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What is Computer Vision About?

Machine

Interpretations 

Scene 

Objects 

Actions

Data 

Image 

Video 

Time-Series



Gilman Hall Atrium



Scene Classification

What is this scene 
about?



Object Verification

Is this a table?



Object Detection

Is there a table? 
Where?



Object Classification

Window

Table

Floor
Person

Flowers

What objects are 
there in the scene?

Bag

Shoes

Plate



Object Counting

How many people 
are there?



Scene Understanding
A party with  

lots of people in  
a beautiful atrium. 

Daytime, probably in 
the afternoon in a 

warm day. 



Fundamental Challenges: Viewpoint Lighting



Fundamental Challenges: Scale



Fundamental Challenges: What’s an Object?

Sittable-upon
Sittable-upon

Sittable-upon

It does not seem easy 
to  sit-upon this…



Fundamental Challenges: Occlusion, Clutter



Illusions



Illusions



Illusions



Fundamental Challenges: Representation

What a computer seesWhat we see



Computer Vision: 
Historical Overview

René Vidal 
Herschel Seder Professor of Biomedical Engineering,  

Director of the Mathematical Institute for Data Science, Johns Hopkins University



Minsky’s Summer Vision Project: July 1966



Object Recognition: Historical Overview
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[1] Roberts, Machine Perception of Three-Dimensional Solids, 1963. 
[2] Biederman, Recognition-by-components: A theory of human image understanding, 1987.



Object Recognition: Historical Overview
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Aspect 
Graphs

Pictorial  
Structures

[1] Fischler & Elschlager, The Representation and Matching of Pictorial Structures, 1973. 
[2] Koenderink & van Doom, The internal representation of solid shape with respect to vision, 1979.



Object Recognition: Historical Overview
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[1] Canny, A Computational Approach To Edge Detection, 1986. 
[2] Harris & Stephens, A Combined Corner and Edge Detector, 1988.



Object Recognition: Historical Overview
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Structure from Motion

Use Multiple 2D Images  
to Reconstruct and  

Recognize a 3D Object

2D: View 
Centered

3D: Object  
Centered

[1] Tomasi-Kanade. Shape and motion from image streams under orthography: a factorization method, 1992. 
[2] Sturm-Triggs. A factorization based algorithm for multi-image projective structure and motion, 1996



Object Recognition: Historical Overview

1960

1970

1980

1990

2000

2010

HOG
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Centered

[1] Dalal & Triggs, Histograms of oriented gradients for human detection, 2005. 
[2] Lowe, Distinctive image features from scale-invariant keypoints, 2005. 
[3] Bay, Ess, Tuytelaars & Van Gook, Speeded Up Robust Features, 2004.



Object Recognition: Historical Overview
Building Rome in a Day2D: View 

Centered
3D: Object  
Centered 1960

1970

1980

1990

2000

2010

[1] Agarwal et al., Building Rome in a Day, ICCV 2009. 
[2] Agarwal et al., Reconstructing Rome, CVPR 2010.



Object Recognition: Historical Overview
Deformable part models2D: View 

Centered
3D: Object  
Centered 1960

1970

1980

1990

2000

2010

[1] Felzenszwalb et al., A discriminatively trained, multiscale, deformable part model, CVPR 2008. 
[2] Felzenszwalb et al., Object detection with discriminatively trained part-based models, PAMI 2010.
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Impact of Deep Learning in Computer Vision
• Deep learning gives ~ 10% improvement on ImageNet 

– 1.2M images 
– 1000 categories 
– 60 million 

parameters

[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12. 
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using convolutional 
networks. ICLR’14. 
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic visual 
recognition. ICML’14.



Impact of Deep Learning in Computer Vision
• 2012-2014 classification results in ImageNet 

• 2015 results: ResNet under 3.5% error using 150 layers!

CNN 
non-CNN

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna



Transfer from ImageNet to Other Datasets
• CNNs + SMVs [1] 

• Retrain top-layer [2] 

• Deep Face [3]
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Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

(here object and action classification in Pascal VOC), as il-
lustrated in Figure 2. However, this is difficult as the la-
bels and the distribution of images (type of objects, typical
viewpoints, imaging conditions, etc.) in the source and tar-
get datasets can be very different, as illustrated in Figure 3.
To address these challenges we (i) design an architecture
that explicitly remaps the class labels between the source
and target tasks (Section 3.1), and (ii) develop training and
test procedures, inspired by sliding window detectors, that
explicitly deal with different distributions of object sizes,
locations and scene clutter in source and target tasks (Sec-
tions 3.2 and 3.3).

