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Impact of AI/DL in Computer Vision
• 2012-2014 classification results in ImageNet 

• 2015 results: ResNet under 3.5% error using 150 layers!

CNN 
non-CNN

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna



Impact of AI/DL in Speech Recognition



Impact of AI/DL in Game Playing
• AlphaGo: the first computer program to ever beat a 

professional player at the game of Go [1] 

• Similar deep reinforcement learning strategies  
developed to play Atari Breakout, Super Mario

Silver et al. Mastering the game of Go with deep neural networks and tree search, Nature 2016 
Artificial intelligence learns Mario level in just 34 attempts, https://www.engadget.com/2015/06/17/super-
mario-world-self-learning-ai/,  https://github.com/aleju/mario-ai

https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai


Potential Impact of AI/DL in Biomedicine

https://www.forbes.com/sites/robertpearl/2018/03/13/artificial-intelligence-in-healthcare/#470c8be1d750



Potential Impact of AI/DL in Biomedicine

https://www.accenture.com/us-en/insight-artificial-intelligence-healthcare 
http://medicalfuturist.com/top-artificial-intelligence-companies-in-healthcare/

Google DeepMind Health

IBM Watson Path

https://www.accenture.com/us-en/insight-artificial-intelligence-healthcare


What is Biomedical Data Science About?

Machine 
Learning

Interpretation 

Cell phenotype 

Neural shape, 
spiking activity 

Brain networks 

Surgeon skill 

Diagnosis and 
prognosis

Data 

EEG/ECG 

Calcium 
imaging 

D-MRI 

Surgical data 

Electronic 
health records



Fundamental Challenges: Scale/Modalities

http://ibme.utk.edu/research/



Fundamental Challenges: Big/Complex Data
• 400 million procedures/year involve at 

least 1 medical image 

• Medical image archives are increasing 
by 20-40 percent each year 

• 1 billion medical images stored in the 
US (2012) 

• 1/3 of global storage is medical image 
information

http://www.corp.att.com/healthcare/docs/medical_imaging_cloud.pdf



Fundamental Challenges: Small Annotations
• State of the art methods in ML are data hungry 

– Cleaning & annotation of biomedical data is very costly 

• State of the art methods in ML are not fully interpretable 

• Strong need for 

– Sharing clean, highly annotated data 

– Developing methods that require minimal supervision 

– Developing methods that are interpretable to physicians



Our Research in Biomedical Data Science
• Cellular Level 

– Dictionary learning for blood cell 
detection, classification, counting  

– Structured matrix factorization 
for segmentation of neural 
activity in calcium imaging 

– Metamorphosis for classification 
of embryonic cardio-myocytes 

• Organ Level 
– Compressed sensing and 

Riemannian geometry for 
processing diffusion MRI 

• Patient/Surgeon Level 
– Assessing surgical skill 
– Assessing children’s motions

Ghoreyshi ISBI07; Singaraju CVPR08, CVPR09, TPAMI11; Goh ECCV06, ISBI06, ECCV08, CVPR09; MICCAI09, Neuroimage 12; 
Cetingul PPMIA09, ISBI09, TBME11, ISBI11,  ISBI12, TBME14; Schwab IPMI13; Gorospe MICCAI13, TBME13; Haeffele ICML14; Tao 
IPCAI12, MICCAI13; Bejar-Zapella MICCAI12, Media13, MICCAI13; Lea: WACV15, ECCV16
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Thermometer 



Hematology Analyzer 



Machine Learning in Hematology
• Complete Blood Count (CBC) using hematology analyzer

• CBC using lens-free imaging



Computer Vision for Blood Counting & Classification

Granulocyte	 Lymphocyte	 Monocyte	



Standard Reconstruction of Lens-Free Images
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image reconstruction problems for large-scale images along
with an estimate of the missing phase information. Addi-
tionally, our method allows for reconstructions over full 3-
dimensional volumes, which these prior works do not con-
sider.

