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Abstract—We propose a geometric approach to 3D motion segmentation from point correspondences in three perspective views. We

demonstrate that after applying a polynomial embedding to the point correspondences, they become related by the so-called multibody

trilinear constraint and its associated multibody trifocal tensor, which are natural generalizations of the trilinear constraint and the

trifocal tensor to multiple motions. We derive a rank constraint on the embedded correspondences from which one can estimate the

number of independent motions, as well as linearly solve for the multibody trifocal tensor. We then show how to compute the epipolar

lines associated with each image point from the common root of a set of univariate polynomials and the epipoles by solving a pair of

plane clustering problems using Generalized Principal Component Analysis (GPCA). The individual trifocal tensors are then obtained

from the second-order derivatives of the multibody trilinear constraint. Given epipolar lines and epipoles or trifocal tensors, one can

immediately obtain an initial clustering of the correspondences. We use this clustering to initialize an iterative algorithm that alternates

between the computation of the trifocal tensors and the segmentation of the correspondences. We test our algorithm on various

synthetic and real scenes and compare it with other algebraic and iterative algorithms.

Index Terms—Multibody structure from motion, 3D motion segmentation, multibody trilinear constraint, multibody trifocal tensor,

Generalized PCA (GPCA).

Ç

1 INTRODUCTION

ONE of the most important problems in visual motion
analysis is that of reconstructing a 3D scene from a

collection of images taken by a moving camera. At present,
the algebraic and geometric aspects of this problem are very
well understood. For example, it is known that two, three, and
multiple views of a scene are related by the so-called bilinear,
trilinear, and multilinear constraints, respectively. Also, there
are various algorithms for performing the reconstruction
task, both geometric and optimization-based [14].

However, most of these algorithms assume that the scene
is static, that is, either the camera or a single object in the scene
moves; hence, they can only estimate a single motion model
from the image measurements. In practice, most scenes are
dynamic, that is, both the camera and multiple objects in the
3D world move independently. Thus, one is faced with the
more challenging multibody structure from motion problem of
recovering multiple motion models from the image data,
without knowing the assignment of data points to motion
models.

1.1 Previous Work

Multibody structure from motion has received increasing
attention over the past few years. Existing approaches [26]
solve this problem by successive computation of dominant
motions using methods from robust statistics such as
Random Sample Consensus (RANSAC) [7]. First, a single
motion model is computed by applying RANSAC to all image

measurements. Then, the measurements that fit this domi-
nant motion model well (inliers) are removed from the data
set, and RANSAC is reapplied to the remaining points to
obtain a second motion model. The process is repeated until
most measurements have been assigned to a model. Alter-
native approaches [6] first cluster the features corresponding
to the same motion using, for example, K-Means or spectral
clustering, and then estimate a single motion model for each
group using standard structure from motion algorithms. This
can also be done in a probabilistic framework by alternating
between feature clustering and single-body motion estima-
tion using the Expectation-Maximization (EM) algorithm [3].
When the probabilistic model generating the data is known,
this iterative method provides an optimal estimate in the
maximum likelihood sense. However, it is well known that
EM is very sensitive to initialization [25].

In order to deal with the initialization problem, recent
work has concentrated on the geometry of dynamic scenes,
including the analysis of multiple points moving linearly
with constant speed [11], [21], multiple points moving in a
plane [24], multiple translating planes [33], and self-calibra-
tion from multiple motions [8], [12]. Vidal et al. [30] propose a
polynomial factorization algorithm for segmenting purely
translating objects. Wolf and Shashua [34] derived a bilinear
constraint in IR6, which, together with a combinatorial
scheme, segments two rigid-body motions from two per-
spective views. Vidal et al. [32] propose a generalization of the
epipolar constraint and of the fundamental matrix to multiple
rigid-body motions, which leads to a motion segmentation
algorithm based on factoring products of epipolar constraints
to retrieve the fundamental matrices associated with each one
of the motions. Vidal and Ma [28] extend this method to most
two-view motion models such as affine, translational, and
planar homographies by fitting and differentiating complex
polynomials. All these two-view algorithms are algebraic;
hence, they do not require initialization.

Although in general two views are sufficient for solving
the motion estimation and segmentation problem, there are
some degenerate situations in which two-view algorithms
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may fail. For instance, if the scene consists of a planar object
that is moving on its own plane and the camera is also
moving in the same plane, then one cannot tell from two
views whether the scene consists of one or two motions.
Unfortunately, real video sequences are commonly close to
this type of degenerate configurations. In such cases, a
minimum of three views is needed in order to properly
segment the two motions. To the best of our knowledge,
other than [13], there is no previous work addressing
motion estimation and segmentation from three perspective
views. The only existing works on multiframe 3D motion
segmentation are for points moving on a line in three
perspective views [22], for multiple translating objects from
line correspondences in three perspective views [23], and
for rigid-body motions in three or more affine views [1], [2],
[5], [9], [10], [15], [17], [18], [27], [35], [36].

1.2 Paper Contributions and Outline

In this paper, we present a geometric approach to the
estimation and segmentation of an unknown number of
rigid-body motions from a set of point correspondences in
three perspective views. Our approach algebraically elim-
inates the feature clustering stage and directly solves for the
motion parameters in an algebraic fashion. This is achieved
by fitting a multibody motion model to all the image
measurements and then factorizing this model to obtain the
individual motion parameters. The final result is a natural
generalization of the classical three-view geometry (trilinear
constraint, trifocal tensor, and seven-point algorithm) to the
case of multiple rigid-body motions.

Section 2 studies the three-view geometry and algebra of
the multibody structure from motion problem. We introduce
the multibody trilinear constraint as a geometric relationship
between the motion parameters and the image points that is
satisfied by all the correspondences, regardless of the body
with which they are associated. We show that this constraint
is trilinear on a polynomial embedding of the correspon-
dences and linear on the so-called multibody trifocal tensor T ,
an algebraic structure encoding the parameters of all rigid-
body motions. We then study the geometric properties of T
and show that it can be used for transferring points and lines
from a pair of views to the other.

Section 3 presents a geometric algorithm for estimating
the number of motions, the motion parameters, and the
clustering of the correspondences. We first derive a rank
constraint on the matrix of embedded correspondences from
which one can estimate the number of independent motions
n, as well as linearly solve for the multibody trifocal tensor T .
Given n and T , we show that one can compute the epipolar
lines associated with each correspondence from the common
root of a set of univariate polynomials. By applying this
process to all the correspondences, we obtain a collection of
epipolar lines that must intersect at the n epipoles. The
estimation of the epipoles is then shown to be equivalent to a
pair of plane clustering problems, which we solve algebrai-
cally using Generalized Principal Component Analysis
(GPCA) [31], [29]. Given epipolar lines and epipoles or
trifocal tensors, one can immediately obtain an initial
clustering of the correspondences. We use this clustering to
initialize an iterative algorithm that alternates between the
computation of the trifocal tensors and the segmentation of
the correspondences. We test our algorithm on various
synthetic and real dynamic scenes and compare it with other
algebraic and iterative algorithms.

