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Brief History of Neural Networks
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Impact of Deep Learning in Al
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What can | help you with?

Silver et al. Mastering the game of Go with deep neural networks and tree search, Nature 2016
Artificial intelligence learns Mario level in just 34 attempts, https:
https://github.com/aleju/mario-ai
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https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai
https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai

Why These Improvements in Performance?

 Features are learned rather than hand-crafted

mean AP

* More layers capture more invariances [1]

 More data to train deeper networks Zjﬂff

 More computing (GPUs) a7 15 10 23
» Better regularization: Dropout
 New nonlinearities
— Max pooling, Rectified linear units (ReLU) [2]
0

« Theoretical understanding of deep networks remains shallow

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.
[2] Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon
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Key Theoretical Questions in Deep Learning

Architecture Design

Slide courtesy of Ben Haeffele

Optimization

Generalization

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]

Theorem [C’89, H'91] Let p() be a bounded, non-constant continuous func-
tion. Let I,, denote the m-dimensional hypercube, and C'(I,,) denote the space

of continuous functions on I,,. Given any f € C([,,) and € > 0, there exists
N >0 and v;,w;,b;, + =1..., N such that

F(x) = Z vip(w] = + b;) satisfies
i<N

sup |f(z) — F(z)] <e.

x€l,,
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Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]

e Approximation, depth, width and invariance: recent work
— Gaps between deep and shallow networks [Montufar’14, Mhaskar’16]
— Deep Boltzmann machines are universal approximators [Montufar’15]
— Design of CNNs via hierarchical tensor decompositions [Cohen '17]

— Scattering networks are deformation stable for Lipschitz non-linearities
[Bruna-Mallat ’13, Wiatowski 15, Mallat "16]

— Exponential # of units needed to approximate deep net [Telgarsky’16]
— Approximation with sparsely connected deep networks [Bolcskei *19]
— Representation power of GNNs [Jegelka'18]

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989.

[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989.

[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251-257, 1991.

[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.

[5] Cohen et al. Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions arXiv preprint arXiv:1705.02302

[6] Montufar, Pascanu, Cho, Bengio, On the number of linear regions of deep neural networks, NIPS, 2014

[7] Mhaskar, Poggio. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 2016.

[8] Montufar et al, Deep narrow Boltzmann machines are universal approximators, ICLR 2015, arXiv:1411.3784v3

[9] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872—-1886, 2013. =

[10] Wiatowski, Bélcskei. A mathematicgl theory of deep convolutional neural ne(tw)orks for feature extraction. arXiv2015. @w JOHNS HOPKINS
[11] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016.

[12] Telgarsky, Benefits of depth in neural networks. COLT 2016. MATHEMATICAL INSTITUTE
[13] Bolcskei, Grohs, Kutyniok, Petersen. Optimal approximation with sparsely connected deep neural networks. SIAM J. Math of Data Science, 2019 for DATA SCIENCE



Key Theoretical Questions: Optimization

 Optimization theory: earlier work

— No spurious local minima for linear networks [Baldi-Hornik’89, Nouiehed’18, Zhu’]

— Backprop fails to converge for nonlinear networks [Brady’89], converges for
linearly separable data [Gori-Tesi’91-'92], or it gets stuck [Frasconi’97]

— Local minima and plateaus in multilayer perceptrons [Fukumizu-Amari’00]

e Optimization theory: recent work on landscape

— Convex neural networks in infinite number of variables [Bengio '05]
— No spurious local minima for deep linear networks and square loss [Kawaguchi’16]

— No spurious local minima for positively homogeneous networks [Haeffele-Vidal’15
“17], but infinitely many local minima in general [Yun '19]

— Role of level sets on spurious valleys [Venturi ‘18, Nguyen’18’19, Kuditipudi ‘19]

— Statistical physics-based analysis of the landscape of two-layer neural networks
[Mei '18 “19] and multilayer networks [Choromanska ’15, Verpoort-Lee-Wales ’20]

1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

2] Brady, Raghavan, J Slawny. Back propagation fails to separate where perceptrons succeed. IEEE Trans Circuits & Systems, 36(5):665—-674, 1989.
3] Gori, Tesi. On the problem of local minima in backpropagation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(1):76-86, 1992.

4] Frasconi, Gori, Tesi. Successes and failures of backpropagation: A theoretical. Progress in Neural Networks: Architecture, 5:205, 1997.

5] Fukumizu, Amari. Local minima and plateaus in multilayer perceptrons. Neural Networks, 2000.

6] Bengio, Le Roux, Vincent, Delalleau, Marcotte. Convex Neural Networks. NeurlPS, 2005

7] Kawaguchi. Deep learning without poor local minima. NeurlPS, 2016.

8] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 2015.

9] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

10] Yun, Sra, Jadbabaie. Small nonlinearities in activation functions create bad local minima in neural networks. ICLR 2019.

11] Y Cooper. The loss landscape of overparameterized neural networks. arXiv:1804.10200, 2018.

12] Venturi, A. S. Bandeira, and J. Bruna. Spurious valleys in two-layer neural network optimization landscapes. arXiv preprint arXiv:1802.06384, 2018.

13] Nguyen On connected sublevel sets in deep learning. arXiv preprint arXiv:1901.07417, 2019. =X OHNS HOPKINS
14] Nguyen, Mukkamala, Hein. On the loss landscape of a class of deep neural networks with no bad local valleys. arXiv preprint arXiv:1809.10749, 2018.

15] Kuditipudi, Wang, Lee, Zhang, Li, Hu, Ge, Arora. Explaining landscape connectivity of low-cost solutions for multilayer nets. NeurlPS, 2019.

16] Mei, Montanari, Nguyen. A mean field view of the landscape of two-layer neural networks. PNAS, 115(33):E7665-E7671, 2018. MATHEMATICAL INSTITUTE
17] Mei, MlSlakleW|cz Montanari. Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit. COLT 2019 far DATA SCIENCE

[18] Verpoort, Lee, Wales. Archetypal landscapes for deep neural networks. PNAS, 2020.




Key Theoretical Questions: Optimization

e Optimization theory: recent work on algorithms

— GD on networks with many hidden units can learn polynomials [Andoni ’14]

— Attacking the saddle point problem [Dauphin '14]

— Effect of noise and BN on the landscape [Santurkar’18, Chaudhari’15, Soudry '16]
— Entropy-SGD is biased toward wide valleys [Chaudhari ’17]

— Deep relaxation: PDEs for optimizing deep nets [Chaudhari 18]

— Guaranteed training of NNs using tensor methods [Janzamin ’16]

— Convergence of GD for deep linear neural networks [Arora ’18]

— Implicit acceleration by over-parameterization [Arora 18, Tarmoun '20]

— Benign landscape [Fang ’19] and convergence of gradient methods in
overparametrized models [Chizat ’18, Li 18, Du '19, Allen-Zhu’19, Zou ’19]

— Mean-field and learning dynamics [Nguyen '19]

1] Andoni, Panigrahy, Valiant, Zhang. Learning polynomials with neural networks. ICML 2014.

2] Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, Identifying and attacking the saddle point problem in high-dimensional non- convex optimization, NeurlPS 2014.

3] Santurkar, Tsipras, llyas, Madry. How does batch normalization help optimization? NeurlPS, 2018.

4] Soudry, Y Carmon. No bad local minima: Data independent training error guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

5] Chaudhari, Soatto. Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks. ICLR 2018.

6] Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes, Sagun, Zecchina. Entropy-SGD: biasing gradient descent into wide valleys. ICLR 2016, JSM 2019.
7] Chaudhari, A Oberman, S Osher, S Soatto, G Carlier. Deep relaxation: partial differential equations for optimizing deep neural networks. RMS 2018

8] Janzamin, Sedghi, Anandkumar, Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods, arXiv:1506.08473, 2016.

9] Arora, Cohen, Golowich, Hu. A convergence analysis of gradient descent for deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

10] Arora, Cohen, Hazan. On the optimization of deep networks: Implicit acceleration by overparameterization. arXiv preprint arXiv:1802.06509, 2018.

11] Tarmoun, Franca, Haeffele, Vidal. Implicit Acceleration of Gradient Flow in Overparameterized Linear Models.

12] Fang, Gu, Zhang, Zhang. Convex formulation of overparameterized deep neural networks. arXiv preprint arXiv:1911.07626, 2019.

13] Chizat, Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. NeurlPS, 2018.

14] Li, Liang. Learning overparameterized neural networks via stochastic gradient descent on structured data. NeurlPS, 2018.

15] Du, Zhai, Poczos, Singh. Gradient descent provably optimizes over-parameterized neural networks. ICLR, 2019.

16] Du, Lee, Li, Wang, Zhai. Gradient descent finds global minima of deep neural networks. ICML, 2019. Q OHNS HOPKINS
17] Allen-Zhu, Li, Song. A convergence theory for deep learning via over-parameterization. ICML, 2019.

