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What is Computer Vision About?

Data Interpretations
Image Scene

Video Objects
Time-Series Actions
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What is this scene



Is this a table?
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What objects are
= there in the scene?
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How many people
are there?

\ " N \ / 2 A
N FEN fa.
lIP‘\II— — IIF“II* T —
| RSl “a
| HEER
| TR

| WEEEE




7 |
AR
SN (TN
- lgEl- - WEEE-
- IR [N
1 REER BNE A
. TEREER el

| WHRAEE RERERN
i | - e
| .
\ A U

A party with
lots of people in
a beautiful atrium.
Daytime, probably in
~the afternoon in a
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Fundamental Challenges: Scale
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Fundamental Challenges: What's an Object?

Sittable-upon

Sittable-upon

It does not seem easy
to sit-upon this...
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What a computer sees

What we see
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Minsky’'s Summer Vision Project: July 1966

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artifieial Intelligence Group July 7, 19686
Vision Memo. Ho. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The uuﬁm:r vision project is un'attenpt to use our summer workers
effectively in the cnnsfructlnn of a significant part of a visual system.
The.pnrtinulat task was chosen PItt%I because it can be segmented into
gub=problems which will allow individuals to work independently and yer
participate in the construction of & system complex enmough to be a real
landmark in the development of “pattern recognitiom!l.
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[1] Roberts, Machine Perception of Three-Dimensional Solids, 1963. =X I 1
[2] Biederman, Recognition-by-components: A theory of human image understanding, 1987. il!y' ]OHNS OPKINS
MATHEMATICAL INSTITUTE

for DATA SCIENCE



Object Recognition: Historical Overview

2D: View 3D: Object
Centered Centered

1960 Pictorial
Structures

1970

1980

1990

2000

2010

\4

[1] Fischler & Elschlager, The Representation and Matching of Pictorial Structures, 1973.

=\
[2] Koenderink & van Doom, The internal representation of solid shape with respect to vision, 1979. %il}' ]OHNS HOPKINS
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2D: View 3D: Object

Centered Centered 1960
Canny
1970 Edges

& | 1980

1990
Harris
Corners

2000

2010

v

[1] Canny, A Computational Approach To Edge Detection, 1986.
[2] Harris & Stephens, A Combined Corner and Edge Detector, 1988.

JOHNS HOPKINS

510 &\

—=

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Object Recognition: Historical Overview
2D: View 3D: Object

Centered Centered 1960 Structure from Motion
1970 " ‘
O P3
@
1980 q
X22 ° 0X23 ;
1 990 Image 3
Rt
Image 2
R2,t2
2000
Use Multiple 2D Images
to Reconstruct and
2010 Recognize a 3D Object
\ 4
1] Te i-K de. Sh d tion fi i t d rth hy: a factorizati thod, 1992.
DR el Ssladbiol - SOl 1 Rl @ JOHNS HOPKINS
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Object Recognition: Historical Overview

2D: View 3D: Object SIFT SURF
/_\
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[1] Dalal & Triggs, Histograms of oriented gradients for human detection, 2005. —N
[2] Lowe, Distinctive image features from scale-invariant keypoints, 2005. i.!" ]OHNS HOPKINS
[3] Bay, Ess, Tuytelaars & Van Gook, Speeded Up Robust Features, 2004. MATHEMATICAL INSTITUTE

for DATA SCIENCE



Object Recognition: Historical Overview

2D: View 3D: Object
Centered Centered 1960

Building Rome in a Day

1970

1980

1990

2000

2010

[1] Agarwal et al., Building Rome in a Day, ICCV 2009. —N
[2] Agarwal et al., Reconstructing Rome, CVPR 2010. %il}' ]OHNS HOPKINS
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2D: View 3D: Object

Deformable part models
Centered Centered 1960 P

1970

MOUTH

MOUTH

1] Felzenszwalb et al., A discriminatively trained, multiscale, deformable part model, CVPR 2008.
1 ’ " QF JOHNS HOPKINS

[2] Felzenszwalb et al., Object detection with discriminatively trained part-based models, PAMI 2010.
MATHEMATICAL INSTITUTE

for DATA SCIENCE



T HU vision |ab

René Vidal

Herschel Seder Professor of Biomedical Engineering,
Director of the Mathematical Institute for Data Science, Johns Hopkins University

¥ ——— —

E DEPARTMENT OF BIOMEDICAL ENGINEERING JOHNS HOPKINS

MATHEMATICAL INSTITUTE
The Whitaker Institute at Johns Hopkins for DATA SCIENCE




* Deep learning glves ~ 10% |mprovement on ImageNet
— 1.2M images
1000 categories

— 60 million iy
parameters b 0 0%
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[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12.
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using convolutional i'” OHNS HOPKINS

networks. ICLR’14. Y
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic visual MATHEMATICAL INSTITUTE

recognition. ICML'14. for DATA SCIENCE



Impact of Deep Learning in Computer Vision

« 2012-2014 classification results in ImageNet CNN
non-CNN

« 2015 results: ResNet under 3.5% error using 150 layers!