3.1. Network architecture

For the source task, we use the network architec-
ture of Krizhevsky et al. [24]. The network takes as
input a square 224 × 224 pixel RGB image and pro-
duces a distribution over the ImageNet object classes.
This network is composed of five successive convolu-
tional layers C1. . . C5 followed by three fully connected
layers FC6. . . FC8 (Figure 2, top). Please refer to [24]
for the description of the geometry of the five convolu-
tional layers and their setup regarding contrast normaliza-
tion and pooling. The three fully connected layers then
compute Y6=σ(W6Y5 +B6), Y7=σ(W7Y6 +B7),
and Y8=ψ(W8Y7 +B8), where Yk denotes the out-
put of the k-th layer, Wk, Bk are the trainable param-
eters of the k-th layer, and σ(X)[i]=max(0,X[i]) and
ψ(X)[i]=eX[i]/

∑
j e

X[j] are the “ReLU” and “SoftMax”
non-linear activation functions.

For target tasks (Pascal VOC object and action classifica-
tion) we wish to design a network that will output scores for
target categories, or background if none of the categories
are present in the image. However, the object labels in the
source task can be very different from the labels in the tar-
get task (also called a “label bias” [49]). For example, the
source network is trained to recognize different breeds of
dogs such as huskydog or australianterrier, but the
target task contains only one label dog. The problem be-
comes even more evident for the target task of action classi-
fication. What object categories in ImageNet are related to
the target actions reading or running ?

In order to achieve the transfer, we remove the output
layer FC8 of the pre-trained network and add an adaptation
layer formed by two fully connected layers FCa and FCb
(see Figure 2, bottom) that use the output vector Y7 of the
layer FC7 as input. Note that Y7 is obtained as a complex
non-linear function of potentially all input pixels and may
capture mid-level object parts as well as their high-level
configurations [27, 53]. The FCa and FCb layers compute
Ya=σ(WaY7 +Ba) and Yb=ψ(WbYa +Bb), where
Wa, Ba, Wb, Bb are the trainable parameters. In all our
experiments, FC6 and FC7 have equal sizes (either 4096 or
6144, see Section 4), FCa has size 2048, and FCb has a size
equal to the number of target categories.

The parameters of layers C1. . .C5, FC6 and FC7 are first
trained on the source task, then transferred to the target task
and kept fixed. Only the adaptation layer is trained on the
target task training data as described next.

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14. 
[2] Oquab, Bottou, Laptev, Sivic. Learning and transferring mid-level image representations using convolutional neural networks 
CVPR’14 
[3] Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR’14 

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with
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CNN Features off-the-shelf: an Astounding Baseline for Recognition
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Abstract

Recent results indicate that the generic descriptors ex-

tracted from the convolutional neural networks are very

powerful [10, 29, 48]. This paper adds to the mount-

ing evidence that this is indeed the case. We report on

a series of experiments conducted for different recogni-

tion tasks using the publicly available code and model of

the OverFeat network which was trained to perform ob-

ject classification on ILSVRC13. We use features extracted

from the OverFeat network as a generic image represen-

tation to tackle the diverse range of recognition tasks of

object image classification, scene recognition, fine grained

recognition, attribute detection and image retrieval applied

to a diverse set of datasets. We selected these tasks and

datasets as they gradually move further away from the orig-

inal task and data the OverFeat network was trained to

solve. Astonishingly, we report consistent superior results

compared to the highly tuned state-of-the-art systems in

all the visual classification tasks on various datasets. For

instance retrieval it consistently outperforms low memory

footprint methods except for sculptures dataset. The results

are achieved using a linear SVM classifier (or L2 distance

in case of retrieval) applied to a feature representation of

size 4096 extracted from a layer in the net. The representa-

tions are further modified using simple augmentation tech-

niques e.g. jittering. The results strongly suggest that fea-

tures obtained from deep learning with convolutional nets

should be the primary candidate in most visual recognition

tasks.

