
Kmedoids 86.0% 89.7% 89.6% 99.2%
RRQR 59.1% 81.3% 78.3% 94.3%
SMRS 83.4% 93.8% 91.7% 99.7%

All Data 96.2% 96.4% 98.9% 99.7%

Applications: Classification with Exemplars
• Classification Results on the USPS digit database using 25 

representatives of the 1,000 training samples in each class
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Figure 4. Number of representatives for each event in the video found by
our method for several values of the regularization parameter. Left: Tennis
match video. Right: Political debate video.

divide Y into Y 1, . . . ,Y ⇤, and find the representatives for
each portion of the data, i.e., Y rep,1, . . . ,Y rep,⇤. Finally,
we can obtain the representatives by solving the proposed
optimization programs for

�
Y rep,1 . . . Y rep,⇤

⇥
.

6. Experimental Results
In this section, we evaluate the performance of the pro-

posed algorithm for finding representatives of real datasets
on several illustrative problems. Since, using Lagrange
multipliers, either of the proposed optimization programs
in (7) or (10) can be written as

min⇥ ⇥C⇥1,q +
1

2
⇥Y � Y C⇥2F s.t. 1�C = 1�, (20)

in practice, we use (20) for finding the representatives. We
implement the algorithm using an Alternating Direction
Method of Multipliers (ADMM) optimization framework
[20]. As data points with very small pairwise coherences
may lead to too-close representatives, similar to sparse dic-
tionary learning methods [1], one can prune the set of rep-
resentatives from having too-close data points.

6.1. Video Summarization
We first demonstrate the applicability of our proposed

algorithm for summarizing videos. First, we consider a
1, 536-frame video taken from [39], which consists of a se-
ries of continuous activities with a fixed background (a few
frames are shown in Figure 1). We apply our algorithm in
(20) and obtain 9 representatives for the whole video. The
representatives are shown as frames inside the red rectan-
gles. A summary of the video is provided in the caption of
Figure 1. Note that the representatives obtained by our al-
gorithm captured the main events of the video. Perhaps the
only missing representative to have a complete description
of the whole video is the frame where the man is passing
the tiara to the bandit (second row).

Next, we consider a video sequence of a Tennis match
(a few frames are shown in Figure 2). The video consists
of multiple shots of different scenes where each shot con-
sists of a series of activities. We apply our algorithm in (20)
and obtain 11 representatives for the whole video, which are
shown in Figure 2 as frames inside the red rectangles. For

Figure 5. Representatives found by our algorithm for the images of digit
2. Note that the representatives capture different variations of the digit.

the first and the last shots, which consist of more activities
relative to the other shots, we obtain 4 and 3 representa-
tive frames, respectively. On the other hand, for the middle
shots, which are shorter and have less activities, we obtain
a single representative frame.

To investigate the effect of changing the regularization
parameter ⇥ in the quality of obtaining representatives, we
consider the tennis match video as well as a political de-
bate video. We run our proposed algorithm with ⇥ = ⇥0/�,
where � > 1 and ⇥0 is analytically computed from the data
[10]. Figure 4 shows the number of representatives found
by our method for each of the events in the videos for sev-
eral values of �. Note that first, we always obtain one or
several representatives for each of the events. Second, in
both videos, the number of representatives for each event
does not change much as we change the regularization pa-
rameter. Finally, depending on the amount of activities in
an event, we obtain an appropriate number of representa-
tives for that event.

6.2. Classification Using Representatives
We now evaluate the performance of our method as well

as other algorithms for finding representatives that are used
for classification. For training data in each class of a dataset,
we find the representatives and use them as a reduced train-
ing dataset to perform classification. Ideally, if the represen-
tatives are informative enough about the original data, the
classification performance using the representatives should
be close to the performance using all the training data.
Therefore, representatives not only summarize a dataset and
reduce the data storage requirements, but also can be effec-
tively used for tasks such as classification and clustering.

We compare our proposed algorithm, which we call as
Sparse Modeling Representative Selection (SMRS), with
several standard methods for finding representatives of
datasets: Kmedoids, Rank Revealing QR (RRQR) and sim-
ple random selection of training data (Rand). We evaluate
the classification performance using several standard clas-
sification algorithms: Nearest Neighbor (NN) [9], Nearest
Subspace (NS) [22], Sparse Representation-based Classi-
fication (SRC) [40], and Linear Support Vector Machine
(SVM) [9]. The experiments are run on the USPS dig-
its database [23] and the Extended YaleB face database
[28].6 For each class, we randomly select 1, 000 (USPS)

6USPS digits database consists of 10 classes corresponding to hand-
written digits 0, 1, . . . , 9. Extended YaleB face database consists of 38