18] Zou, Cao, Zhou, Gu. Gradient descent optimizes over-parameterized deep ReLU networks. Machine Learning 2019

19] Zou, Gu. An improved analysis of training over-parameterized deep neural networks. NeurlPS, 2019. MATHEMATICAL INSTITUTE
20] Nguyen. Mean field limit of the learning dynamics of multilayer neural networks. arXiv preprint arXiv:1902.02880, 2019. DATA SCIENCE

21] Dogra, Redman. Optimizing Neural Networks via Koopman Operator Theory, 2020. fa 7



Key Theoretical Questions: Generalization

 Generalization and regularization theory: earlier work
— # training examples grows polynomially with network size [1,2]

 Regularization methods: earlier and recent work
— Early stopping [3]
— Dropout, Dropconnect, Dropblock and extensions (adaptive, annealed) [4,5]
— Batch normalization [6]

 Generalization and regularization theory: recent work
— Distance and margin-preserving embeddings [7,8]
— Path SGD/implicit regularization & generalization bounds [9,10]
— Product of norms regularization & generalization bounds [11,12]
— Information theory: info bottleneck, info dropout, Fisher-Rao [13,14,15]
— Rethinking generalization: [16]

1] Sontag. VC Dimension of Neural Networks. Neural Networks and Machine Learning, 1998.

2] Bartlett, Maass. VC dimension of neural nets. The handbook of brain theory and neural networks, 2003.

3] Caruana, Lawrence, Giles. Overfitting in neural nets: Backpropagation, conjugate gradient & early stopping. NeurlPS 2001.

4] Srivastava. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.

5] Wan. Regularization of neural networks using dropconnect. ICML, 2013.

6] loffe, Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv preprint arXiv:1502.03167, 2015

7] Giryes, Sapiro, Bronstein. Deep Neural Networks with Random Gaussian Weights. arXiv:1504.08291.

8] Sokolic. Margin Preservation of Deep Neural Networks, 2015

9] Neyshabur. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015

10] Behnam Neyshabur. Implicit Regularization in Deep Learning. PhD Thesis 2017

11] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of invariant classifiers. In AISTATS, 2017. Q OHNS HOPKINS
12] Sokolié, Giryes, Sapiro, Rodrigues. Robust Large Margin Deep Neural Networks. IEEE Transactions on Signal Processing, 2017.

13] Shwartz-Ziv, Tishby. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017.

14] Achille, Soatto. Information dropout: Learning optimal representations through noisy computation. arXiv: 2016. MATHEMATICAL INSTITUTE
15] Liang, Poggio, Rakhlin, Stokes. Fisher-Rao Metric, Geometry and Complexity of Neural Networks. arXiv: 2017. DATA SCIENCE

16] Zhang, Bengio, Hardt, Recht, Vinyals. Understanding deep learning requires rethinking generalization. ICLR 2017. far



Key Theoretical Questions: Generalization

 Generalization and regularization theory: recent work

Implicit regularization of dropout [Cavazza’'18, Mianjy’18, Pal’20, Arora’20], batch

normalization [Schilling’16, De’20] & GD [Arora’19] in matrix factorization/deep nets

Neural tangent kernel (NTK) [Jacot’18, Chizat'19, Arora’19,

Arora’19, Fang 19, Montanari’19 °20, Cao’19]
A

Over-parametrization can improve generalization [Belkin’19,

Wei’19, Ghorbani ‘20]
Allen-Zhu’18,

under-fitting over-fitting under-parameterized /\ over-parameterized
. Test risk Test risk / .
% % “classical” “modern”
E O’E regime interpolating regime
N : .
S o ;Training risk ~ Training risk:
sweet spot T — __ =~ - . _interpolation threshold
~a > e

>

Complexity of H Complexity of H Image credit:

Mikhail Belkin

(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

1] Cavazza, Haeffele, Morerio, Lane, Murino, Vidal, Dropout as a Low-Rank Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487
2] Mianjy, Arora, Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777

3] Pal, Lane, Vidal, Haeffele. On the Regularization Properties of Structured Dropout, CVPR (2020). https://arxiv.org/abs/1910.14186

4] Arora, Bartlett, Mianjy, Srebro. Dropout: Explicit Forms and Capacity Control. arXiv:2003.03397, 2020.

5] Schilling. The effect of batch normalization on deep convolutional neural networks, 2016.

6] De, Smith. Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks, 2020.

7] Jacot, Gabriel, Hongler. Neural tangent kernel: Convergence and generalization in neural networks. NeurlPS, 2018.

8] Chizat, Oyallon, Bach. On lazy training in differentiable programming. NeurlPS, 2019.

9] Arora, Du, Hu, Li, Salakhutdinov, Wang. On exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019.