2 MULTIBODY THREE-VIEW GEOMETRY

This section establishes the basic geometric relationships

among three perspective views of multiple rigid-body

motions. We first review the trilinear constraint and its

associated trifocal tensor for the case of a single rigid-body

motion. We then generalize these notions to multiple motions

via a polynomial embedding that leads to the so-called

multibody trilinear constraint and its associated multibody

trifocal tensor. We also study transfer properties of the

multibody trifocal tensor from a pair of views to the other.

2.1 The Trilinear Constraint and the Trifocal Tensor

Let xx$ ‘‘0 $ ‘‘00 be a point-line-line correspondence in three

perspective views, as illustrated in Fig. 1. Also, let

P ¼
�
I 0

�
; P0 ¼

�
R0 ee0

�
and P00 ¼

�
R00 ee00

�
2 IR3�4 ð1Þ

be the camera matrices in the first, second, and third views,

where ee0 2 IP2 and ee00 2 IP2 are the epipoles in the second and

third views, respectively. Then, the multiple-view matrix [19]

‘‘0>R0xx ‘‘0>ee0

‘‘00>R00xx ‘‘00>ee00

� �
2 IR2�2 ð2Þ

must have rank 1; hence, its determinant must be zero, that

is,

‘‘0>ðR0xxee00> � ee0xx>R00>Þ‘‘00 ¼ 0: ð3Þ

This is the well-known point-line-line trilinear constraint

among the three views [14], which we will denote as

xx‘‘0‘‘00T ¼ 0; ð4Þ

where T 2 IR3�3�3 is the so-called trifocal tensor.

Notation. For ease of notation, we will drop the summation and the

subscripts in trilinear expressions such as
P

ijk xi‘
0
j‘
00
kTijk and

write them as shown in (4). Similarly, we will write xxT to

represent the matrix whose ðjkÞth entry is
P

i xiTijk andx‘x‘0T to

represent the vector whose kth entry is
P

ij xi‘
0
jTijk. The

notation is somewhat condensed and inexact, since the particular

indices that are being summed over are not specified. However,

the meaning should in all cases be clear from the context.
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Fig. 1. Three-view geometry: projections xx, ‘‘0, and ‘‘00 of a point XX and a
line L in a 3D space onto three perspective views. The relative motion
among the three views is encoded by the trifocal tensor T 2 IR3�3�3. The
intersections of the lines ðo; o0Þ and ðo; o00Þ with the second and third
image planes, respectively, are the so-called epipoles ee0 and ee00. (This
figure and Fig. 2 are adapted from figures in [14].)



2.2 The Multibody Trilinear Constraint

Consider now a scene containing n rigid-body motions

with associated trifocal tensors fTi 2 IR3�3�3gni¼1, where Ti
is the trifocal tensorassociatedwiththemotionof the ithobject

relative to the moving camera among the three views. We

assume that the motions of the objects relative to the camera

are such that all the trifocal tensors are different up to a scale

factor. We also assume that the given images correspond to

3D points in general configuration in IR3, that is, they do not all

lie in any critical surface, for example.
Let xx$ ‘‘0 $ ‘‘00 be an arbitrary point-line-line correspon-

dence associated with any of the n motions. Then, there

exists a trifocal tensor Ti satisfying the trilinear constraint in

(3) or (4). Thus, regardless of the motion associated with the

correspondence, the following constraint must be satisfied

by the number of independent motions n, the trifocal

tensors fTigni¼1, and the correspondence xx$ ‘‘0 $ ‘‘00:

Yn
i¼1

ðxx‘‘0‘‘00TiÞ ¼ 0: ð5Þ

We call (5) the multibody trilinear constraint, because it is a

natural generalization of the trilinear constraint valid for

n ¼ 1.

2.3 The Multibody Trifocal Tensor

The multibody trilinear constraint eliminates the problem of

clustering the correspondences from the motion segmenta-

tion problem by taking the product of all trilinear constraints.

Although taking the product is not the only way of

algebraically eliminating feature segmentation, the product

has the advantage of leading to a polynomial equation in

ðxx; ‘‘0; ‘‘00Þ with a nice algebraic structure. Indeed, the multi-

body constraint is a homogeneous polynomial of degree n in

each of xx, ‘‘0, or ‘‘00. Now, suppose xx ¼ ðx1; x2; x3Þ>. We may

enumerate all the possible monomialsxn1
1 x

n2
2 x

n3

3 of degreen in

(5) and write them in some chosen order as a vector:

exx ¼ ðxn1 ; xn�1
1 x2; x

n�1
1 x3; x

n�2
1 x2

2; . . . ; xn3 Þ
>: ð6Þ

This vector has dimension Mn ¼ ðnþ 1Þðnþ 2Þ=2. The map

xx 7!exx is known as the polynomial embedding of degree n in

the machine learning community and as the Veronese map of

degreen in the algebraic geometry community. The vectorse‘‘0
and e‘‘00 are defined similarly in terms of ‘‘0 and ‘‘00.

Now, note that (5) is a sum of the terms of degree n in

each of xx, ‘‘0, and ‘‘00. Thus, each term is a product of degree n

monomials in xx, ‘‘0, and ‘‘00. We may therefore define

a 3D multibody trifocal tensor T 2 IRMn�Mn�Mn containing

the coefficients of each of the monomials occurring in the

product (5) and write the multibody constraint (5) as

exx e‘‘0 e‘‘00 T ¼ 0; ð7Þ

where the summation over all the entries of the vectors exx, e‘‘0,
and e‘‘00 is implied. The important point to observe is that

although (7) has degree n in the entries of xx, ‘‘0, and ‘‘00, it is in

fact linear in the entries of exx, e‘‘0, and e‘‘00. Since (7) is a trilinear

constraint on exx, e‘‘0, and e‘‘00, we will refer to both (5) and (7) as

the multibody trilinear constraint from now on.

2.4 Transfer Properties of the Multibody Trifocal
Tensor

An important property of the trifocal tensor T is that of
transferring points and lines from a pair of views to the
other [14]. For example, if ‘‘0 and ‘‘00 are corresponding lines
in the second and third views, then ‘‘ ¼ ‘‘0‘‘00T is a
corresponding line in the first view, as illustrated in
Fig. 2. Similarly, if xx is a point in the first view and ‘‘0 is a
corresponding line in the second view, then xx00 ¼ x‘x‘0T is the
corresponding point in the third view. Likewise, xx0 ¼ x‘x‘00T
is the point in the second view corresponding to ðxx; ‘‘00Þ.