For 3-dimensional reconstructions, the authors of [?] pro-
pose a method to reconstruct high resolution images of a spec-
imen, potentially over a 3-dimensional volume, using multi-
ple recordings of the specimen with slightly varying optical
wavelengths in the illumination light. Our proposed method
allows for the efficient reconstruction of a 3-dimensional vol-
ume from a single recorded hologram and eliminates the need
to light sources with varying optical wavelength.

3. SPARSE PHASE RECOVERY

Recall that due to the nature of the lens-free reconstruction
problem in (6), the system is under-determined and additional
assumptions are necessary to find meaningful solutions. One
natural and rather general assumption to make in many appli-
cations is that the reconstructed image, X , should be “sparse”,
and the assumption of sparsity is justified whenever the ob-
jects in the specimen occupy only a portion of the pixels with
the field of view with many of the pixels being equal to the
background intensity. The sparsity assumption is incorpo-
rated mathematically by adding a regularization term to (6)
to encourage solutions where the reconstructed image, X , is
sparse:

min
X,W,µ

1
2kH �W�µ1�T (z) ⇤Xk2F +�kXk1 s.t. |W | = 1.

(7)
Note that there are many ways to measure the sparsity of a
signal, but here we use the `1 norm as it has the desirable
property of encouraging sparse solutions while still being a
convex function and conducive to efficient optimization. Ad-
ditionally, typical measures of sparseness require that most
of the entries are identically 0, while here if a pixel doesn’t
contain an object the value of the pixel will be equal to the
background intensity of the illumination light. As a result, we
account for the non-zero background by adding an additional
term to the model to capture (assumed constant) illumination
light with the µ 2 C scalar term.

3.1. Solving the Sparse Phase Recovery Model

While the model given in (7) has many theoretical justifica-
tions based on the nature of the lens-free imaging reconstruc-
tion problem, unfortunately, the optimization problem is non-
convex due to the constraint that |W | = 1. Nevertheless,
despite this challenge, here we describe an algorithm based
on alternating minimization that allows for closed form up-
dates to all of the variables, is highly efficient, and displays
strong empirical convergence. First, we note that because the
convolution with T (z) is a unitary operator for any z we can

Basic Reconstruction

Proposed Reconstruction Method

500 microns 125 microns

Fig. 1. Image reconstructions of a whole blood sample using
different reconstruction algorithms showing both a zoomed in
portion of the reconstructed image. (Top Panel) Basic recon-
struction algorithm. (Bottom Panel) Proposed reconstruction
algorithm.

equivalently reformulate (7) using the relation
1
2kH �W � µ1� T (z) ⇤Xk2F

= 1
2kT (�z) ⇤ (H �W )� µ exp(�izk)1�Xk2F

(8)

where the equality comes the unitary invariance of the Frobe-
nius norm, the properties of the T (z) operator described
above, and the definition of T (z) in (2).

From the above relation, it is now possible to derive closed
form updates to each variable in (7) if the other variables are
held constant. In particular, one has the following,

argmin
W

(7) = exp(i ^(µ1+ T (z) ⇤X)) (9)

argmin
µ

(7) = exp(izk)
mn hT (�z) ⇤ (H �W )�X,1i (10)

argmin
X

(7) =SFT�{T (�z)⇤(H�W)�µ exp(�izk)1}(11)

where SFT�{·} denotes the complex soft-thresholding oper-
ator which is given by

SFT�{Z}[i, j] =
(
Z[i, j] |Z[i,j]|��

|Z[i,j]| |Z[i, j]| > �

0 |Z[i, j]|  �.
(12)

Using these update equations, it is then possible to efficiently
reconstruct images from the recorded diffraction patterns us-

Granulocyte	 Lymphocyte	 Monocyte	



Sparse Phase Recovery Reconstruction of Lens-Free Images

image reconstruction problems for large-scale images along
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convex due to the constraint that |W | = 1. Nevertheless,
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equivalently reformulate (7) using the relation
1
2kH �W � µ1� T (z) ⇤Xk2F

= 1
2kT (�z) ⇤ (H �W )� µ exp(�izk)1�Xk2F

(8)

where the equality comes the unitary invariance of the Frobe-
nius norm, the properties of the T (z) operator described
above, and the definition of T (z) in (2).