1. Introduction
“Deep learning. How well do you think it would work

for your computer vision problem?” Most likely this ques-
tion has been posed in your group’s coffee room. And
in response someone has quoted recent success stories
[29, 15, 10] and someone else professed skepticism. You
may have left the coffee room slightly dejected thinking
“Pity I have neither the time, GPU programming skills nor
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Figure 1: top) CNN representation replaces pipelines of s.o.a methods
and achieve better results. e.g. DPD [50].
bottom) Augmented CNN representation with linear SVM consistently
outperforms s.o.a. on multiple tasks. Specialized CNN refers to other
works which specifically designed the CNN for their task

large amount of labelled data to train my own network to
quickly find out the answer”. But when the convolutional
neural network OverFeat [38] was recently made pub-
licly available1 it allowed for some experimentation. In
particular we wondered now, not whether one could train
a deep network specifically for a given task, but if the fea-
tures extracted by a deep network - one carefully trained
on the diverse ImageNet database to perform the specific
task of image classification - could be exploited for a wide
variety of vision tasks. We now relate our discussions and
general findings because as a computer vision researcher
you’ve probably had the same questions:
Prof: First off has anybody else investigated this issue?
Student: Well it turns out Donahue et al. [10], Zeiler
and Fergus [48] and Oquab et al. [29] have suggested that
generic features can be extracted from large CNNs and pro-
vided some initial evidence to support this claim. But they
have only considered a small number of visual recognition

1There are other publicly available deep learning implementations such
as Alex Krizhevsky’s ConvNet and Berkeley’s Caffe. Benchmarking
these implementations is beyond the scope of this paper.

1
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INRIA [32] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
NUS-PSL [44] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

PRE-1000C 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).

plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

NUS-PSL [49] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6
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PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2
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sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with
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INRIA [32] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4
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Table 1: Per-class results for object classification on the VOC2007 test set (average precision %).
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NUS-PSL [49] 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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NO PRETRAIN 85.2 75.0 69.4 66.2 48.8 82.1 79.5 79.8 62.4 61.9 49.8 75.9 71.4 82.7 93.1 59.1 69.7 49.3 80.0 76.7 70.9
PRE-1000C 93.5 78.4 87.7 80.9 57.3 85.0 81.6 89.4 66.9 73.8 62.0 89.5 83.2 87.6 95.8 61.4 79.0 54.3 88.0 78.3 78.7

PRE-1000R 93.2 77.9 83.8 80.0 55.8 82.7 79.0 84.3 66.2 71.7 59.5 83.4 81.4 84.8 95.2 59.8 74.9 52.9 83.8 75.7 76.3
PRE-1512 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

Table 2: Per-class results for object classification on the VOC2012 test set (average precision %).

Action jumpphon instr read bike horse run phot compwalk mAP

STANFORD [1] 75.7 44.8 66.6 44.4 93.2 94.2 87.6 38.4 70.6 75.6 69.1
OXFORD [1] 77.0 50.4 65.3 39.5 94.1 95.9 87.7 42.7 68.6 74.5 69.6

NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7
PRE-1512 73.4 44.8 74.8 43.2 92.1 94.3 83.4 45.7 65.5 66.8 68.4
PRE-1512U 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Table 3: Pascal VOC 2012 action classification results (AP %).

sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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sessment of localization results, we compute an output map
for each category by averaging the scores of all the testing
patches covering a given pixel of the test image. Examples
of such output maps are given in Figures 1 and 5 as well
as on the project webpage [2]. This visualization clearly
demonstrates that the system knows the size and locations
of target objects within the image. Addressing the detection
task seems within reach.

Action recognition. The Pascal VOC 2012 action recog-
nition task consists of 4588 training images and 4569 test
images featuring people performing actions among ten cate-
gories such as jumping, phoning, playinginstrument
or reading. This fine-grained task differs from the
object classification task because it entails recognizing
fine differences in human poses (e.g. running v.s.
walking) and subtle interactions with objects (phoning
or takingphoto). Training samples with multiple simul-
taneous actions are excluded from our training set.