10] Wei, Lee, Liu, Ma. Regularization matters: Generalization and optimization of neural nets v.s. their induced kernel. NeurlPS, 2019.

11] Ghorbani, Mei, Misiakiewicz, Montanari. When Do Neural Networks Outperform Kernel Methods? arXiv preprint arXiv:2006.13409, 2020.

12] Belkin, Hsu, Ma, Mandal, Reconciling modern machine-learning practice and the classical bias—variance trade-off. PNAS, 2019.

13] Allen-Zhu, Li, Liang. Learning and generalization in overparameterized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018.

14] Arora, Du, Hu, Li, Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. ICML, 2019.

15] Fang, Dong, Zhang. Over parameterized two-level neural networks can learn near optimal feature representations. arXiv preprint arXiv:1910.11508, 2019.

17] Montanari, Ruan, Sohn, Yan. The generalization error of max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. arXiv 2019
18] Montanari, Zhong The |nterpo|at|on phase transition in neural networks: Memorization and generalization under lazy training. arXiv preprint arXiv:2007.12826. 2020
[19] Cao, Gu. Generalization bounds of stochastic gradient descent for wide and deep neural networks. NeurlPS, 2019.
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https://arxiv.org/abs/1910.14186
https://arxiv.org/abs/1910.14186

Key Theoretical Questions are Interrelated

Optimization can Architecture
Impact
generalization [1,2

Architecture has

strong effect on
generalization [3]

Optimization

Some architectures
could be easier to
optimize than others [4

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).

[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 @ JOHNS HOPKINS

[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).
[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
for DATA SCIENCE



Toward a Unified Theory?

* Dropout regularization
IS equivalent to
regularization with
products of weights [1,2]

* Regularization with
product of weights
generalizes well [3,4] ©t e

* No spurious local S
minima for product of '
weight regularizers [9]

[1] Cavazza, Lane, Moreiro, Haeffele, Murino, Vidal. An Analysis of Dropout for Matrix Factorization, AISTATS 2018.
[2] Poorya Mianjy, Raman Arora, Rene Vidal. On the Implicit Bias of Dropout. ICML 2018.

[3] Neyshabur, Salakhutdinov, Srebro. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015
[4] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of Invariant Classifiers. AISTATS, 2017.

[5] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Architecture

Generalization/
Regularization
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Outline

 Part l: Optimization Landscape of Linear Networks
— All local minima are global
— Other critical points are saddle points
— All saddles are strict for one hidden layer
— Non-strict saddles exist for deeper networks

 Part ll: Optimization Landscape of Positively
Homogeneous Networks

— If network is wide enough, all local minima are global
— One can escape local minima by increasing the size of the network

e Part lll: Analysis of Dropout, DropConnect, DropBlock
— Dropout is SGD applied to a regularized objective
— Dropout induces low-rank and balanced solutions
— Dropblock induces r-support norm regularization

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

[2] Nouiehed, Razaviyayn. Learning deep models: Critical points and local openness. arXiv preprint arXiv:1803.02968, 2018 =

[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. %w OHNS HOPKINS
[4] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML *14 MATHEMATICAL INSTITUTE
[5] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15

[6] Haeffele. Vidal. Global optimality in neural network trainina. CVPR 2017. far DATA SCIENCE



Landscape of Linear Networks

 All local minima
are global

e QOther critical
points are
saddles

 All saddles are
strict for one
hidden layer

minimum W ———»

 Non-strict
saddles exist for FIGURE 2. The landscape of E.
deeper networks

[1] Baldi, Hornik. Neural networks and principal component analysis: Learning from examples without local minima, Neural networks,

=
[129]83' iehed, Razaviyayn. Learning d dels: Critical points and local Xi int arXiv:1803.02968, 2018 @i'}' JOHNS HOPKINS
oulened, Razaviyayn. Learning deep modeils: Critical points and local openness. arAlv preprint arxiv: . ,
[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. MATHEMATICAL INSTITUTE

[4] Kawaguchi. Deep learning without poor local minima. NeurlPS, 2016. for DATA SCIENCE



Landscape of Homogeneous Networks

« What properties of the
network architecture
facilitate optimization?

— Positive homogeneity

— Parallel subnetwork
structure

« What properties of the
regularization function
facilitate optimization?

— Positive homogeneity

— Adapt network
structure to the data [1]

Picture courtesy of Ben Haeffele

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)

Architecture

Generalization/
Regularization Optimization
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Landscape of Homogeneous Networks

Theorem: A local minimum Theorem: If the network size
such that all the weights from IS large enough, local descent
one subnetwork are zero is a can reach a global minimum
global minimum from any initialization

Non-Convex Function

%03

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications, ICML "14 [/ |
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, '15 @w JOHNS HOPKINS
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
[4] Haeffele, Vidal. Structured low-rank matrix factorization: Global optimality, algorithms, and applications. TPAMI 2019. for DATA SCIENCE



Analysis of Dropout/DropConnect/DropBlock

* |s dropout a valid
optimization algorithm?