From the above relation, it is now possible to derive closed
form updates to each variable in (7) if the other variables are
held constant. In particular, one has the following,

argmin
W

(7) = exp(i ^(µ1+ T (z) ⇤X)) (9)

argmin
µ

(7) = exp(izk)
mn hT (�z) ⇤ (H �W )�X,1i (10)

argmin
X
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where SFT�{·} denotes the complex soft-thresholding oper-
ator which is given by

SFT�{Z}[i, j] =
(
Z[i, j] |Z[i,j]|��
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Using these update equations, it is then possible to efficiently
reconstruct images from the recorded diffraction patterns us-

ü Remove	background	
ü Recover	phase	

Granulocyte	 Lymphocyte	 Monocyte	

B. Haeffele, R. Stahl, G. Vanmeerbeeck, and R. Vidal, “Efficient Reconstruction of Holographic 
Lens-Free Images by Sparse Phase Recovery .” MICCAI, 2017.

umes and robustly finds the focal depth of objects in the specimen. Further,
our method is highly e�cient and reconstructs large images in under a second,
and experimental results demonstrate significantly improved image quality over
existing methods based on single hologram reconstructions. In §3 we present our
model for reconstructing single images, and then in §4 we extend our model to
reconstructions over 3D volumes.

3 Sparse Phase Recovery

Due to the fact that the LFI reconstruction problem in (4) is underdetermined,
additional assumptions are needed to find meaningful solutions. A natural and
rather general assumption in many applications is that the reconstructed im-
age, X, be sparse, an assumption that is justified whenever the objects in the
specimen occupy only a portion of the pixels in the field of view with many of
the pixels being equal to the background intensity. Note that there are many
ways to measure the sparsity of a signal, but here we use the `1 norm as it has
the desirable property of encouraging sparse solutions while still being a convex
function and conducive to e�cient optimization. Additionally, typical measures
of sparseness require that most of the entries be identically 0, while here if a pixel
doesn’t contain an object the value of the pixel will be equal to the background
intensity of the illumination light. As a result, we account for the non-zero back-
ground by adding an additional term µ 2 C to the model to capture (planar)
illumination. This results in the final model that we propose in this work,

min
X,W,µ

1
2kH �W � µ1� T (z) ⇤Xk2F + �kXk1 s.t. |W |=1. (6)

While our model given in (6) has many theoretical justifications based on
the nature of the LFI reconstruction problem, unfortunately, the optimization
problem is non-convex due to the constraint that |W | = 1. Nevertheless, despite
this challenge, here we describe an algorithm based on alternating minimization
that allows for e�cient, closed-form updates to all of the variables which displays
strong empirical convergence using trivial initializations. In particular, one has
the following closed-form updates for our variables,

argmin
W

(6) = exp(i ^(µ1+ T (z) ⇤X)) (7)

argmin
µ

(6) = 1
mn hH �W � T (z) ⇤X,1i (8)

argmin
X

(6) = SFT�{T (�z) ⇤ (H �W )� µ exp(�izk)1} (9)

where SFT�{·} denotes the complex soft-thresholding operator, given by

SFT�{Z}[i, j] =
(
Z[i, j] |Z[i,j]|��

|Z[i,j]| |Z[i, j]| > �

0 |Z[i, j]|  �.
(10)



Lens-Free Images of White Blood Cells

✗ 	Low	resolution	
ü Compact	size	
ü Low-cost	
ü Large	field	of	view			



Possible Approach to Detection & Classification 

Threshold	 CNN	
Class	
Labels	



Our Approach to Detection & Classification

1) Generative	probabilistic	model
for	multi-object	detection	and	
classification
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Method to detect, count and classify cell populations in LFI 

1. Generative probabilistic model for  
multi-object detection & classification 

2. Weakly supervised learning  
without per-object bounding  
boxes  

3. Efficient inference method to  
detect, count, and classify  
populations of hundreds to  
thousands of cells per image
Florence Yellin, Benjamin D Haeffele, Sophie Roth, René Vidal, “Multi-Cell Detection and 
Classification Using a Generative Convolutional Model” CVPR, 2018.