To evaluate how our transfer method performs on this
very different target task, we use a network pre-trained
on 1512 ImageNet object classes and apply our transfer
methodology to the Pascal VOC action classification task.
Since the bounding box of the person performing the ac-
tion is known at testing time, both training and testing are
performed using a single square patch per sample, centered
on the person bounding box. Extracting the patch pos-
sibly involves enlarging the original image by mirroring
pixels. The results are summarized in row PRE-1512 Ta-
ble 3. The transfer method significantly improves over the
NO PRETRAIN baseline where the CNN is trained solely on
the action images from Pascal VOC, without pretraining on
ImageNet. In particular, we obtain best results on challeng-
ing categories playinginstrument and takingphoto.

In order to better adapt the CNN to the subtleties of the

action recognition task, and inspired by [6], our last re-
sults were obtained by training the target task CNN with-
out freezing the FC6 weights. More precisely, we copy
the ImageNet-trained weights of layers C1. . .C5, FC6 and
FC7, we append the adaptation layers FCa and FCb, and
we retrain layers FC6, FCa, and FCb on the action recog-
nition data. This strategy increases the performance on all
action categories (row PRE-1512U in Table 3), yielding, to
the best of our knowledge, the best average result published
on the Pascal VOC 2012 action recognition task.

To demonstrate that we can also localize the action in the
image, we train the network in a sliding window manner, as
described in section 3. In particular, we use the ground truth
person bounding boxes during training, but do not use the
ground truth person bounding boxes at test time. Example
output maps shown in figure 6 clearly demonstrate that the
network provides an estimate of the action location in the
image.

Failure modes. Top-ranked false positives in Figure 5
correspond to samples closely resembling target object
classes. Resolving some of these errors may require high-
level scene interpretation. Our method may also fail to
recognize spatially co-occurring objects (e.g., person on a
chair) since patches with multiple objects are currently ex-
cluded from training. This issue could be addressed by
changing the training objective to allow multiple labels per
sample. Recognition of very small or very large objects
could also fail due to the sparse sampling of patches in our
current implementation. As mentioned in Section 3.3 this
issue could be resolved using a more efficient CNN-based
implementation of sliding windows.

5. Conclusion

Building on the performance leap achieved by [23] on
ILSVRC-2012, we have shown how a simple transfer learn-
ing procedure yields state-of-the-art results on challenging
benchmark datasets of much smaller size. We have also
demonstrated the high potential of the mid-level features
extracted from an ImageNet-trained CNNs. Although the
performance of this setup increases when we augment the
source task data, using only 12% of the ImageNet corpus al-
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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s

mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(x, 0) rectify-
ing non-linearities and “dropout” regularization).

The significance of the ImageNet result was vigorously
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VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [20]† 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [39] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [41] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [18]† 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4
R-CNN 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

Table 1: Detection average precision (%) on VOC 2010 test. R-CNN is most directly comparable to UVA and Regionlets since all
methods use selective search region proposals. Bounding-box regression (BB) is described in Section C. At publication time, SegDPM
was the top-performer on the PASCAL VOC leaderboard. †DPM and SegDPM use context rescoring not used by the other methods.
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ILSVRC2013 detection test set class AP box plots

Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per

method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table 8 and also included in the tech report source uploaded to arXiv.org; see R-CNN-ILSVRC2013-APs.txt). The red
line marks the median AP, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotted as a green dot over the whiskers (best viewed digitally with zoom).
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Figure 4: Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).
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Figure 3: (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data
(images and labels from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per

method. A box plot for the post-competition OverFeat result is not shown because per-class APs are not yet available (per-class APs for
R-CNN are in Table 8 and also included in the tech report source uploaded to arXiv.org; see R-CNN-ILSVRC2013-APs.txt). The red
line marks the median AP, the box bottom and top are the 25th and 75th percentiles. The whiskers extend to the min and max AP of each
method. Each AP is plotted as a green dot over the whiskers (best viewed digitally with zoom).
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• RCNN Family
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[3] Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015. 
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Transfer from Classification to Detection
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Transfer from Classification to Other Tasks
• CNNs for pose estimation [1] and semantic segmentation [2] 

• Mask RCNNs [3]

[1] Tompson, Goroshin, Jain, LeCun, Bregler. Efficient Object Localization Using Convolutional Networks. 
CVPR’15 
[2] Pinheiro, Collobert, Dollar. Learning to Segment Object Candidates. NIPS’15 
[3] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick. Mask R-CNN. ICCV 2017.