We now discuss the transfer properties of the multibody
trifocal tensor T . Although in principle these properties are
natural generalizations of the corresponding properties of
the individual trifocal tensors fTigni¼1, in the multibody
case, the situation is more complex, because T incorporates
information about all the motions at the same time. Indeed,
if ‘‘0 and ‘‘00 are two lines in the second and third views, then
‘‘i ¼ ‘‘0‘‘00Ti is a corresponding line in the first view
according to the ith motion. Now, from the multibody
trifocal constraint, we have

exxe‘‘0e‘‘00T ¼Yn
i¼1

ðxx‘‘0‘‘00TiÞ ¼
Yn
i¼1

ðxx>‘‘iÞ ð8Þ

hence, the vector e‘‘0 e‘‘00T 2 IRMn represents the coefficients of
the homogeneous polynomial in xx:

qnðxxÞ ¼ ðxx>‘‘1Þðxx>‘‘2Þ � � � ðxx>‘‘nÞ: ð9Þ

Therefore, given e‘‘0 e‘‘00T , we can compute the lines f‘‘igni¼1 by
factorizing the homogeneous polynomial of degree n, qnðxxÞ,
into a product of n homogeneous polynomials of degree
one fð‘‘>i xxÞg

n
i¼1. A technique for performing such a

factorization can be found in [30].1 We can interpret this
factorization process as a generalization of the conventional
line transfer property of the multibody trifocal tensor to
multiple motions. In essence, the multibody trifocal tensor
T allows us to “transfer” a pair of lines ‘‘0 and ‘‘00 in the
second and third views to a set of n lines in the first view, as
shown geometrically in Fig. 3. In an entirely analogous
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1. It was shown in [30] that this polynomial factorization problem has a
unique solution (up to a scale for each factor) that is algebraically equivalent
to solving for the roots of a polynomial of degree n in one variable plus
solving a linear system in n variables.

Fig. 2. A line ‘‘00 in the third image defines a 3D plane, which intersects �0 in
a line L. This line is then imaged as the line ‘‘ ¼ ‘‘0‘‘00T in the first view.
Therefore, the trifocal tensorT maps a pair of corresponding lines ‘‘0 and ‘‘00

on the second and third images onto a corresponding line ‘‘ in the first
image.



fashion, the factorization of exxe‘‘0T gives the n corresponding

points xx00i in the third view, and the factorization of exxe‘‘00T
gives the n corresponding points xx0i in the second view.

In some cases, one may be interested in transferring two
corresponding lines ‘‘0 and ‘‘00 to their corresponding line ‘‘
according to, say, the ith motion. Notice that this cannot be
done from the multibody trifocal tensor T alone, which
encodes information about the n motions. As discussed
earlier, the factorization of e‘‘0 e‘‘00T will give n lines f‘‘igni¼1.
Since the line associated with the ith motion must pass
through a corresponding point xx in the first view, given the
n lines f‘‘igni¼1, we can identify ‘‘i as the one that minimizes
ð‘‘>k xxÞ

2 for k ¼ 1; . . . ; n.
There is, however, a simpler and more elegant way of

computing the line ‘‘ associated with a point-line-line
correspondence, which is by looking at the derivatives of
the multibody trilinear constraint, thus avoiding polyno-
mial factorization.2 We begin by considering the derivative
of the multibody trilinear constraint with respect to its first
argument

@

@xx
ðexxe‘‘0 e‘‘00T Þ ¼ @

@xx

Yn
i¼1

ðxx‘‘0‘‘00TiÞ ¼
Xn
i¼1

ð‘‘0‘‘00TiÞ
Y
k 6¼i
ðxx‘‘0‘‘00TkÞ:

We notice that if we evaluate this derivative at a correspon-
dence xx$ ‘‘0 $ ‘‘00 associated with the ith motion, that is, the
correspondence is such that x‘x‘0‘‘00Ti ¼ 0, then all the terms in
the above summation but the ith vanish. Thus, we obtain

@

@xx
ðexxe‘‘0 e‘‘00T Þ����

xx‘‘0‘‘00Ti¼0

¼ ð‘‘0‘‘00TiÞ
Y
k6¼i
ðxx‘‘0‘‘00TkÞ � ð‘‘0‘‘00TiÞ;

which from the properties of the trifocal tensor Ti gives a
line ‘‘ in the first view. Notice that this line ‘‘ in the first view
is transferred from the two lines in the second and third
views according to the unknown ith trifocal tensor Ti. That
is, the multibody trifocal tensor enables us to transfer
corresponding lines according to their own motion, without
having to know the motion with which the correspondence
is associated. We therefore have the following result.

Theorem 1 (Line transfer from corresponding lines in the

second and third views to the first). The derivative of the
multibody trilinear constraint with respect to its first

argument evaluated at a correspondence ðxx; ‘‘0; ‘‘00Þ gives a line
‘‘ in the first view passing though xx, that is,

‘‘ ¼ @

@xx
ðexxe‘‘0 e‘‘00T Þ and ‘‘>xx ¼ 0: ð10Þ

Different choices for ‘‘0 and ‘‘00 will give different lines ‘‘.

In a similar fashion, if we now consider the derivative of
the multibody trilinear constraint with respect to its second
argument and evaluate it at a correspondence ðxx; ‘‘0; ‘‘00Þ
associated with the ith motion, then we obtain

@

@‘‘0
ðexxe‘‘0e‘‘00T Þ����

xx‘‘0‘‘00Ti¼0

¼ ðxx‘‘00TiÞ
Y
k 6¼i
ðxx‘‘0‘‘00TkÞ � ðxx‘‘00TiÞ:

From the properties of Ti, this gives a corresponding point xx0

in the second view. Similarly, the derivative with respect to
the third argument gives the corresponding point in the third
view xx00. We therefore have the following result.