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna
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Transfer from ImageNet to Other Datasets

 CNNs + SMVs [1] .

Pascal VOC 2007 mAP B Strong H Learn Extract Features
Normallzed RGB gradient, B SVM
GHM[¢] 64.7 A”"°‘a“°”s DPM Pose LBP
AGS[11] 71.1
NUS[39] 70.5
CNN-SVM 73.9 Training images Source task I Source task labels

CNNaug-SVM  77.2

9
Convolutional layers Fully-connected layers . African elephant

| | . Wall clock
C1-C2-C3-C4-C5 [ Fce > FC7 FC8 -

4096 or | | -

6144-dim Green snake

) vector

=
* Retrain top-layer [2] = | i
e .Chair

transfer parameters

Pascal VOC 2012 | mAP
Pascal VOC 2007 mAP NUS_PSL [49] 82.2 3 ;gf:is:gier C1-C2-C3-Ca-CS res M rer b res o v o Background
INRIA [32] 594 NO PRETRAIN | 70.9 ‘ . 6144-dim Person
NUS-PSL [44] 705 PRrRE-1 OOOC 787 L J veﬂolr 6144-dim u TV/monitor
P = 1 OOOC 77 7 Training images  Slidi tch vector New adapt_ation
RE . PRE-1000R 76.3 1dINg patches I Target task I :::z:;':‘;i Target task labels
PRE-1512 82.8

1
|

“SFClabels

 Deep Face [3]

REPRESENTATION

l

CalistaFIarkhart_DDOZ.jpg Frontalization: 32x111:11x3 32x3x3x32 16x9x9x32 1649:9x16 16x7x;x16 16t5x5x15 4;9764 4538[:”
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21x21
[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14. =
[2] Oquab, Bottou, Laptev, Sivic. Learning and transferring mid-level image representations using convolutional neural networks @w JOHNS HOPKINS
CVPR'14 MATHEMATICAL INSTITUTE

3] Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR’14
[31 Taig ) & 2 B for DATA SCIENCE



Transfer from Classification to Detection

« R-CNN, OverFeat, SPPNets, MultiBox, YOLO

— Extract region proposals

— Compute CNN features

— Classify proposal features

— Detect by using regression to refine proposal

R-CNN: Regions wzth CNN features

1. Input 2. Extract region 3. Compute
image proposals (~2k) CNN features

[1] Girshick, Donahue, Darrell, Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR’14
[2] Sermanet et al. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. ICLR

[3] He, Zhang, Ren, Sun. Spatial Pyramid Pooling in deep convolutional networks for visual recognition. ECCV 2004.

[4] Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg. SSD: Single Shot MultiBox Detector. ECCV 2016.

[5] Redmon, Divvala, Girshick, Farhadi. You Only Look Once: Unified, Real-Time Object Detection. CVPR 2016.

VOC 2010 test | mAP
DPM v5 [20]T | 33.4
UVA [39] 35.1
Regionlets [41] | 39.7
SegDPM [18]T | 40.4
R-CNN 50.2
R-CNN BB 53.7

aeroplane? no.

person? yes.

tvmonitor? no.

4. Classify

regions

@ JOHNS HOPKINS
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Transfer from Classification to Detection

- RCNN Family

Box offset || SVM object Box offset softmax Box offset SOﬂ"_‘?‘X Box offset softmax Mask FCN
regressor || classifier regressor || classifier regressor || classifier regressor classifier || predictor
— —%F f F
Independent )
i Joint Joint
l Region CNN Region CNN Region CNN Region CNN
features features features features
Rol pooling
RPN Rol pooling RPN RolAlign
Region Deep Region Deep
proposal CNN proposal CNN Deep CNN Deep CNN
h F z
Independent Independent
R-CNN Fast R-CNN Faster R-CNN Mask R-CNN

Slide Courtesy of Jiageng Zhang, Jingyao Zhang, Yanhan Ma

[1] Girshick, Donahue, Darrell and Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR’14

[2] Girshick. Fast R-CNN. ICCV 2015. = JOI—INS HOPKINS
[3] Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015. %i':"
[4] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. Mask R-CNN. ICCV 2017. MATHEMATICAL INSTITUTE

for DATA SCIENCE



Transfer from Classification to Detection

COCO Object Detection Average Precision (%)