Architecture

RPN
Input

Reg & Pred

Mask



Transfer from Classification to Keypoints

COCO Keypoint Detection Task 
[COCO team @ cocodataset.org 2016 - present]

Slide Courtesy of Ross Girshick, ECCV18



Transfer from Classification to Surfaces

Güler, Neverova, Kokkinos DensePose: Dense Human Pose Estimation In The Wild, CVPR 2018. 

Slide Courtesy of Ross Girshick, ECCV18



Transfer from Classification to 3D Shape

Kundu, Li, Rehg. 3D-RCNN: Instance-level 3D Object Reconstruction via Render-and-Compare, 
CVPR 2018

Slide Courtesy of Ross Girshick, ECCV18



Transfer to Other Domains

S Sankaranarayanan, Y Balaji, CD Castillo, R Chellappa. Generate to adapt: Aligning domains using 
generative adversarial networks. CVPR 2018. 



Generative Adversarial Networks
• “the most interesting idea in the last 10 years in ML.” (LeCun)

Goodfellow et al.,  "Generative Adversarial Networks”, 2014

Image credit: Thalles Silva



Generative Adversarial Networks



GANs for Style Generation



Computer Vision: Future Vistas
René Vidal 

Herschel Seder Professor of Biomedical Engineering,  
Director of the Mathematical Institute for Data Science, Johns Hopkins University



Computer Vision: Future Vistas

Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

Architecture

Optimization
Generalization/
Regularization

Deep Learning Theory

Action Recognition: RNNsGeometric Deep Learning

Vision and Language: Scene Parsing



Geometric Deep LearningPresent
Renewed interest on joint object reconstruction and recognition

Seeing 3D chairs: exemplar part-based 2D-3D alignment 
using a large dataset of CAD models, M. Aubry, D. 
Maturana, A. Efros, B. Russell and J. Sivic

Estimating Image Depth Using Shape Collections, H. Su, Q. 
Huang, N. Mitra, Y. Li and L. Guibas

Beyond PASCAL: A Benchmark for 3D Object Detection in 
the Wild, Y. Xiang, R. Mottaghi and S. Savarese

Detailed 3D Representations for Object Recognition and 
Modeling, Z. Zia, M. Stark, B. Schiele and K. Schindler

Image-based Synthesis and Re-Synthesis of Viewpoints Guided 
by 3D Models. K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars

Parsing IKEA objects: Fine Pose Estimation. J. Lim, H. 
Pirsiavash and A. Torralba



Geometric Deep Learning: 3D Pose

CNN 

Bounding box  
+  

Category label 
+ 

3D orientation 

Mahendran, Ali, Vidal. 3D Pose Regression using Convolutional Neural Networks. ICCVW 2017. 
Mahendran, Ali, Vidal. A mixed classification-regression framework for 3D pose estimation from 2D images, BMVC 2018. 
Mahendran, Ali, Vidal. Convolutional Networks for Object Category and 3D Pose Estimation from 2D Images, ECCV 
2018.



Geometric Deep Learning: 3D Pose/Shape

CNN 

Bounding box  
+  

Category label 
+ 

3D orientation 

Mahendran, Ali, Vidal. 3D Pose Regression using Convolutional Neural Networks. ICCVW 2017. 
Mahendran, Ali, Vidal. A mixed classification-regression framework for 3D pose estimation from 2D images, BMVC 2018. 
Mahendran, Ali, Vidal. Convolutional Networks for Object Category and 3D Pose Estimation from 2D Images, ECCV 
2018.



Geometric Deep Learning: 3D Shape



Geometric Deep Learning: 3D Point Clouds

Qi, Su, Mo, Guibas, PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, 
CVPR 2017



Geometric Deep Learning: Graph CNNs

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017



Action Recognition

Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei. Large-scale Video Classification with Convolutional Neural Networks, CVPR’14 
Simonyan, Zisserman  Two-Stream Convolutional Networks for Action Recognition in Videos. NIPS 2014. 
Donahue, Hendricks, Guadarrama, Rohrbach, Venugopalan, Saenko, Darrell. Long term recurrent networks. CVPR 2015 
Tran, Bourdev, Fergus, Torresani, Paluri. Learning spatiotemporal features with 3d convolutional networks. ICCV 2015. 
Carreira, Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, CVPR 2018.