Theorem 2 (Point transfer from the first to the second and

third views). The derivative of the multibody trilinear
constraint with respect to its second and third arguments
evaluated at a correspondence ðxx; ‘‘0; ‘‘00Þ gives the corresponding
point in the second and third viewsxx0 andxx00, respectively, that is,

@

@‘‘0
ðexxe‘‘0 e‘‘00T Þ � xx0 and

@

@‘‘00
ðexxe‘‘0 e‘‘00T Þ � xx00: ð11Þ

3 MULTIBODY MOTION ESTIMATION AND

SEGMENTATION FROM THREE PERSPECTIVE

VIEWS

In this section, we present a linear algorithm for segmenting a
scene consisting of multiple rigid motions. More specifically,
we assume that we are given a set of point correspondences
fxxj $ xx0j $ xx00jg

N
j¼1 and show how to estimate the number of

independent motions n, the individual trifocal tensors
fTigni¼1, and the clustering of the correspondences. Our
algorithm proceeds as follows: In Section 3.1, we show how to
compute the number of motions n and the multibody trifocal
tensor T from a rank constraint on the embedded correspon-
dences. In Section 3.2, we show how to estimate the epipolar
lines in the second and third views, ‘‘0xx and ‘‘00xx, respectively,
associated with each pointxx in the first view by solving for the
common root of a set of univariate polynomials. In Section 3.3,
we show how to estimate the epipoles in the second and third
views, fee0ig

n
i¼1 and fee00i g

n
i¼1, respectively, by solving a plane

clustering problem. Given epipolar lines and epipoles, one
may immediately cluster the correspondences into n groups
and then estimate individual trifocal tensors and camera
matrices from the data associated with each group. Alter-
natively, one may recover the individual trifocal tensors
directly from the second-order derivatives of the multibody
trilinear constraint, as we show in Section 3.4. Once the
trifocal tensors have been computed, one can easily obtain the
camera and fundamental matrices, as shown in Section 3.5. In
Section 3.6, we show how to refine the estimates of the linear
algorithm by extending the K-Means algorithm [4] to a
mixture of trifocal tensors.
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2. Note that polynomial factorization may fail when T is computed from
noisy correspondences, because the polynomial qnðxxÞ will not perfectly
factor as a product of linear forms.

Fig. 3. The multibody trifocal tensor T maps each pair of corresponding
lines ‘‘0 and ‘‘00 in the second and third views to n lines ‘‘1; . . . ; ‘‘n in the
first view. These n transferred lines correspond to the n different motions
encoded in the trifocal tensor T . (This figure and Fig. 5 are adapted from
figures in [20].)



3.1 Computing the Multibody Trifocal Tensor T and
the Number of Independent Motions n

Recall from [14] that the trifocal tensor T associated with a
single rigid-body motion can be computed linearly from the
trilinear constraint (4) given at least 26 point-line-line
correspondences xx$ ‘‘0 $ ‘‘00 in general configuration. If
instead we are given point-point-point correspondences
xx$ xx0 $ xx00, then for each point xx0 in the second view, we
can obtain two lines ‘‘01 and ‘‘02 passing through xx0 and,
similarly, for the third view. Therefore, each correspondence
gives in general four independent equations on T , and we
only need seven point-point-point correspondences to
linearly estimate T [14].

In the case of n rigid-body motions, the multibody
trilinear constraint (7) is also linear in the multibody trifocal
tensor T . In fact, we may rewrite it as

ðexx� e‘‘0 � e‘‘00Þ>tt ¼ 0; ð12Þ

where tt 2 IRM3
n is the stack of all the entries in T , and� is the

Kronecker product. Thus, if we are given N �M3
n � 1 point-

line-line correspondences fxxj $ ‘‘0j $ ‘‘00jg
N
j¼1, we can solve for

T linearly from (12), provided that the number of motionsn is
known. However, this requires a rather large number of
correspondences: 26 correspondences for one motion, 215 for
two motions, 999 for three motions, and so forth.

Fortunately, as in the case of a single rigid-body motion,
we can significantly reduce the data requirements by working
with point-point-point correspondences xx$ xx0 $ xx00. Since
each point in the second view xx0 gives two lines ‘‘01 and ‘‘02 and
each point in the third view xx00 gives two lines ‘‘001 and ‘‘002 , a
naive calculation would give 22 ¼ 4 linear equations in T per
correspondence. However, due to the algebraic properties of
the Veronese map, each correspondence provides in general
ðnþ 1Þ2 independent constraints on T .

To see this, remember that the multibody trilinear
constraint is satisfied by all lines ‘‘0 ¼ �‘‘01 þ ‘‘02 and ‘‘00 ¼
�‘‘001 þ ‘‘002 passing through xx0 and xx00, respectively. Therefore,
for all � 2 IR and � 2 IR, we must have�exx� gð�‘‘01 þ ‘‘02Þ � gð�‘‘001 þ ‘‘002Þ

�>
tt ¼ 0: ð13Þ

This equation, viewed as a function of �, is a polynomial of
degree n; hence, its nþ 1 coefficients must be zero. Each one
of its coefficients is in turn a polynomial of degree n in �,
whose nþ 1 coefficients must be zero. Therefore, each
point-point-point correspondence gives ðnþ 1Þ2 constraints
on the multibody trifocal tensor T . We do not present an
analytical proof that these ðnþ 1Þ2 constraints are in fact
linearly independent. However, numerical examples show
that this is indeed true for generic data. Exhibiting a single
example for which the constraints are indeed linearly
independent is enough to show that this is generically the
case (that is, for almost all sets of input data).

In order to compute the multibody trifocal tensor, notice
that after expanding gð�‘‘01 þ ‘‘02Þ as

Pn
j¼0 �

jCjð‘‘01; ‘‘02Þ andgð�‘‘001 þ ‘‘002Þ as
Pn

k¼0 �
kCkð‘‘001 ; ‘‘002Þ, where Cjð‘‘1; ‘‘2Þ 2 IRMn , and

substituting these expressions in (13), the ðnþ 1Þ2 con-
straints can be written explicitly as

ðexx� Cjð‘‘01; ‘‘02Þ � Ckð‘‘001 ; ‘‘002ÞÞ>tt ¼ 0 j; k ¼ 0; . . . ; n: ð14Þ

Therefore, if we are given a set of N � ðM3
n � 1Þ=ðnþ 1Þ2

point-point-point correspondences fxxi $ xx0i $ xx00i g
N
i¼1, we

may generate a set of N line pairs ð‘‘0i1; ‘‘0i2Þ and ð‘‘00i1; ‘‘00i2Þ
passing through xx0i and xx00i , respectively, and solve for the
multibody trifocal tensor T from the system of linear
equations:

VV ntt¼:

ð exx1 � C0ð‘‘011; ‘‘
0
12Þ � C0ð‘‘0011; ‘‘

00
12ÞÞ

>

..

.

ð exx1 � Cnð‘‘011; ‘‘
0
12Þ � Cnð‘‘0011; ‘‘

00
12ÞÞ

>

..

.

ðfxxN � C0ð‘‘0N1; ‘‘
0
N2Þ � C0ð‘‘00N1; ‘‘

00
N2ÞÞ

>

..

.

ðfxxN � Cnð‘‘0N1; ‘‘
0
N2Þ � Cnð‘‘00N1; ‘‘

00
N2ÞÞ

>

26666666666664

37777777777775
tt ¼ 0: ð15Þ

Note that we need only ðM3
n � 1Þ=ðnþ 1Þ2 point-point-

point correspondences to linearly estimate T . That is, 7, 24,
and 63 correspondences for one, two, and three motions,
respectively. This represents a significant improvement not
only with respect to the case of point-line-line correspon-
dences but also with respect to the case of two perspective
views, which requires M2

n � 1 point-point correspondences
to linearly estimate the multibody fundamental matrix [32],
that is, 8, 35, and 99 correspondences for one, two, and three
motions, respectively. Table 1 gives the minimum number
of point correspondences as a function of the number of
motions. Of course, with noisy data, it is better to use many
more correspondences than the minimum required.