Past Early
(best circa 2015
2012)

Progress within

DL methods:
Also 3x! 15
- ﬂ}
T
DPM Fast R-CNN
(Pre DL) (AlexNet)

2.5 years _ Late

19

_

Fast R-CNN
(VGG-16)

2017

46

36 39

29

Faster R-CNN Faster R-CNN Faster R-CNN Mask R-CNN
(VGG-16) (ResNet-50) (R-101-FPN) (X-152-FPN)

Slide Courtesy of Ross Girshick, ECCV18

gﬁﬁ;ka}«;Pk)Pth$

MATHEMATICAL INSTITUTE
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Transfer from Classification to Other Tasks

 CNNs for pose estimation [1] and semantic segmentation [2]
Vé

Input

Reg & ITred
class
— e
: conv’>

Mask
[1] Tompson, Goroshin, Jain, LeCun, Bregler. Efficient Object Localization Using Convolutional Networks. =
CVPR'15 N JOHNS HOPKINS
[2] Pinheiro, Collobert, Dollar. Learning to Segment Object Candidates. NIPS’'15 MATHEMATICAL INSTITUTE

[3] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. Mask R-CNN. ICCV 2017. for DATA SCIENCE



Transfer from Classification to Keypoints

Slide Courtesy of Ross Girshick, ECCV18

COCO Keypoint Detection Task

[COCO team @ cocodataset.org 2016 - present] ]OHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE




Transfer from Classification to Surfaces

Slide Courtesy of Ross Girshick, ECCV18

Guler, Neverova, Kokkinos DensePose: Dense Human Pose Estimation In The Wild, CVPR 2018.
&5 JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Slide Courtesy of Ross Girshick, ECCV18

Kundu, Li, Rehg. 3D-RCNN: Instance-level 3D Object Reconstruction via Render-and-Compare, [/
CVPR 2018 T JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Transfer to Other Domains

Training Domain Training Labels

Labels

' tions

= |

' Predic- '
|
‘ \

|

Application
Predictions

S Sankaranarayanan, Y Balaji, CD Castillo, R Chellappa. Generate to adapt: Aligning domains using =
generative adversarial networks. CVPR 2018. %w JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Generative Adversarial Networks

* “the most interesting idea in the last 10 years in ML.” (LeCun)

Training set V Discriminator
/ / L, Real
Random [ > T— {Fa ke
—
Generator Fake image

Image credit: Thalles Silva

Goodfellow et al., "Generative Adversarial Networks”, 2014

@ JOHNS HOPKINS
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Computer Vision: Future Vistas

Geometric Deep Learning Action Recognition: RNNs
Action 1 Action 2

Temporal Component

t t t t t t t

Scene

Scene Scene Scene Scene Scene Scene
Deep Learning Theory

Architecture

Generalization/
Regularization Optimization

Al System

What is the mustache
made of?

@ JOHNS HOPKINS
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Geometric Deep Learning

Renewed interest on joint object reconstruction and recognition

distance

Beyond PASCAL: A Benchmark for 3D Object Detection in

Seeing 3D chairs: exemplar part-based 2D-3D alignment the Wild, Y. Xiang, R. Mottaghi and S. Savarese
using a large dataset of CAD models, M. Aubry, D. s Lty ;
Maturana, A. Efros, B. Russell and J. Sivic = -

: " and b Detailed 3D Representations for Object Recognition and
Huang, N. Mitra, Y. Li and L. Guibas Modeling, Z. Zia, M. Stark, B. Schiele and K. Schindler

Estimating Image Depth Using Shape Collections, H. Su, Q.

Image-based Synthesis and Re-Synthesis of Viewpoints Guided Parsing IKEA objects: Fine Pose Estimation. J. Lim, H.
by 3D Models. K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars Pirsiavash and A. Torralba

JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Geometric Deep Learning: 3D Pose

Bounding box
+

CNN —— Category label

+
3D orientation

Feature —»

Delta
Network

oy

l

Bin [
Network

Key
Poses

g(-,-) 3D Pose

VA J

Mahendran, Ali, Vidal. 3D Pose Regression using Convolutional Neural Networks. ICCVW 2017. =
Mahendran, Ali, Vidal. A mixed classification-regression framework for 3D pose estimation from 2D images, BMVC 2018. %w JOHNS HOPKINS

Mahendran, Ali, Vidal. Convolutional Networks for Object Category and 3D Pose Estimation from 2D Images, ECCV

2018.