Learning Image Parameters from Purified Blood
• Experimentally isolate cells from a single subclass to obtain 

purified blood and use detected cells as training examples 

• Domain adaptation challenge: purified data may not be 
representative mixed-cell populations

Purified	monocytes	

Purified	lymphocytes	

Purified	granulocytes	

Monocyte	templates	

Lymphocyte	templates	

Granulocyte	templates	



Class Proportion Results 
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Mean Absolute Error CNN CSC Ours

Granulocytes - all 28.6 30.1 6.8
Lymphocytes - all 11.6 8.3 5.6
Monocytes - all 18.9 22.3 5.5

Method Correlation Coefficient

Thresholding 0.970

CSC 0.971

Ours 0.975

Mean Absolute Error CNN CSC SVM Ours

Granulocytes - normal 27.8 31.1 31.6 4.5
Lymphocytes - normal 12.8 9.5 11.1 4.6
Monocytes - normal 15.9 21.9 20.4 4.7
Granulocytes - all 28.6 30.1 31.8 6.8
Lymphocytes - all 11.6 8.3 10.1 5.6
Monocytes - all 18.9 22.3 22.8 5.5

Mean Absolute Error CNN CSC Ours

Granulocytes - normal 27.8 31.1 4.5
Lymphocytes - normal 12.8 9.5 4.6
Monocytes - normal 15.9 21.9 4.7
Granulocytes - all 28.6 30.1 6.8
Lymphocytes - all 11.6 8.3 5.6
Monocytes - all 18.9 22.3 5.5

1
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Computer Vision for NeuroscienceNeural Recording Methods
Single Electrode Functional MRI Electrode Arrays

• Classical gold 
standard

• One neuron at 
a time

• Whole brain 
activity

• Averaged over 
1000s of 
neurons

• Multiple 
neurons 
simultaneously

• Limited spatial 
information



Computer Vision for Neuroscience
• Fluorescent microscopy technique 

– Optical recording of brain activity 
– Neurons “flash” when active electrically

60 microns 470 microns
Stosiek, Garaschuk, Holthoff, Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” PNAS, 
100(12):7319–7324, 2003.



Computer Vision for Neuroscience

Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14

= Ui

video sequence

neuron’s 
shape image

= Vi(t) ?D(t)
neuron’s temporal 

signal

= Y

neuron’s spiking 
activity = Vi

• Video can be approximated as the sum of rank-1 matrices

number of 
neurons

Y ⇡
rX

i=1

UiV
>
i D



Computer Vision for Neuroscience
• Desired properties of shape  

and spike matrices 
– Ui should be sparse (low L1) 
– Ui should be compact (low TV) 
– Vi should be sparse (low L1)

Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14

Y =

= Ui

= Vi

Y ⇡
rX

i=1

UiV
>
i D



Computer Vision for Neuroscience

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

Raw Data Sparse + Low Rank + Total Variation

60 microns

Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications 
to Image Processing, ICML ’14

few 
neurons

sparse

compact

min
U,V

kY � UV >Dk2F + �
rX

i=1

kUikukVikv
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Machine Learning in Regenerative Medicine
• Cardiovascular disease is the 

world’s leading cause of death. 
– 17.3 million deaths per year. 
– 787,000 in the US (2011). 

• Myocardial infarction is one of  
the leading causes of sudden  
cardiac arrest. 

• Stem cells present a potential  
avenue to treating  
myocardial infarction.