UCF-101 HMDB-51 Kinetics
Architecture RGB Flow RGB + Flow RGB Flow RGB + Flow RGB Flow RGB + Flow
(a) LSTM 81.0 – – 36.0 – – 63.3 – –
(b) 3D-ConvNet 51.6 – – 24.3 – – 56.1 – –
(c) Two-Stream 83.6 85.6 91.2 43.2 56.3 58.3 62.2 52.4 65.6
(d) 3D-Fused 83.2 85.8 89.3 49.2 55.5 56.8 – – 67.2
(e) Two-Stream I3D 84.5 90.6 93.4 49.8 61.9 66.4 71.1 63.4 74.2

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51;
(right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31]
model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual
RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames
then averages the predictions.

Kinetics ImageNet then Kinetics
Architecture RGB Flow RGB + Flow RGB Flow RGB + Flow
(a) LSTM 53.9 – – 63.3 – –
(b) 3D-ConvNet 56.1 – – – – –
(c) Two-Stream 57.9 49.6 62.8 62.2 52.4 65.6
(d) 3D-Fused – – 62.7 – – 67.2
(e) Two-Stream I3D 68.4 (88.0) 61.5 (83.4) 71.6 (90.0) 71.1 (89.3) 63.4 (84.9) 74.2 (91.3)

Table 3. Performance training and testing on Kinetics with and without ImageNet pretraining. Numbers in brackets () are the Top-5
accuracy, all others are Top-1.

ties. This is interesting, given its very large number of pa-
rameters and that UCF-101 and HMDB-51 are so small, and
shows that the benefits of ImageNet pre-training can extend
to 3D ConvNets.

Second, the performance of all models is far lower on Ki-
netics than on UCF-101, an indication of the different levels
of difficulty of the two datasets. It is however higher than on
HMDB-51; this may be in part due to lack of training data
in HMDB-51 but also because this dataset was purposefully
built to be hard: many clips have different actions in the ex-
act same scene (e.g. “drawing sword” examples are taken
from same videos as “sword” and “sword exercise”). Third,
the ranking of the different architectures is mostly consis-
tent.

Additionally, two-stream architectures exhibit superior
performance on all datasets, but the relative value of RGB
and flow differs significantly between Kinetics and the other
datasets. The contribution from flow alone, is slightly
higher than that of RGB on UCF-101, much higher on
HMDB-51, and substantially lower on Kinetics. Visual in-
spection of the datasets suggests that Kinetics has much
more camera motion which may make the job of the motion
stream harder. The I3D model seems able to get more out
of the flow stream than the other models, however, which
can probably be explained by its much longer temporal re-
ceptive field (64 frames vs 10 during training) and more
integrated temporal feature extraction machinery. While it

seems plausible that the RGB stream has more discrimina-
tive information – we often struggled with our own eyes to
discern actions from flow alone in Kinetics, and this was
rarely the case from RGB – there may be opportunities for
future research on integrating some form of motion stabi-
lization into these architectures.

We also evaluated the value of training models in Kinet-
ics starting from ImageNet-pretrained weights versus from
scratch – the results are shown in table 3. It can be seen
that ImageNet pre-training still helps in all cases and this is
slightly more noticeable for the RGB streams, as would be
expected.

5. Experimental Evaluation of Features
In this section we investigate the generalizability of

the networks trained on Kinetics. We consider two
measures of this: first, we freeze the network weights
and use the network to produce features for the (un-
seen) videos of the UCF-101/HMDB-51 datasets. We
then train multi-way soft-max classifiers for the classes of
UCF-101/HMDB-51 (using their training data), and eval-
uate on their test sets; Second, we fine-tune each net-
work for the UCF-101/HMDB-51 classes (using the UCF-
101/HMDB-51 training data), and again evaluate on the
UCF-101/HMDB-51 test sets.

We also examine how important it is to pre-train on Im-
ageNet+Kinetics instead of just Kinetics.