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Geometric Deep Learning: 3D Pose/Shape

Bounding box
+

CNN —— Categorylabel
+

3D orientation

Mahendran, Ali, Vidal. 3D Pose Regression using Convolutional Neural Networks. ICCVW 2017. =
Mahendran, Ali, Vidal. A mixed classification-regression framework for 3D pose estimation from 2D images, BMVC 2018. i.y JOHNS HOPKINS
Mahendran, Ali, Vidal. Convolutional Networks for Object Category and 3D Pose Estimation from 2D Images, ECCV \ MATHEMATICAL INSTITUTE

2018. for DATA SCIENCE



Geometric Deep Learning: 3D Shape

e filter bank 1
: P filters

@@ @O

MaX

MaX

| f;& ~ gMI J | J
Input M-dim AMP Output Q-dim



Geometric Deep Learning: 3D Point Clouds

‘ PointNet

Qi, Su, Mo, Guibas, PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, g
MATHEMATICAL INSTITUTE
for DATA SCIENCE



Geometric Deep Learning: Graph CNNs

How Graph Convolutions work

CNN on image

Graph convolution

/OH
‘ -

N

H

Convolution “kernel” depends on Graph structure

\\//

- Image
class label

Chemical
property

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017 Qily JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Action Recognition

a) LSTM b) 3D-ConvNet c) Two-Stream d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
Action
Action Action Action ‘ + Action
R — = ] 1\ 3D ConvNetJ 1
LSTM — o — LSTM lapC l_’(/’ﬁ | | l_‘b‘_l
; onvNet Ve S\ =
_ . (ConvNet} [ConvNet] ."'r 1 \"""' { 3D ConvNet
{ConvNet} e [CO"VNet} ConvNetJ [ConvNet !

: k I

! - : P
Images l - ' ' |
Image 1 | «= | Image K 1t0 K ‘ Image 1 Optical mage 1|| Optical FIOpt1|calK
= tlme EloW-L:10: ¢ Flow 1to N / owllo /
— A ime

time time '\l_

r
I
—

UCF-101 HMDB-51 Kinetics
Architecture RGB | Flow | RGB +Flow || RGB | Flow | RGB +Flow || RGB | Flow | RGB + Flow
(a) LSTM 81.0 - - 36.0 - - 63.3 - -
(b) 3D-ConvNet 51.6 - - 24.3 - - 56.1 - -
(c) Two-Stream 83.6 | 85.6 91.2 43.2 | 56.3 58.3 62.2 | 524 65.6
(d) 3D-Fused 83.2 | 85.8 89.3 492 | 555 56.8 — — 67.2
(e) Two-Stream I3D | 84.5 | 90.6 93.4 49.8 | 61.9 66.4 71.1 | 63.4 74.2

Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei. Large-scale Video Classification with Convolutional Neural Networks, CVPR’14 [/ |
Simonyan, Zisserman Two-Stream Convolutional Networks for Action Recognition in Videos. NIPS 2014. JOHNS HOPKINS
Donahue, Hendricks, Guadarrama, Rohrbach, Venugopalan, Saenko, Darrell. Long term recurrent networks. CVPR 2015 %w
Tran, Bourdeyv, Fergus, Torresani, Paluri. Learning spatiotemporal features with 3d convolutional networks. ICCV 2015. MATHEMATICAL INSTITUTE
Carreira, Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2018. for DATA SCIENCE



Action Segmentation

« State-of-the-art methods for action classification, detection
and segmentation rely on spatio-temporal deep networks.

Action 1 Action 2

TemPoral Component
t t t t t

Scene Scene Scene Scene Scene

E% 8 Il:ea S vggcl-:rGRHWdal I:Rn Impro(\éed M?del fo:' Eegmepntatlon an;i Rgcognltlon of Fine-Grained Activities. WACV 2015.
ea ida ager. Learning Convolutional Action Primitives for Fine-grained Action Recognition. ICRA 2016. =
[3] C. Lea, A. Reiter, R. Vidal, G. Hager. Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation. ECCV 2016. @i‘:" OHNS OPKINS

[4] Tao, Vidal. Moving Poselets: A Dlscrlmmatlvefand Interpretable Skeletal Motion Representation for Action Recognition. ICCVW 2015.
[5] Mavroudi, Tao, Vidal. Deep Moving Poselets for Video Based Action Recognition. WACV 2017. MATHEMATICAL INSTITUTE
[6] Mavroudi, Bhaskara, Sefati, Ali, Vidal. End-to-End Fine-Grained Action Segmentation and Recognition Using Conditional Random Field Models and Discriminative