Laflamme, Chen, Naumova, Muskheli, Fugate, Dupras, Reinecke, Xu, Hassanipour, Police, O’Sullivan, Collins, 
Chen, Minami, Gill, Ueno, Yuan, Gold, Murray. Cardiomyocytes derived from human embryonic stem cells in pro-
survival factors enhance function of infarcted rat hearts. Nature biotechnology 25(9):1015–24, 2007

https://www.heart.org/

http://www.georgeinstitute.org/units/cardiovascular

https://www.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm_470704.pdf
http://www.georgeinstitute.org/units/cardiovascular


Machine Learning in Regenerative Medicine
• Predict cell phenotype from the shape of its action potential 

• Maturation process affects the shape of the action potential

Gorospe, Zhu, Milrod, Zambidis, Tung, Vidal. Automated grouping of action potentials of human 
embryonic stem cell-derived cardiomyocytes. TBME13. 
Gorospe, Younes, Tung, Vidal. A metamorphosis distance for embryonic cardiac action potential 
interpolation and classification. MICCAI13. 
Gorospe, Zhu, He, Tung, Younes, Vidal. Efficient metamorphosis computation for classifying 
embryonic cardiac action potentials. MICCAI15.



Machine Learning in Regenerative Medicine
• Metamorphosis interpolation produces intermediate shapes 

that better resemble those of a cardiac action potential.

Gorospe, Zhu, Milrod, Zambidis, Tung, Vidal. Automated grouping of action potentials of human 
embryonic stem cell-derived cardiomyocytes. TBME14. 
Gorospe, Younes, Tung, Vidal. A metamorphosis distance for embryonic cardiac action potential 
interpolation and classification. MICCAI13. 
Gorospe, Zhu, He, Tung, Younes, Vidal. Efficient metamorphosis computation for classifying 
embryonic cardiac action potentials. MICCAI15.
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Clustering Embryonic CM Action Potentials
• Clustering results for 9 cell clusters of 6940 embryonic APs

Gorospe, Zhu, Milrod, Zambidis, Tung, Vidal. Automated grouping of action potentials of human embryonic 
stem cell-derived cardiomyocytes. TBME14. 
Gorospe, Younes, Tung, Vidal. A metamorphosis distance for embryonic cardiac action potential interpolation 
and classification. MICCAI13. 
Gorospe, Zhu, He, Tung, Younes, Vidal. Efficient metamorphosis computation for classifying embryonic 
cardiac action potentials. MICCAI15.
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Machine Learning for Brain Image Analysis
• The human brain contains 100 

billion neurons connected in a 
complex network of fiber bundles. 

• Studies show that in neurological 
disorders such as schizophrenia, 
autism and Alzheimer’s disease, 
these connections are damaged. 

• By mapping brain connections, 
we can compare neuro anatomies 
of healthy and diseased brains to 
develop new tools for diagnosis of 
neurological diseases.



Validation
5. 

Machine Learning for Brain Image Analysis
Finding biomarkers of neurological disease in diffusion MRI data

Weighted Signals Fiber Bundles

Atlas Construction

Filtered ODF field

ODF Field

1. Estimation

2. Processing 3. Segmentation

4. Registration

Goh et al. “A nonparametric Riemannian framework for processing high 
angular resolution diffusion images and its applications to ODF-based 
morphometry” ECCV06, ECCV08, CVPR09, MICCAI09, Neuroimage11. 
Cetingul et al. “Group action induced averaging for HARDI processing” 
ISBI12, ISBI12, TBME14 
Schwab et al. “Rotation invariant features for HARDI” MICCAI12, 
IPMI13, CDMRI15 
Wolfers et al. “Nonnegative ODF estimation via optimal constraint 



Machine Learning for Brain Image Analysis
• Reconstruction of dMRI images
dMRI Research Project

Problem: dMRI currently too slow for

clinical use (requires 100s of MRIs).

Question: How can we accelerate acquisition

but still estimate accurate fiber tracts?

Solution: Compressed Sensing

if sparse representation of data

=) only need sparse number of signal

measurements.