Although the multibody trilinear constraint is linear in
the multibody trifocal tensor T , we cannot solve for T
without knowing the number of motions in advance,
because (15) depends explicitly on n. However, in order
for this linear system to have a unique solution, we must
have rankðVV nÞ ¼M3

n � 1. As it turns out, this rank con-
straint provides us with a method for computing the
number of independent motions. This is because the
multibody trilinear constraint of degree n is the polynomial
of minimal degree that fits the given data. This implies that
(15) has no solution if n is less than the true number of
motions, a unique solution if n equals the true number of
motions, and more than one solution otherwise, that is

rankðVV iÞ
> M3

i � 1; if i < n

¼M3
i � 1; if i ¼ n

< M3
i � 1; if i > n:

8<: ð16Þ

Therefore, the number of independent motions is given by

n¼: minfi : rankðVV iÞ ¼M3
i � 1g: ð17Þ

Clearly, this formula for the number of motions is useful
only if the correspondences are noiseless, because with
noisy image measurements the matrix VV i may be full rank
for all i. An extremely simple way for computing the
number of motions n from a noisy matrix VV i is
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TABLE 1
Minimum Number of Point-Point-Point Correspondences

as a Function of the Number of Motion Models



n ¼ arg min
i�1

�2
M3

i

ðVV iÞPM3
i �1

k¼1

�2
kðVV iÞ

þ �M3
i ; ð18Þ

where �kðVV iÞ is the kth singular value of VV i, and � is a
parameter. The formula in (18) for estimating n is motivated
by model selection techniques [16] in which one minimizes
a cost function that consists of a data fitting term and a
model complexity term. The data fitting term measures how
well the data is approximated by the model—in this case,
how close the matrix VV i is to dropping rank by one. The
model complexity term penalizes choosing models of high
complexity—in this case, choosing a large rank.

We summarize the results so far with the following linear
algorithm for estimating the multibody trifocal tensor.

Algorithm 1. (Computing the multibody trifocal tensor T )
Given N � ðM3

n � 1Þ=ðnþ 1Þ2 point-point-point correspon-
dences fxxi $ xx0i $ xx00i g

N
i¼1 in general configuration, com-

pute T as follows:

1. For i ¼ 1; . . . ; N , generate line pairs ð‘‘0i1; ‘‘0i2Þ and
ð‘‘00i1; ‘‘00i2Þ passing through xx0i and xx00i , respectively.

2. For n ¼ 1; 2; . . . , form the matrix VV n 2 IRNðnþ1Þ2�M3
n

whose rows are exxi � Cjð‘‘0i1; ‘‘0i2Þ � Ckð‘‘00i1; ‘‘00i2Þ 2 IRM3
n

for all i ¼ 1; . . . ; N and j; k ¼ 0; . . . ; n and determine
the number of motions as in (18).

3. Compute T , interpreted as a vector in IRM3
n , as the

singular vector of VV n associated with its smallest
singular value.

Notice that Algorithm 1 is the same as the well-known
linear seven-point algorithm for estimating the trifocal tensor T
[14]. The only difference is that we need to generate more than
two equations per point in the second and third views xx0 and
xx00 in order to build the data matrix, whose null space is the
multibody trifocal tensor.

3.2 Computing Epipolar Lines

Given the trifocal tensor T , it is well known how to compute
the epipolar lines in the second and third views of a point xx in
the first view [14]. Specifically, notice from (3) that the matrix

Mxx ¼ ðxxT Þ ¼ ðR0xxee00> � ee0xx>R00>Þ 2 IR3�3 ð19Þ

has rank 2. In fact, its left null space is ‘‘0xx ¼ ee0 � ðR0xxÞ and its
right null space is ‘‘00xx ¼ ee00 � ðR00xxÞ, that is, the epipolar lines of
xx in the second and third views, respectively. In brief

Lemma 1. The epipolar line ‘‘0xx in the second view corresponding
to a point xx in the first view is the line such that x‘x‘0xxT ¼ 0.
Similarly, the epipolar line ‘‘00xx in the third view is the line
satisfying x‘x‘00xxT ¼ 0. Therefore, rankðxxT Þ ¼ 2.

In the case of multiple motions, we are faced with the more
challenging problem of computing the epipolar lines ‘‘0xx and
‘‘00xx without knowing the individual trifocal tensors fTigni¼1 or
the clustering of the correspondences. The question is then
how to compute such epipolar lines from the multibody
trifocal tensorT . To this end, we notice that with each point in
the first viewxx, we can associaten epipolar linesf‘‘0ixxg

n
i¼1, each

one of them corresponding to one of the n motions between
the first and second views (see Fig. 4). We thus have
x‘x‘0ixxTi ¼ 0, which implies that for any line ‘‘00 in the third
view, x‘x‘0ixx‘‘

00Ti ¼ 0. Now, since the span of e‘‘00 for all ‘‘00 2 IR3 is
IRMn , we have that for all i ¼ 1; . . . ; n

8‘‘00
Yn
k¼1

ðxx‘‘0ixx‘‘00TkÞ ¼ ðexxf‘‘0ixx e‘‘00T Þ ¼ 0

" #
() exxf‘‘0ixxT ¼ 0

	 

:

Since the vectors f‘‘0ixx are linearly independent when ‘‘0ixx are
pairwise different in IP2 (see [32]), the matrix exxT has in
general at least n vectors in its left null space. Therefore,

Theorem 3. If ‘‘0ixx and ‘‘00ixx are the epipolar lines in the second and
third views corresponding under the ith motion to a point xx in
the first view, then exxf‘‘0ixxT ¼ exxf‘‘00ixxT ¼ 0 2 IRMn . Thus,
rankðexxT Þ �Mn � n if the epipolar lines are different.

This result alone does not help us to find ‘‘0ixx according to
a given motion, since any one of the n epipolar lines ‘‘0ixx will
satisfy the conditions of Theorem 3. In fact, this question of
determining the epipolar line ‘‘0xx corresponding to a point xx
is not well posed as such, since the epipolar line ‘‘0xx depends
on which of the n motions the point xx belongs to, which
cannot be determined without additional information. We
therefore pose the question a little differently and suppose
that we know the point xx0 in the second view corresponding
to xx and wish to find the epipolar line ‘‘0xx also in the second
view. This epipolar line must of course pass through xx0.