Sparse Coding. WACV, 2018. Sfor DATA SCIENCE



Multiple Activities

at Multiple Scales Varying lllumination
Pl: Rama Chellappa =
Larry Davis, Abhinav Gupta, Martial Hebert, Deva Ramanan, Mubarak Shah, Aswin il!r' igigglggiﬁiﬁg

Sankaranarayaran, René Vidal
ayaran, René Vida for DATA SCIENCE



Scene Parsing | Visual Question Answering

bananas
What is the mustache
made of?
4096 output units from last hidden layer 1024
l_ (VGGNet, Normalized)
|
| o f
1024 1000 1000
. ‘ N ' N P — N ’ Fully-Connected
Convolution Layer Fully-Connected MLP

Pooling Layer  + Non-Linearity Pooling Layer

’ Il2”

Convolution Layer
+ Non-Linearity

2%2X512 LSTM
i 1024

“How many horses are in this image?”

Point-wise g, connected Softmax
multiplication

Fully-Connected

Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. Visual Turing test for computer vision systems. PNAS 2015. [/ |
Antol, Agrawal, Lu, Mitchell, Batra, Zitnick, Parikh. VQA: Visual Question Answering ICCV 2015

Xu and Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering, ECCV 2016. %i‘:"
Johnson, Hariharan, van der Maaten, Fei-Fei, Zitnick, Girshick. CLEVR: A Diagnostic Dataset for Compositional Language and

Elementary Visual Reasoning, CVPR 2017

JOHNS HOPKINS

MATHEMATICAL INSTITUTE

for DATA SCIENCE



MURI on Semantic Information Pursuit

« Develop an information-theoretic framework for characterizing
semantic information content in complex multimodal data.

1. Q: Is there a person in the blue region? A:yes

2. Q: Is there a unique person in the blue region? A: yes
(Label this person 1)

3. Q: Is person 1 carrying something? A:yes

4. Q: Is person 1 female? A: yes

5. Q: Is person 1 walking on a sidewalk? A: yes

6. Q: Is person 1 interacting with any other object? A:no

Pl: René Vidal =X
Emmanuel Candes, Rama Chellappa, Donald Geman, Michael Jordan, Jason Lee, Stefano Soatto @il}'
Arnaud Doucet, Mark Girolami, Josef Kittler, Simone Severini, John Shawe-Taylor

JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Key Theoretical Questions in Deep Learning

Architecture Design

Slide courtesy of Ben Haeffele

Optimization

Generalization

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE



Key Theoretical Questions are Interrelated

* Optimization can Architecture
Impact '
generalization [1,2]

* Architecture has

strong effect on Generalization/
generalization [3] Regularization Optimization

« Some architectures e S,

could be easier to ot e
optimize than others [4]

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).

[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 @ JOHNS HOPKINS

[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).
[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. MATHEMATICAL INSTITUTE
for DATA SCIENCE



Today’s Framework

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing,

ICML 14

[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

* Questions: What properties of the
architecture and regularization
function facilitate optimization?

e Assumptions:
 Parallel network structure.
 Positively homogeneous activations.
 Positively homogeneous regularizers.

* Theorem 1: A local minimum such
that all weights from one subnet are
zero iIs a global minimum.

* Theorem 2: If network size is large
enough local descent can find global
minimum from any initialization.

JOHNS HOPKINS

MATHEMATICAL INSTITUTE

[4] Haeffele, Vidal. Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications. TPAMI 2018. for DATA SCIENCE



Analysis of Dropout Regularization: Main Results

[1] Ja Cavazza, Benjamin Haeffele, Pietro Morerio, orL ittorio e Vidal, Dropout as a Low-Rank X
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.0348 J()HNS HOPKINS
[2] Poo j an Arora, Rene On the Imp ias o L2 ps://arxiv.org/abs/1806.09777 @i‘!"

MATHEMATICAL INSTITUTE

for DATA SCIENCE



Conclusions and Future Directions

e Computer vision has rich a history of model-based and
data-driven methods
— Object and view centered representations
— Handcrafted and learned features

 Recently remarkable progress of data driven methods
— Object and image classification, object detection, pose estimation
— Semantic segmentation, generative adversarial networks

e But still far from intelligence: need model-based + data
driven methods
— Geometric deep learning, action recognition, scene parsing
— Lifelong learning
— Theory of CNNs, RNNs, GANs
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More Information,

JHU Vision Lab
http://www.vision.jhu.edu/

Mathematical Institute for Data Science @ JHU
http://www.minds.jhu.edu

Thank You!

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE


http://www.vision.jhu.edu/
http://www.minds.jhu.edu