* What type of
regularization does
dropout induce?

 What are the properties
of the optimal weights?

* Do results extend to
DropBlock, DropConnect
and deep networks?

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Moi‘erio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank

Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 _ @ JOHNS HOPKINS

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777
[3] Ambar Pal, Connor Lane, René Vidal, Benjamin D. Haeffele. On the Regularization Properties of Structured Dropout, CVPR MATHEMATICAL INSTITUTE

(2020). https://arxiv.org/abs/1910.14186 for DATA SCIENCE
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Single-Hidden Layer Linear Networks

* Linear Network with One Hidden Layer

| input weights |—> 1val U 4—| output weightsl

Input X

| # inputs |—> no

|# hidden neurons |

* Hypothesis space:
F={feY*: f(x)=UV x, where UeR™*™ and VeR"™*™}
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Single-Hidden Layer Linear Networks

« Risk: R(U,V) = Eg 4[|y — UV |2
= trace(Xyy — 25y VU ' + UV 'S, VU")

« Note: If the hidden layer is large enough (n1 > max{ng, n2})
sothat Z = UV 'is full rank, and X is invertible, then

Z*=U'V*" =S5,

- Note: if 2, is invertible problem becomes matrix factorization

- ~-1 T2
e Theorem [1]: If X, and X = Ewa;;Emy are invertible, then
up to a change of basis, the set of global minima of the risk is:

U= Ql:n17 V = Z;éxwalinlv UVT — lel Qirnl Zywz};fllﬁ

[1] Baldi, Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, =
1989, _ _ R \ A @w JOHNS HOPKINS
[2] Nouiehed, Razaviyayn. Learning deep models: Critical points and local openness. arXiv preprint arXiv:1803.02968, 2018 MATHEMATICAL INSTITUTE

[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. for DATA SCIENCE



Deep Linear Networks

* Deep Linear Network with L layers

| input weights |—> w

w L <—| output weights |

> ‘r :, &,
Input X NI Yy output

s
A SN

| # inputs I—> no n1 n2 nr
V \l # outputs |

|# hidden neurons |

 Hypothesis space:
F={fey?*: f(x)=wHwl=U. . wllg where Wl ¢ Rr*mi-11
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Deep Linear Networks

+ Risk: R(W) =Eqy[lly
= trace(Xyy — 25, W) 1 @‘ zaWi' ;)

- Note: If hidden layers are large enough (n; > max{ny, n; })
so that W, is full rank, and 2 is invertible, then

Wl*:L — Zyw E;alz

- Theorem [1]: If 2., and 2, are full rank with n; < n;and

2, = ZyxZ;lexy is full rank with n; distinct eigenvalues, then:

— Any local minimum is global, other critical points are saddle points
— A saddle such that rank(W[L_l]---W[l]) = minj<;<z—1 1 is strict
— Other saddles may not be strict.

[1] Kawaguchi. Deep learning without poor local minima. NeurlPS, 2016.

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Landscape of Linear Networks

 All local minima
are global

e QOther critical
points are
saddles

 All saddles are
strict for one
hidden layer

minimum W ———»

 Non-strict
saddles exist for FIGURE 2. The landscape of E.
deeper networks

[1] Baldi, Hornik. Neural networks and principal component analysis: Learning from examples without local minima, Neural networks,

=
[129]83' iehed, Razaviyayn. Learning d dels: Critical points and local Xi int arXiv:1803.02968, 2018 @i'}' JOHNS HOPKINS
oulened, Razaviyayn. Learning deep modeils: Critical points and local openness. arAlv preprint arxiv: . ,
[3] Zhu, Soudry, Eldar, Wakin. The Global Optimization Geometry of Shallow Linear Neural Networks. JMIV, 2019. MATHEMATICAL INSTITUTE

[4] Kawaguchi. Deep learning without poor local minima. NeurlPS, 2016. for DATA SCIENCE
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Toward a Unified Theory?

* Dropout regularization
IS equivalent to
regularization with
products of weights [1,2]

* Regularization with
product of weights
generalizes well [3,4] ©t e

« No spurious local S
minima for product of '
weight regularizers [9]

[1] Cavazza, Lane, Moreiro, Haeffele, Murino, Vidal. An Analysis of Dropout for Matrix Factorization, AISTATS 2018.
[2] Poorya Mianjy, Raman Arora, Rene Vidal. On the Implicit Bias of Dropout. ICML 2018.