To solve for ‘‘0xx, notice that ‘‘0xx can be parameterized as

‘‘0xx ¼ �‘‘01 þ ‘‘02; ð20Þ

where, as before, ‘‘01 and ‘‘02 are two different lines passing
through xx0. From Theorem 3, we have that for some � 2 IR

exx gð�‘‘01 þ ‘‘02ÞT ¼ 0: ð21Þ

Each of the Mn components of this vector is a polynomial of
degree n in �. These polynomials must have a common root
�	 for which all the polynomials (and, hence, the vector)
vanish. The epipolar line of xx in the second view is then
‘‘0xx ¼ �	‘‘01 þ ‘‘02. We thus have the following algorithm for
computing epipolar lines from the multibody fundamental
tensor.

Algorithm 2. (Computing epipolar lines from T )
Given a point-point-point correspondence xx$ xx0 $ xx00

1. Choose two different lines ‘‘01 and ‘‘02 passing through

xx0. Build the polynomial vector q0ð�Þ ¼ exx gð�‘‘01 þ ‘‘02ÞT .

Compute the common root �	 of these Mn poly-

nomials as the real root of the derivative of f 0ð�Þ ¼PMn

k¼1 q
0
kð�Þ

2 that minimizes f 0ð�Þ. The epipolar line

of xx in the second view is given by ‘‘0xx ¼ �	‘‘01 þ ‘‘02.
2. Given a correspondence xx$ xx00, determine the

epipolar line of xx in the third view, ‘‘00xx, in an
analogous way.
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Fig. 4. The multibody trifocal tensor T maps each point xx in the first

image to n epipolar lines ‘‘1xx; . . . ; ‘‘nxx that pass through the n epipoles

ee01; . . . ; ee0n, respectively. One of these epipolar lines passes through xx0.



We may apply Algorithm 2 to all point correspon-
dences fxxj $ xx0j $ xx00jg

N
j¼1 and obtain the set of all

N epipolar lines in the second and third views according
to the motion associated with each correspondence. Notice
again that these epipolar lines are obtained from the
multibody trifocal tensor only, without yet knowing the
individual trifocal tensors or the clustering of the given
correspondences.

It is also useful to note that the only property of ‘‘01 and ‘‘02
that we used in Algorithm 2 was that the desired epipolar
line ‘‘0xx could be expressed as a linear combination of ‘‘01 and ‘‘02.
If instead we knew the epipole corresponding to the required
motion, then we could choose ‘‘01 and ‘‘02 to be any two lines
passing through the epipole and apply Algorithm 2 to
determine the epipolar line ‘‘0xx.

Once the epipoles and epipolar lines are known, we may
segment the data into multiple groups and subsequently
determine the fundamental matrices and trifocal tensors for
each group (see Section 3.4). Before proceeding, we need to
show how to determine the epipoles, which we do in the next
section.

3.3 Computing Epipoles

In the case of one rigid-body motion, the epipoles in the
second and third views ee0 and ee00 must lie in the epipolar
lines in the second and third views, f‘‘0xxjg

N
j¼1 and f‘‘00xxjg

N
j¼1,

respectively. Thus, we can obtain the epipoles from

ee0> ‘‘0xx1
; . . . ; ‘‘0xxN

h i
¼ 0> and ee00> ‘‘00xx1

; . . . ; ‘‘00xxN

h i
¼ 0>: ð22Þ

Clearly, we only need two epipolar lines to determine the
epipoles; hence, we do not need to compute the epipolar
lines for all points in the first view. However, it is better to
use more than two lines in the presence of noise.

In the case of n motions, there exist n epipole pairs
fðee0i; ee00i Þg

n
i¼1, where ee0i and ee00i are epipoles in the second and

third views corresponding to the ith motion. Given a set of
point correspondences, we may compute the multibody
trifocal tensor T and determine the epipolar lines ‘‘0xxj and ‘‘00xxj
associated with each correspondence fxxj $ xx0j $ xx00jg using
Algorithms 1 and 2. Then, for each pair of epipolar lines
ð‘‘0xxj ; ‘‘

00
xxj
Þ, there exists an epipole pair ðee0i; ee00i Þ such that

ee0>i ‘‘
0
xxj
¼ 0 and ee00>i ‘‘00xxj ¼ 0 ð23Þ

as illustrated in Fig. 5. Our task is twofold: First, we need to
find the set of epipole pairs fðee0i; ee00i Þg

n
i¼1. Second, we need to

determine which pair of epipoles lie in the epipolar lines
ð‘‘0xxj ; ‘‘

00
xxj
Þ derived from a given point correspondence.

If two point correspondences xxj $ xx0j $ xx00j and xxk $
xx0k $ xx00k both belong to the same motion, then the pair of
epipoles can be determined easily by intersecting the epipolar
lines. If the two motions are different, then the intersection
points of the epipolar lines will have no geometric meaning
and will be essentially arbitrary. This suggests an approach to
determining the epipoles based on RANSAC [7] in which we
intersect pairs of epipolar lines to find candidate epipoles and
determine their degree of support among the other point
correspondences. This method is expected to be effective with
small numbers of motions.

In reality, we used a different method based on the idea
of multibody epipoles proposed in [32] for the case of two
views, which we now extend and modify for the case of
three views. Notice from (23) that regardless of the motion
associated with each pair of epipolar lines, we must have

Yn
i¼1

ðee0>i ‘‘0xxÞ ¼ cc0> e‘‘0xx ¼ 0 ^
Yn
i¼1

ðee00>i ‘‘00xxÞ ¼ cc00> e‘‘00xx ¼ 0; ð24Þ

where the multibody epipoles cc0 2 IRMn and cc00 2 IRMn are the
coefficients of the homogeneous polynomials of degree n

p0ð‘‘0xxÞ ¼ cc0> e‘‘0xx and p00ð‘‘00xxÞ ¼ cc00> e‘‘00xx; ð25Þ

respectively.3 Similar to (22), we may obtain the multibody
epipoles from

cc0>½f‘‘0xx1
; . . . ; f‘‘0xxN 
 ¼ 0> and cc00>½f‘‘00xx1

; . . . ; f‘‘00xxN 
 ¼ 0>: ð26Þ

Clearly, we only need Mn � 1 epipolar lines to determine
the multibody epipoles. However, it is better to use more
than Mn � 1 epipolar lines in the presence of noise.