=) accelerate acquisition.

4/4
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• Problem: dMRI currently too slow for 
clinical use (requires 100s of MRIs) 

• Question: How can we accelerate 
acquisition but still estimate accurate fiber 
tracks?

• Solution: Compressed Sensing

If sparse 
representation 

of data
only need few 
measurements

Accelerate 
acquisition

E Schwab, R Vidal, N Charon. (k, q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior, arXiv 2017 
E Schwab, R Vidal, N Charon. Efficient Global Spatial-Angular Sparse Coding for Diffusion MRI with Separable 
Dictionaries, arXiv 2016 
E Schwab, R Vidal, N Charon, Spatial-Angular Sparse Coding for HARDI. MICCAI 2017



Machine Learning for Brain Image Analysis 
• High throughput neuroinformatics:  

bits of neuroscience at 1mm scale 
– 3000 brains 
– 1000x1000x500x100 dimensions 
– 1000-2000 relevant variables 

• BrainGPS generates a machine  
learnable feature vector, a  
BRAINPRINT.

Brain Science Institute, Johns Hopkins University 
Michael Miller, Susumu Mori, Andreia Faria, Kenichi Oishi 
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Machine Learning in Surgery
René Vidal 

Herschel L. Seder Professor of Biomedical Engineering 
Director, Mathematical Institute for Data Science 

Johns Hopkins University 



Machine Learning in Surgery
• RMIS has the potential to revolutionize our understanding of 

modeling, teaching and evaluating human manipulation skills. 

• The goal of the project is to develop quantitative methods for 
modeling surgical tasks and evaluation of surgical skill.



Machine Learning in Surgery
Recognizing surgical gestures and assessing the skill level of a 
surgeon in kinematic and video data of a surgical procedure

Bejar, Zappella, Vidal. Surgical Gesture Classification from Video Data, 
MICCAI12 (Best paper Award) 
Zappella, Bejar, Hager, Vidal. Surgical Gesture Classification from Kinematic and 
Video Data, MedIA13 
Tao, Zappella, Hager, Vidal. Surgical Gesture Segmentation and Recognition, 
MICCAI13 
Tao, Elhamifar, Khudanpur, Hager, Vidal. Sparse HMMs for Surgical Gesture 
Classification and Skill Evaluation, IPCAI12 



Modeling the Language of Surgery
• Similar to speech, surgical motion is not random: 

– A procedure is composed of tasks (incision, suturing, knot tying, etc.) 
– A task is composed of gestures (insert needle, pull needle, etc.) 
– Procedures, tasks and gestures follow a grammar. 

• Our goal: develop methods to discover surgical phonemes and the 
surgical grammar underlying a surgical procedure.

Reiley, C.E., Lin, H.C., Varadarajan, B., Vagolgyi, B., Khudanpur, S., Yuh, D.D., Hager, G.D.: Automatic recognition of surgical motions using statistical modeling for 
capturing variability. In: Medicine Meets Virtual Reality. (2008) 396–401



Markov/Semi-Markov Random Field Models

• Inference: find sequence of gestures using a modified Viterbi 
• Learning: find parameters using structural output SVMs
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[1] Bejar, Zappella, Vidal. Surgical Gesture Classification from Video Data, MICCAI12 (Best paper Award) 
[2] Zappella, Bejar, Hager, Vidal. Surgical Gesture Classification from Kinematic and Video Data, MedIA13 
[3] Tao, Zappella, Hager, Vidal. Surgical Gesture Segmentation and Recognition, MICCAI13 
[4] Tao, Elhamifar, Khudanpur, Hager, Vidal. Sparse HMMs for Surgical Gesture Classification and Skill Evaluation, IPCAI12 
[5] Sefati, Cowan,Vidal. Learning Shared, Discriminative Dictionaries for Surgical Gesture Segmentation and Classification, M2CAI15 
[6] Lea, Hager, Vidal. An improved model for segmentation and recognition of fine-grained activities with application to surgical training tasks, 
WACV15