E. Elhamifar, G. Sapiro, and R. Vidal. See All by Looking at A Few: Sparse Modeling for Finding Representative Objects. CVPR 2012.
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Figure 1. Some frames of the Society Raffles video and the automatically computed representatives of the whole video sequence using our algorithm. The
representatives summarize the video as follows: 1) there is a nicely-decorated living room, with a door stage left and a settee in front of an open window
in the foreground; 2) a man in the room is talking to someone across the window; 3) a couple enter the room, a man and a woman who is wearing a white
gown, and a jeweled tiara. Someone, probably the first man, is standing on the other side of the room; 4) the man who entered with the woman is talking
to her and bowing, probably he wants to leave; 5) the first man is sitting with the woman and is reaching for her tiara; 6) the first man is leaving the room,
a person is standing across the window and examining the tiara; 7) the woman is entering back to the living room, so she had followed the first man to the
door; 8) the woman is clutching her head seeing the bandit across the window; 9) the woman is fainting on the sofa and the bandit has disappeared.

Figure 2. Some frames of a tennis match video, which consists of multiple shots, and the automatically computed representatives of the whole video
sequence using our algorithm. Depending on the amount of activities in each shot of the video, we obtained one or a few representatives for that shot.

negative matrix factorization using an �1/�⇥ optimization
to select some of the columns of the data matrix for one of
the factors. The algorithm has been studied for the problem
of hyperspectral imaging endmember identification, with-
out theoretical analysis of the conditions for the success of
the algorithm and the properties of the selected columns.
Paper Contributions. In this work, we study the problem
of finding data representatives using dimensionality reduc-
tion in the object-space. We assume that there is a subset
of data points, called representatives, such that each point
in the dataset can be described as a linear combination of a
few of the representative points. More specifically, collect-
ing N data points of a dataset in Rm as columns of a data
matrix Y ⌅ Rm�N , we consider the optimization problem

min ⇧Y � Y C⇧2F s.t. ⇧C⇧row,0 ⇥ k, 1⇤C = 1⇤, (1)

where C ⌅ RN�N is the coefficient matrix and ⇧C⇧row,0

counts the number of nonzero rows of C [17, ?]. In other
words, we wish to find at most k ⇤ N representatives that
best reconstruct the data collection. This can be viewed as
a sparse dictionary learning scheme [1, 24, 27] where the
atoms of the dictionary are chosen from the data points and,

instead of letting the support for the sparse codes be arbi-
trary, we enforce them to have a common support.

The self-expressiveness property, Y = Y C, has been
studied for subspace clustering using sparse representation
[7] and low-rank representation [11, 22]. However, these
algorithms are not targeted at finding representatives be-
cause of the norms they use for the coefficient matrix C. A
framework similar to that in (1), with a non-negativity con-
straint on C and without the affine constraint has been used
for non-negative matrix factorization for the problem of hy-
perspectral imaging endmember identification [10], with-
out studying the theoretical guarantees and the analysis of
the selected columns. In addition, a weighted ⇧C⇧row,0 has
been used in the context of image restoration for selecting
similar patches in a dictionary learning framework [25].

In this work, we propose an algorithm for solving a con-
vex relaxation of (1) and provide an analysis of the theoreti-
cal guarantees of the algorithm. Our work has the following
contributions with respect to the state of the art:

– Unlike prior works, we do not assume that the data are
low-rank or distributed around cluster centers. We only re-
quire the total number of representatives to be much smaller

2
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Figure 7: Some frames of a political debate video, which consists of multiple shots, and the automatically
computed representatives (inside red rectangles) of the whole video sequence using our proposed algorithm.

4.2.2 Video Summarization using Representatives

We now evaluate our proposed algorithm for finding representative frames of video sequences. We
take a political debate video [?], downsample the frames to 80� 100 pixels, and convert each frame
to a grayscale image. Each data point then corresponds to an 8000-dimensional vector obtained by
vectorizing each grayscale downsampled frame. We set the dissimilarities to be the Euclidean dis-
tances between pairs of data points. Figure 7 shows some frames of the video and the representatives
computed by our method. Notice that we obtain a representative for each shot of the video. It is
worth mentioning that the computed representatives do not change for � ⇥ [2.68, 6.55].

4.2.3 Finding Representative Sentences in Text Documents

As we discussed earlier, our proposed algorithm can deal with dissimilarities that are not necessarily
metric, i.e., can be asymmetric or violate the triangle inequality. We consider now an example of
asymmetric dissimilarities where we find representative sentences in the text document of this pa-
per. We compute the dissimilarities between sentences using an information theory-based criterion
as follows [?]: we treat each sentence as a “bag of words” and compute dij (how well sentence i
represents sentence j) based on the sum of the costs of encoding every word in sentence j using the
words in sentence i. More precisely, for sentences in the text of the paper, we extract the words de-
limited by spaces, we remove all punctuations, and eliminate words that have less than 5 characters.
For each word in sentence j, if the word matches3 a word in sentence i, we set the encoding cost for
the word to the logarithm of the number of words in sentence i, which is the cost of encoding the
index of the matched word. Otherwise, we set the encoding cost for the word to the logarithm of the
number of the words in the text dictionary, which is the cost of encoding the index of the word in all
the text. We also compute dii using the same procedure, i.e., dii ⇤= 0, which penalizes selecting very
long sentences. We found that 96% of the dissimilarities are asymmetric. The four representative
sentences obtained by our algorithm summarize the paper as follows:

–Given pairwise dissimilarities between data points, we consider the problem of finding a subset of data points,
called representatives or exemplars, that can efficiently describe the data collection.