[3] Neyshabur, Salakhutdinov, Srebro. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015
[4] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of Invariant Classifiers. AISTATS, 2017.

[5] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Architecture

Generalization/
Regularization

Optimization
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

 Theoretical guarantees

— Sufficient conditions for
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, =
ICML'14 - B _ - %i'!" JOHNS HOPKINS
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15 MATHEMATICAL INSTITUTE

3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
31 P Y - for DATA SCIENCE



Relating Convex & Factorized Formulations

S, V)

F(X)

Convex lower bound: F(X) < f(U,V) UV'=X

Global minima agree: min F(X) = min f(U,V)
X UvT=x
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Relating Convex & Factorized Formulations

e Convex formulations: Factorized formulations

min (Y, X) + A X[, mind(Y.UVT)+XO(U,V)

« Variational form of the nuclear norm [1,2]

(IX|lJ= min |3 |Ul2llVillyf st UVT =X

. @'%%Hfﬂrarl gsn;éfﬁé(lég)ion Is the projective tensor norm [3,4]
T
| X [ u,0 = min .E 1§ Uil Ville st. UV =X
1=

| mini and convergence in low- rank t Y b =
ira, ino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition,” CVPR, %w JOI—INS HOPKINS

MATHEMATICAL INSTITUTE

Cabral, De la Torre,
013, pp. 2488-2495.
Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008.
Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. for DATA SCIENCE
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Main Results: Matrix Factorization

« Theorem 1: Assume Y is convex and once differentiable in X.
A local minimizer (U, V') of the non-convex factorized problem

. T . -
min (Y, UV >+;\|Uz\\uuv;rrv

such that for some i U, = V; = 0, is a global minimizer.
Moreover, UV ! is a global minimizer of the convex problem

min £(Y, X) + Al X[|u.0
I—‘T

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, /=
ICML 14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15 @i‘:"
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Main Results: Matrix Factorization

If at a spurious local minima, we can find a descent direction
by adding extra dimensions, thus creating a saddle point

L
. .
o 0

If at a global minima, we cannot find a descent direction

@ JOHNS HOPKINS
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Main Results: Matrix Factorization

« Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

e Meta-Algorithm:
— If not at a local minima, perform local descent
— At local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size of factorization and find descent direction (u,v)

rr+1 U<+ U u|l V|V o

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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From Matrix Factorization to Deep Learning

N
7 X7

\ L AN
S NI
2K - XK 7 )%
X 705 ZREL 0 SN
/’ Z 5 ’A

(X, W WH) =g (- b (L (XWHW?) - WH)
~ N

output activation input weights
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From Matrix Factorization to Deep Learning

* |n matrix factorization we
had

L\ (7
" =\ X X/Z~7
RS &7 \&’?of
XX 2SN AR KA

V Zal NN %}I‘I\‘\:
ZNR
7\

N<7
N 42\"’$
A<~ R wz K7
Af,/’é:¢ é?:A RIS
W\ SIS I RY
RN IR
AN > X

1=1

* In positively homogeneous
networks with parallel
structure we have

v
K 7N AERX KA

2N AEZERN
S/ A\ Ve
N2

(I)(Wla - 7WK) — Z¢(Wzla - 7W7,K)
1=1

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



From Matrix Factorization to Deep Learning

* In matrix factorization we had “generalized nuclear norm”

!
1200 = goin 2 NUillalVille 8. UV =2
1=

« By analogy we define “nuclear deep net regularizer”

Qy.0(Z) = {mg? ool . WEY st (W ... WE) =27
Wkt r
T =1

where 0 is positively homogeneous of the same degree as ¢
* Proposition: Q¢,9 IS convex

e Intuition: regularizer © “comes from a convex function”
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Main Results: Deep Learning Case

« Theorem 1: Assume /(Y,Z) convex and differentiable in Z.
A local minimizer (W, ..., W) of the factorized formulation

{I‘I/‘lfilgl}f(Y,(I)(Wl, W) W L R

such that for some i and all k Wf = 0 is a global minimizer.
Moreover, Z = ®(W!, ..., W*) is a global minimizer of the

convex problem
min (Y, Z) + A2y 0(2)
« Examples “
— Matrix factorization

— Tensor factorization
— Deep learning

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

. =

{g]l\f-ll_ 1f‘ftl Vidal. Global Optimality in T Factorization, D L i d B d, arXiv, ‘15 %i‘:" JOHNS HOPKINS
aeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv,