Action Segmentation
• State-of-the-art methods for action classification, detection 

and segmentation rely on spatio-temporal deep networks.

[1] C. Lea, G. Hager, R. Vidal.  An Improved Model for Segmentation and Recognition of Fine-Grained Activities. WACV 2015. 
[2] C. Lea, R. Vidal, G. Hager. Learning Convolutional Action Primitives for Fine-grained Action Recognition. ICRA 2016. 
[3] C. Lea, A. Reiter, R. Vidal, G. Hager. Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation. ECCV 2016. 
[4] Tao, Vidal. Moving Poselets: A Discriminative and Interpretable Skeletal Motion Representation for Action Recognition. ICCVW 2015. 
[5] Mavroudi, Tao, Vidal. Deep Moving Poselets for Video Based Action Recognition. WACV 2017. 
[6] Mavroudi, Bhaskara, Sefati, Ali, Vidal. End-to-End Fine-Grained Action Segmentation and Recognition Using Conditional Random Field Models and Discriminative 
Sparse Coding. WACV, 2018.



IARPA: Deep Intermodal Video Analytics (DIVA)

Multiple Activities  
at Multiple Scales Varying Illumination

Multiple Actors, People and Vehicles

PI: Rama Chellappa 
Larry Davis, Abhinav Gupta, Martial Hebert, Deva Ramanan, Mubarak Shah, Aswin 
Sankaranarayaran, René Vidal



Scene Parsing | Visual Question Answering

Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. Visual Turing test for computer vision systems. PNAS 2015. 
Antol, Agrawal, Lu, Mitchell, Batra, Zitnick, Parikh. VQA: Visual Question Answering  ICCV 2015 
Xu and Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering, ECCV 2016. 
Johnson, Hariharan, van der Maaten, Fei-Fei, Zitnick, Girshick. CLEVR: A Diagnostic Dataset for Compositional Language and 
Elementary Visual Reasoning, CVPR 2017



MURI on Semantic Information Pursuit
• Develop an information-theoretic framework for characterizing 

semantic information content in complex multimodal data.

MURI Topic #19 Semantic Information Pursuit for Multimodal Data Analysis René Vidal, JHU

from negligible. In addition, depending on the scene, implementing a relatively small subset of
all the classifiers might already provide a substantial amount of information about the scene, per-
haps even a sufficient amount for a given purpose. Therefore, we propose to interpret the data
sequentially, identifying and applying the most informative classifier (in an information-theoretic
sense) at each step given the accumulated evidence from those previously applied. The Bayesian
framework provides a principled way for deciding what evidence to acquire at each step and for
coherently integrating the evidence by updating likelihoods. At each step, we select the classifier
(equivalently, the query) which achieves the maximum value of the conditional mutual information
between the global scene interpretation and any classifier given the existing evidence (i.e., output
of the classifiers already implemented). We will use information measures from Aim 1 whose
mutual information can be expressed as the difference of two positive terms: the first is the en-
tropy of a mixture and favors classifiers with unpredictable outcomes, hence addressing aspects of
the scene description which are highly uncertain given the current evidence; the second term is a
mixture of entropies and favors classifiers that have low conditional error rates given the evidence,
or, equivalently, are good predictors of their corresponding annobit. We want to focus on currently
ambiguous scene variables but use classifiers which are currently dependable. In both cases the
mixing weights are the posterior probabilities of the annobit(s) associated with the new classifier.
For certain data models, the optimization problem is not only tractable but can be easily solved by
a combination of closed-form calculations and Monte Carlo estimates. For more complex models,
we will study if the more advanced Monte Carlo methods described in Aim 4.3 can be applied. The
proposed IP strategy then alternates between selecting the next classifier, applying it to the input
data, and updating the posterior distribution on interpretations given the output. Processing may
be terminated at any point, ideally as soon as the posterior distribution is peaked around a coherent
interpretation, which may occur after only a small fraction of the classifiers have been executed.