In order to estimate the epipoles, we notice that if a pair
of epipolar lines ð‘‘0xx; ‘‘00xxÞ corresponds to the ith motion, then
the derivatives of p0 and p00 at the pair ð‘‘0xx; ‘‘00xxÞ give the
epipoles ee0i and ee00i , that is,

@

@‘‘0xx
ðcc0> e‘‘0xxÞ � ee0i and

@

@‘‘00xx
ðcc00> e‘‘00xxÞ � ee00i : ð27Þ

Therefore, in order to estimate the n epipole pairs from the

multibody epipoles, we only need to find n pairs of epipolar

lines, one per motion class, and then evaluate the derivatives

of p0 and p00 at those pairs of epipolar lines. The first pair can be

chosen to minimize the sum of squared distances to the

epipoles. From [31], we know that the distance from a point xx

to a line bb>i xx ¼ 0 is given by jpðxxÞj=krpðxxÞk þOðkxxk2Þ, where

pðxxÞ ¼ ðbb>1 xxÞ � � � ðbb>n xxÞ. Thus, we choose the pair of lines

ð‘‘0xxj ; ‘‘
00
xxj
Þ that minimizes

jp0ð‘‘0xxjÞj
2

krp0ð‘‘0xxjÞk
2
þ
jp00ð‘‘00xxjÞj

2

krp00ð‘‘00xxjÞk
2
; j ¼ 1; . . . ; N: ð28Þ

The remainingn� 1 pairs of epipolar lines can be chosen in an
analogous fashion, except that we need to penalize choosing
pairs from the motion groups that have already been chosen.
For i ¼ n� 1 : 1, this can be done by choosing the pair of
epipolar lines ð‘‘0xxj ; ‘‘

00
xxj
Þ, j ¼ 1; . . . ; N , that minimizes
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Fig. 5. When n objects move independently, the epipolar lines in the

second and third views associated with each image point in the first view

form n groups and intersect, respectively, at n epipoles in the second

and third views.

3. More specifically, cc0 and cc00 are a vector representation of the symmetric
tensor product of the epipoles fee0ig

n
i¼1 and fee00i g

n
i¼1, as shown in [31].



jp0ð‘‘0xxj Þj
2

krp0ð‘‘0xxj Þk
2Qn

k¼iþ1

jee0>k ‘‘
0
xxj
j2
þ

jp00ð‘‘00xxj Þj
2

krp00ð‘‘00xxj Þk
2Qn

k¼iþ1

jee00>k ‘‘00xxj j
2
; ð29Þ

where the epipoles pairs ðee0k; ee00kÞ are computed as in (27).
We therefore have the following algorithm for comput-

ing the epipoles from a set of epipolar lines.

Algorithm 3. (Computing epipoles from T )
Given a set of epipolar lines fð‘‘0xxj ; ‘‘

00
xxj
ÞgNj¼1

1. Compute the multibody epipoles cc0 and cc00 from (26).
2. Compute the epipole pairs fðee0i; ee00i Þg

n
i¼1 as

ee0i � rp0ð‘‘0xxji Þ and ee00i � rp00ð‘‘00xxji Þ;

where p0ð‘‘0Þ ¼ cc0>e‘‘0, p00ð‘‘00Þ ¼ cc00> e‘‘00, and for i ¼ n : 1

ji ¼ arg min
j¼1;...;N

jp0ð‘‘0xxj Þj
2

krp0ð‘‘0xxj Þk
2Qn

k¼iþ1 jee0>k ‘‘
0
xxj
j2
þ

jp00ð‘‘00xxj Þj
2

krp00ð‘‘00xxj Þk
2Qn

k¼iþ1 jee00>k ‘‘00xxj j
2
:

Remark 1 (Computing derivatives). Note that given cc, the

computation of the derivatives of pð‘‘Þ ¼ cc>e‘‘ can be done

algebraically, that is, it does not involve taking derivatives

of the (possibly noisy) data. For instance, one may compute
@pð‘‘Þ
@‘k

as cc>Enke‘‘n�1, where Enk 2 IRMn�Mn�1 is a constant

matrix that depends on the exponents of e‘‘, and e‘‘n�1 2
IRMn�1 is a vector containing all monomials of degree n� 1

in ‘‘.

3.4 Computing Individual Trifocal Tensors

Given epipolar lines and epipoles, we can immediately

segment the point correspondences fxxj $ xx0j $ xx00j g
N
j¼1 into

n groups using the distance from epipoles to epipolar lines

as a criterion. We simply assign point j to motion i if

i ¼ arg min
‘¼1;...n

ðee0>‘ ‘‘0xxjÞ
2 þ ðee00>‘ ‘‘00xxjÞ

2: ð30Þ

Once the correspondences have been segmented, we can
compute the individual trifocal tensors fTigni¼1 by applying
the seven-point algorithm to the point correspondences
associated with each one of the n motion groups.

In this section, we demonstrate that one can estimate the
individual trifocal tensors without first clustering the image
correspondences. The key is to look at the second-order
derivatives of the multibody trilinear constraint. Therefore,
we contend that all the geometric information about the
multiple motions is already encoded in the multibody trifocal
tensor.

Let xx be an arbitrary point in IP2 (not necessarily a point
in the first view). Since the ith epipole ee0i is known, we can
compute two lines ‘‘0i1 and ‘‘0i2 passing through ee0i and apply
Algorithm 2 to compute the epipolar line of xx in the second
view ‘‘0ixx according to the ith motion. In a completely
analogous fashion, we can compute the epipolar line of xx in
the third view ‘‘00ixx from two lines passing through ee00i . Given
ð‘‘0ixx; ‘‘00ixxÞ, the slices of the trifocal tensor Ti can be expressed
in terms of the second derivative of the multibody epipolar
constraint, as stated by the following theorem.

Theorem 4 (Slices of the trifocal tensors from the second-

order derivatives of the multibody trilinear constraint).

The second-order derivative of the multibody trilinear constraint

with respect to the second and third arguments evaluated at

ðxx; ‘‘0ixx; ‘‘00ixxÞ gives the matrix Mixx � xxTi 2 IR3�3, that is,

@2ðexxe‘‘0e‘‘00T Þ
@‘‘0@‘‘00

�����
ðxx;‘‘0ixx;‘‘00ixxÞ

¼Mixx � xxTi 2 IR3�3: ð31Þ

Proof. A simple calculation shows that

@2ðexxe‘‘0e‘‘00T Þ
@‘‘0@‘‘00

¼
Xn
j¼1

ðxxTjÞ
Y
k 6¼j
ðxx‘‘0‘‘00TkÞþ

Xn
j¼1

ðxx‘‘0TjÞ
X
k 6¼j
ðxx‘‘00TkÞ

Y
‘6¼k
ðxx‘‘0‘‘00T‘Þ:

Since ‘‘0ixx and ‘‘00ixx are epipolar lines associated with the

ith motion, then x‘x‘0ixxTi ¼ x‘x‘00ixxTi ¼ 0. Therefore,

@2ðexxe‘‘0e‘‘00T Þ
@‘‘0@‘‘00

�����
ðxx;‘‘0ixx;‘‘00ixxÞ

¼ ðxxTiÞ
Y
j6¼i
ðxx‘‘0‘‘00TjÞ � ðxxTiÞ:

tu

Thanks to (31), we can immediately outline an algorithm

for computing the individual trifocal tensors.