Segmental Spatio-Temporal CNNs

C. Lea, A. Reiter, R. Vidal, G. Hager. Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation. ECCV 2016



Encoder-Decoder Temporal Conv Nets

C. Lea, M. Flynn, R. Vidal, A. Reiter, G. Hager.  Temporal Convolutional Networks for Action Segmentation and Detection. CVPR 2017



Accuracy of Surgical Gesture Segmentation

Model Accuracy Edit

Sensors

LC-SC-CRF 81.8 58.5

S-ST-CNN 82.1 55.5

T-CNN 84.8 76.9

Video

LC-SC-CRF - -

S-ST-CNN 72.0 62.0

ED-TCN 71.0* 62.0*

Model Accuracy Edit

Sensors

LC-SC-CRF 81.9* 78.4*

S-ST-CNN 79.2 82.6

ED-TCN 82.4 89.3

Video

LC-SC-CRF - -

S-ST-CNN 74.2 66.6

ED-TCN 78.3 85.6
C. Lea, G. Hager, R. Vidal. An improved model for segmentation and recognition of fine-grained activities with application to surgical training 
tasks, WACV15 
C. Lea, A. Reiter, R. Vidal, G. Hager. Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation. ECCV 2016 
C. Lea, M. Flynn, R. Vidal, A. Reiter, G. Hager.  Temporal Convolutional Networks for Action Segmentation and Detection. CVPR 2017



Machine Learning in  
Rehabilitation Therapy

René Vidal 
Herschel L. Seder Professor of Biomedical Engineering 

Director, Mathematical Institute for Data Science 
Johns Hopkins University 



Machine Learning in Rehabilitation Therapy
Pediatric rehabilitation based on human-robot interaction

Stimuli

Multi-view video analysis 
• Learn representations 
• Identify actions: crawl, sit, stand… 
• Identify response to stimuli 
• Provide feedback to therapists

Effrosyni Mavroudi, Lingling Tao, Rene Vidal, Deep Moving Poselets for Video Based Action Recognition, WACV 2017 
Lingling Tao and Rene Vidal, Moving Poselets: A Discriminative and Interpretable Skeletal Motion Representation for 
Action Recognition, ICCVW 2015



Summary
• Cellular Level 

– Dictionary learning for blood cell 
detection, classification, counting  

– Structured matrix factorization 
for segmentation of neural 
activity in calcium imaging 

– Metamorphosis for classification 
of embryonic cardio-myocytes 

• Organ Level 
– Compressed sensing and 

Riemannian geometry for 
processing diffusion MRI 

• Patient/Surgeon Level 
– Assessing surgical skill 
– Assessing children’s motions

Ghoreyshi ISBI07; Singaraju CVPR08, CVPR09, TPAMI11; Goh ECCV06, ISBI06, ECCV08, CVPR09; MICCAI09, Neuroimage 12; 
Cetingul PPMIA09, ISBI09, TBME11, ISBI11,  ISBI12, TBME14; Schwab IPMI13; Gorospe MICCAI13, TBME13; Haeffele ICML14; Tao 
IPCAI12, MICCAI13; Bejar-Zapella MICCAI12, Media13, MICCAI13; Lea: WACV15, ECCV16



Mathematical Institute for Data Science (MINDS)
• Establish fundamental 

principles behind the 
analysis and 
interpretation of massive 
amounts of complex  
high-dimensional data 

• We are creating new 
– Masters 
– PhD 

• We are hiring 
– Faculty 
– Postdocs 
– Students

6/13/18, 2)17 PMPeople – Johns Hopkins Mathematical Institute for Data Science
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More Information,

Vision Lab @ Johns Hopkins University 
http://www.vision.jhu.edu 

Center for Imaging Science @ Johns Hopkins University 
http://www.cis.jhu.edu 

Johns Hopkins Mathematical Institute for Data Science 
http://www.minds.jhu.edu 

Thank You!

http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php
http://www.minds.jhu.edu