The selection of queries is task-dependent. In the case
where the data has already been collected, we may want
to structure the queries so that the interpretation procedure
can move freely among different levels of semantic, geo-
metric and sensor resolution. For example, to switch from
analyzing all data from all modalities as a whole, to local
scrutiny of a small portion of the data for fine discrimina-
tion, and perhaps back again depending on current input
and changes in target probabilities as evidence is acquired.
This suggests having a variety of queries, some of which
are specialized in a particular modality (e.g., images) for a particular set of categories (e.g., objects)
in a particular location (e.g., image region), while others might involve multiple modalities.

Consider now the case where the data is collected sequentially over time and we also have
the possibility to control the acquisition process (e.g., control a camera network). In this case,
we may also want to include queries involving the selection and positioning of a particular sensor
that will yield the “most information” for interpreting the data, e.g., what camera should be used
and how should it be moved to best recognize an occluded object? The key here is to use the
representation to control the data acquisition process, which can be performed in data space (e.g.,
what dimensions to sample, what detectors to run, or what data to label), in sensor space (e.g.,
what modality to activate, what sensor to trigger), or in physical space (e.g. what illuminant to
activate, or where to move the sensor so as to minimize uncertainty due to visibility artifacts).
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PI: René Vidal 
Emmanuel Candes, Rama Chellappa, Donald Geman, Michael Jordan, Jason Lee, Stefano Soatto 
Arnaud Doucet, Mark Girolami, Josef Kittler, Simone Severini, John Shawe-Taylor



Key Theoretical Questions in Deep Learning
Questions in Deep Learning

Architecture Design Optimization Generalization

Slide courtesy of Ben Haeffele



Key Theoretical Questions are Interrelated
• Optimization can  

impact  
generalization [1,2] 

• Architecture has  
strong effect on  
generalization [3] 

• Some architectures  
could be easier to  
optimize than others [4]

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).  
[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 
[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017). 
[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

Architecture

Optimization
Generalization/
Regularization



Analysis of Optimization: Main Results

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, 
ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017. 
[4] Haeffele, Vidal. Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications. TPAMI 2018.

Today’s Talk: The Results
Optimization

• A local minimum such that 
one subnetwork is all zero is 
a global minimum. 

• Questions: What properties of the 
architecture and regularization 
function facilitate optimization?

Today’s Talk: The Results

• Once the size of the network 
becomes large enough...

• Local descent can reach a 
global minimum from any 
initialization.

Optimization

Non-Convex Function Today’s Framework

• Assumptions: 
• Parallel network structure.  
• Positively homogeneous activations. 
• Positively homogeneous regularizers.

• Theorem 1: A local minimum such 
that all weights from one subnet are 
zero is a global minimum.

• Theorem 2: If network size is large 
enough local descent can find global 
minimum from any initialization.



Analysis of Dropout Regularization: Main Results

[1] Jacopo Cavazza, Benjamin Haeffele, Pietro Morerio, Connor Lane, Vittorio Murino, Rene Vidal, Dropout as a Low-Rank 
Regularizer for Matrix Factorization, AISTATS (2018), https://arxiv.org/abs/1710.03487 
[2] Poorya Mianjy, Raman Arora, Rene Vidal, On the Implicit Bias of Dropout, ICML (2018), https://arxiv.org/abs/1806.09777

• Question: What objective 
function is being 
minimized by dropout?  

• Theorem 3: Dropout is 
SGD applied to a 
stochastic objective.

• Question: What type of 
regularization is induced 
by dropout?  

• Theorem 4: Dropout 
induces explicit low-rank 
regularization (nuclear 
norm squared).

• Question: What are the 
properties of the optimal 
weights?  

• Theorem 5: Dropout 
induces balanced weights.



Conclusions and Future Directions
• Computer vision has rich a history of model-based and 

data-driven methods 
– Object and view centered representations 
– Handcrafted and learned features 

• Recently remarkable progress of data driven methods 
– Object and image classification, object detection, pose estimation 
– Semantic segmentation, generative adversarial networks 

• But still far from intelligence: need model-based + data 
driven methods 
– Geometric deep learning, action recognition, scene parsing 
– Lifelong learning 
– Theory of CNNs, RNNs, GANs



More Information,

JHU Vision Lab 
http://www.vision.jhu.edu/ 

Mathematical Institute for Data Science @ JHU 
http://www.minds.jhu.edu 

Thank You!

http://www.vision.jhu.edu/
http://www.minds.jhu.edu