[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
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Main Results: Deep Learning Case

« Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

e Meta-Algorithm:
— If not at a local minima, perform local descent
— At a local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size by 1 (add network in parallel) and continue

— Maximum r guaranteed to be bounded by the dimensions of the
network output

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Summary so Far

e Size matters
— Optimize not only the network weights, but also the network size
— Today: size = number of neurons or number of parallel networks
— Tomorrow: size = number of layers + number of neurons per layer

 Regularization matters
— Use “positively homogeneous regularizer” of same degree as network

— How to build a regularizer that controls number of layers + number of
neurons per layer

* Not done yet

— Checking if we are at a local minimum or finding a descent direction
can be NP hard

— Need “computationally tractable” regularizers

@ JOHNS HOPKINS
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Toward a Unified Theory?

* Dropout regularization
IS equivalent to
regularization with
products of weights [1,2]

* Regularization with
product of weights
generalizes well [3,4] ©t e

* No spurious local S
minima for product of '
weight regularizers [9]

[1] Cavazza, Lane, Moreiro, Haeffele, Murino, Vidal. An Analysis of Dropout for Matrix Factorization, AISTATS 2018.
[2] Poorya Mianjy, Raman Arora, Rene Vidal. On the Implicit Bias of Dropout. ICML 2018.

[3] Neyshabur, Salakhutdinov, Srebro. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015
[4] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of Invariant Classifiers. AISTATS, 2017.

[5] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Architecture

Generalization/
Regularization

Optimization
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Dropout Training

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014 — J
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Dropout Training: Better Learning Curve

2.5

2.0

Classification Error %

1.0f

Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014

A ______________________ TN WU N—— _________________________

1.5

Withoﬁt dropoilt

KAALDALIN
ORI

{) ‘)Q“‘l‘\qv‘}\é&\'—f/?WkA».‘,
/ 4 \L " ’\ N
e s e e

\‘\ ..... ...... s = Wlthdropout ......................

! ] !
400000 600000 800000

Number of weight updates

!
200000

L

1000000

JOHNS HOPKINS

MATHEMATICAL INSTITUTE

for DATA SCIENCE



Backpropagation vs Dropout Training

* Minimize empirical loss

N
j=1

'
'
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« Stochastic gradient descent

W= Wt e ST (Y, B(X,, W)
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(a) Standard Neural Net
Srivastava et al. — Dropout: A simple way to prevent neural networks from overfitting — JMLR 2014
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Backpropagation vs Dropout Training
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Dropout Induces Low-Rank Solutions

Dropout ~ (Nuclear Norm)-

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank —
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 @i':" JOHNS HOPKINS

MATHEMATICAL INSTITUTE
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Deterministic vs Stochastic Factorization

« What objective function is being minimized by dropout?

» Deterministic Matrix Factorization (DMF)

min ||Y — UVTH%

U,v / \

#outputs x #neurons #neurons X #inputs

« Stochastic Matrix Factorization (SMF)

: 1 : T 12
minlE, ||Y —— Udiag(z)V ' ||5%, z;~Ber(8), 6€(0,1)
T
/ T
#neurons >z UV,
=1

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank /=

Regularizer for Matrix Factorization, AISTATS (2018), https:/arxiv.org/abs/1710.03487 %i'!" JOHNS HOPKINS
MATHEMATICAL INSTITUTE
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Dropout as an Explicit Regularizer for SMF

. Using the definition of variance [E(y*) = E(y)? 4+ Var(y)
we can show that dropout induces an explicit regularizer

E.|[Y - 1Udiag(z)V ||, =

1 — 0 «
Y —UV' |7 - 5 ZHUAI%H%H%
1=1

* The second term looks like the nuclear norm (low-rank reg.)

1 Xl = mmZHUH [Villz st. UV =X

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, René Vidal, Dropout as a Low-Rank
Reqularizer for Matrix Factorization, AISTATS (2018), hitpsarxiv.org/abs/1710.03487 %i':" JOHNS HOPKINS
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Dropout with Variable Rate => Low Rank

* Proposition: Dropout with variable rate induces a regularizer

1 -0, - 2 2 T
QX) = min — ;HU@HQH%IIQ st. UV =X
whose convex envelope is the (nuclear norm)?2 7 | X |5
1

 Theorem: Let (U*,V*,r*) be a global minimum of

16, <
. T2 r 2 2
(;5{1‘1/3HY—UV |7 + 0 Z;HU'L”2||VzH2

Then, U*V* ' = S.(Y) | , 1—61, .,
isaglobalWJmof min [V = X + —— 1 X5

@ JOHNS HOPKINS
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What About Dropout with Fixed Rate?