–We obtain the range of the regularization parameter for which the solution of the proposed optimization pro-
gram changes from selecting one representative for all data points to selecting all data points as representatives.

–When there is a clustering of data points, defined based on their dissimilarities, we show that, for a suitable
range of the regularization parameter, the algorithm finds representatives from each cluster.

–As the results show, the classification performance using the representatives found by our proposed algorithm
is close to that of using all the training samples.
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Figure 1. Some frames of the Society Raffles video and the automatically computed representatives of the whole video sequence using our algorithm. The
representatives summarize the video as follows: 1) there is a nicely-decorated living room, with a door stage left and a settee in front of an open window
in the foreground; 2) a man in the room is talking to someone across the window; 3) a couple enter the room, a man and a woman who is wearing a white
gown, and a jeweled tiara. Someone, probably the first man, is standing on the other side of the room; 4) the man who entered with the woman is talking
to her and bowing, probably he wants to leave; 5) the first man is sitting with the woman and is reaching for her tiara; 6) the first man is leaving the room,
a person is standing across the window and examining the tiara; 7) the woman is entering back to the living room, so she had followed the first man to the
door; 8) the woman is clutching her head seeing the bandit across the window; 9) the woman is fainting on the sofa and the bandit has disappeared.

Figure 2. Some frames of a tennis match video, which consists of multiple shots, and the automatically computed representatives of the whole video
sequence using our algorithm. Depending on the amount of activities in each shot of the video, we obtained one or a few representatives for that shot.

of data points, called representatives, such that each point
in the dataset can be described as a linear combination of a
few of the representative points. More specifically, collect-
ing N data points of a dataset in Rm as columns of a data
matrix Y ⌅ Rm�N , we consider the optimization problem

min ⇧Y � Y C⇧2F s.t. ⇧C⇧row,0 ⇥ k, 1⇥C = 1⇥, (1)

where C ⌅ RN�N is the coefficient matrix and ⇧C⇧row,0

counts the number of nonzero rows of C [24, 37]. In other
words, we wish to find at most k ⇤ N representatives that
best reconstruct the data collection. This can be viewed as
a sparse dictionary learning scheme [1, 30, 33] where the
atoms of the dictionary are chosen from the data points and,
instead of letting the support for the sparse codes be arbi-
trary, we enforce them to have a common support.

The self-expressiveness property, Y = Y C, has been
studied for subspace clustering using sparse representation
[11, 15] and low-rank representation [18, 29]. However,
these algorithms are not targeted at finding representatives
because of the norms they use for C. A framework simi-
lar to that in (1), with a nonnegativity constraint on C and
without the affine constraint, has been used for nonnegative
matrix factorization for the problem of hyperspectral imag-
ing endmember identification [17], without the analysis of
the selected columns. In the context of dictionary learning,

[4] and [31] use ⇧C⇧row,0 to design compact dictionaries
and to select similar patches in an image, respectively.

In this work, we propose an algorithm for solving a con-
vex relaxation of (1) and provide an analysis of the theoreti-
cal guarantees of the algorithm. Our work has the following
contributions with respect to the state of the art:

– Unlike prior works, we do not assume that the data are
low-rank or distributed around cluster centers. We only re-
quire the total number of representatives to be much smaller
than the number of actual points in the dataset.

– When the data come from a collection of low-rank mod-
els, we show that our method automatically selects a few
data points from each model.

– We analyze the geometry of representatives and show that
they correspond to vertices of the convex hull of the data.

– We propose a framework to detect and reject outliers from
the dataset using the solution of the proposed optimization
program. We also show how to deal with new observations
and large datasets efficiently.

– We demonstrate the proposed framework in applications
to video summarization (Figs. 1-2) and classification using
representatives.



Applications: Summarizing our NIPS paper!


– Given pairwise dissimilarities between data points, we consider the 
problem of finding a subset of data points, called representatives or 
exemplars, that can efficiently describe the data collection. 


– We obtain the range of the regularization parameter for which the 

solution of the proposed optimization program changes from selecting 
one representative for all data points to selecting all data points as 
representatives. 


– When there is a clustering of data points, defined based on their 

dissimilarities, we show that, for a suitable range of the regularization 
parameter, the algorithm finds representatives from each cluster. 


– As the results show, the classification performance using the 

representatives found by our proposed algorithm is close to that of 
using all the training samples.
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