* Results so far tell us what the optimal product is for variable r,
but do not tell us what the optimal factors look like for fixed r.

« The weights (U, V) are balanced if the product of the norms of
Incoming and outgoing weights are equal for all neurons

[Uill2||Vill2 = [|Ujll21|Vjll2 Vi, =1,...,7

« Theorem [balance via rotation] For any pair (U, V) there exists
a rotation R such that the rotated pair (U’,V’)= (UR,VR) gives
the same product, i.e., UVT = U’V’T, and (U’,V’) are balanced.

« Algorithm to compute (U’,V’,R): based on Gram matrices,
eigenvalue decompositions and matrix diagonalization.

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777
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https://arxiv.org/abs/1806.09777
https://arxiv.org/abs/1806.09777

Dropout Minima are Low Rank & Balanced

min [|Y — UV |7 + A IUB IVl
’ 1=1

 Theorem: (U*,V*) is a global minimum iff it is balanced and

UV = S,(Y)

where tau and optimal r depend on singular values of Y

« Algorithm: A global optimum (U*,V*) can be found as follows
— Find any factorization (U,V) of S.- (Y)

— Balance the factors to obtain (U*, V*) = (UR, VR)

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), : i
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https://arxiv.org/abs/1806.09777
https://arxiv.org/abs/1806.09777

Effect of Dropout Rate on the Landscape

e Linear 110 dl"OpOU_t
auto-encoder

* 1input
2 hidden neurons 4+

* 1 output

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https:/arxiv.org/abs/1806.09777 /= J
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Effect of Dropout Rate on the Landscape

. Linear small dropout rate
auto-encoder

* 1input
2 hidden neurons

* 1 output

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https:/arxiv.org/abs/1806.09777
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https://arxiv.org/abs/1806.09777
https://arxiv.org/abs/1806.09777

Effect of Dropout Rate on the Landscape

* Linear large dropout rate
auto-encoder

* 1input
2 hidden neurons

* 1 output

[2] Poorya Mianjy, Raman Arora, René Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777 =N J
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DropBlock

* Motivation: Prevent co-adaptation of correlated units

 Instead of dropping units independently, blocks of a fixed size
are dropped together

Vanilla Dropout DropBlock

No Dropout
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Dropout as an Explicit Regularizer for SMF

* Recall: Dropout is an SGD method for minimizing
#neurons  weights

Ez HY Udlag VT HF * i-th neuron

1 — 0 —
Y —UV "||% A ; > Us3IVilI3

* Theorem: DropBlock is an SGD method for minimizing

E,||Y — LU (diag(w) ® I,) VTXHF #wﬁi
Y —UV' % - Z”UHFHVHF

R/ JOHNS HOPKINS
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DropBlock Induces r-support regularization

* Proposition: DropBlock induces spectral r-support norm

. 1—
Q(X) = min ZHUHFWHF Uv' =X

(£r,e)’

pe{IlI,l2a:%. ZO | r—p—|—1/

. Tradeoff between fzz and 7 12 penalties
. If p* = 1 then Q(X) is the scaled Nuclear norm || X]|?
« As p* — r, Q(X) moves towards the Frobenius norm ||X||%
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DropBlock Induces Balance & Low-Support

« Theorem: A global minimum (U*, V*, r*) of DropBlock

. 1 o (97“ :
min [[Y - UV +—— ) Uil&|Vill7
Uv =X b=l

. T T T
is balanced: ||U;"V;X< |F = ||U£“V£X< lp=... = |UVE ||p

Moreover, X* = U*V*' can be computed in closed form
and is the global minimum of

1—6
. B 2 1
min [[Y" — X|7 A

(91 HXH'IQ“—support
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Conclusions

no dropout small dropout rate

- N W b

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, Rene Vidal, Dropout as a Low-Rank —
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 JOHNS HOPKINS
[2] Poorya Mianjy, Raman Arora, Rene Vidal, On the Implicit Bias of Dropout, ICML (2018), https:/arxiv.org/abs/1806.09777 %i‘:"
[3] Ambar Pal, Connor Lane, René Vidal, Benjamin D. Haeffele. On the Regularization Pl:gpe__rﬁies of Structured Dropout. htps:// MATI}EB%‘:?E?(L:I?I\?(I;]IETUTE
arxiv.org/abs/1910.14186 - - : or
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More Information,

Vision Lab @ JHU
http://www.vision.jhu.edu

Center for Imaging Science @ JHU
http://www.cis.jhu.edu

Mathematical Institute for Data Science @ JHU
http.//www.minds.jhu.edu
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