Algorithm 4. (Computing trifocal tensors from T )
Let fee0i; ee00i g

n
i¼1 be the set of epipoles in the second and third

views. Also, let fxxjgNj¼1 be a set of N � 4 randomly chosen

points. For i ¼ 1; . . . ; n, do the following:

1. Use Algorithm 2 to obtain the epipolar lines of xxj in
the second and third views ‘‘0ixxj and ‘‘0ixxj from the
epipoles ee0i and ee00i , respectively.

2. Use (31) to obtain Mixxj , the slice of Ti along xxj.
3. Solve for Ti for i ¼ 1; . . . ; n from the set of linear

equations

Mixxj � xxjTi j ¼ 1; . . . ; N:

Once the individual trifocal tensors have been computed,

one may cluster the correspondences by assigning point j to

the trifocal tensorTi that minimizes the algebraic error, that is,

i ¼ arg min
‘¼1;;n

X2

k¼1

X2

m¼1

ðxxjll0jkll00jmT‘Þ
2: ð32Þ

3.5 Computing Fundamental and Camera Matrices

Given the epipoles ee0i and ee00i and the trifocal tensor Ti, the

computation of fundamental and camera matrices proceeds

as follows [14]. We notice that for all xx 2 IP2:

½ee0i
�Mixxee
00
i ¼ ½ee0i
�ðR0ixxee00>i � ee0ixx>R00>i Þee00i ð33Þ

� ½ee0i
�R0ixx ¼ Fi21xx: ð34Þ

Therefore, we can obtain the fundamental matrices as

Fi21 ¼ ½ee0i
�½Mie1
ee00i Mie2

ee00i Mie3
ee00i 
; ð35Þ
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Fi31 ¼ ½ee00i 
� M>
ie1
ee0i M

>
ie2
ee0i M

>
ie3
ee0i

h i
; ð36Þ

where ek for k ¼ 1; 2; 3 are the standard basis for IR3. Then,
one can obtain the camera matrices up to a common
projective transformation of the 3D space as

P0i ¼ ½Mie1
ee00i Mie2

ee00i Mie3
ee00i 
; ð37Þ

P00i ¼ ½ee00i 

2
� M>

ie1
ee0 M>

ie2
ee0i M

>
ie3
ee0i

h i
: ð38Þ

Once the camera matrices have been computed, one may
cluster the correspondences using more sophisticated errors
than the sum of distances to epipolar lines (30) or the algebraic
distance to a trifocal tensor (32). For example, one may first
reconstruct the 3D point XXj 2 IP2 associated with xxj $ xx0j $
xx00j by triangulation [14], projectXXj onto the three views using
the camera matrices Pi, P

0
i, and P 00i , and then assign point j to

the motion i that minimizes the reprojection error

kxxj �
PiXXj

e>3 PiXXj
k2 þ kxx0j �

P0iXXj

e>3 P
0
iXXj
k2 þ kxx00j �

P00i XXj

e>3 PiXXj
k2: ð39Þ

3.6 Iterative Refinement

The motion segmentation algorithm we have proposed so far
is purely geometric and provably correct in the absence of
noise. Since most of the steps of the algorithm involve solving
linear systems, the algorithm will also work with a moderate
level of noise (as we will show in the experiments) provided
that one solves each step in a least squares fashion. However,
the results may be improved significantly by following the
algebraic approach with an iterative refinement stage. In this
section, we propose to refine the estimates of the trifocal
tensors and the clustering of the correspondences by
extending the classical K-Means algorithm [4] to a mixture
of trifocal tensors model. We call the new algorithm K-trifocal.

Let wij 2 f0; 1g represent the assignment of the jth
correspondence to the ith motion model, that is, wij ¼ 1 if
the jth point belongs to the ith motion andwij ¼ 0 otherwise.
We can solve for the trifocal tensors Ti and the segmentation
of the correspondences fwijg by minimizing the cost function

XN
j¼1

Xn
i¼1

wij�ij; ð40Þ

where �ij measures the error of point j to motion model i.
One possible choice for the �ij is the algebraic error

�ij ¼
P2

k¼1

P2
m¼1ðxxjll0jkll00jmTiÞ

2. In this case, we can minimize
(40) following a coordinate descent algorithm that alternates
between computing (linearly) the trifocal tensors for each
motion class and clustering the correspondences. More
specifically, given an initial estimate for the segmentation
of the correspondences, we alternate between the following
two steps:

1. Given the segmentation of the correspondences
fwijg, we compute the optimal solution for the
trifocal tensors as the least squares solution of the set
of linear equations:

xxjll
0
jkll
00
jmTi ¼ 0 j 2 fj : wij ¼ 1g; k;m ¼ 1; 2:

ð41Þ

2. Given the trifocal tensors fTig, we compute the
optimal solution for the segmentation of the corre-
spondences as

wij ¼
1 if i ¼ arg min

k¼1;...;n
�kj

0 otherwise:

(
ð42Þ

As the iterations proceed, the cost function does not increase;

hence, the algorithm converges to a local minimum of (40).
An alternative choice for �ij is the reprojection error (39).

Given fTig, the computation of the optimal segmentation is

as in (42), except that the calculation of �ij requires

computing the camera matrices and triangulating the

correspondences. However, given fwijg, the computation

of the optimal trifocal tensors requires nonlinear optimiza-

tion. For ease of computation, we still compute the trifocal

tensors linearly as in (41).

3.7 Three-View Multibody Structure from Motion
Algorithm

Algorithm 5 summarizes the main steps of the algorithm for

segmenting trifocal tensors described in this section.

Algorithm 5. (Segmentation of trifocal tensors)
Given a set of points fðxxj; xx0j; xx00j Þg

N
j¼1 corresponding to N

3D points undergoing n different rigid-body motions

relative to a moving perspective camera, recover the number

of independent motions n, the trifocal tensors fTigni¼1

associated with each motion, and the motion associated

with each correspondence as follows:

1. Number of motions. Compute two lines ð‘‘0j1; ‘‘0j2Þ
passing through xx0j and two lines ð‘‘00j1; ‘‘00j2Þ passing
through xx00j . Form the embedded data matrix of
degree i ¼ 1; . . . ; n, VV i 2 IRNðiþ1Þ2�M3

i , as defined in
(15). Compute the number of independent motions n
from a rank constraint on VV i as in (18).

2. Multibody trifocal tensor. Compute the multibody
trifocal tensor T from the null space of VV n using
least squares.

3. Epipolar lines. For all i ¼ 1; . . . ; N , compute the
epipolar lines of xxj in the second and third views, ‘‘0xxj
and ‘‘00xxj , from the common root of a set of univariate
polynomials, as described in Algorithm 2.

4. Epipoles. Use the epipolar lines fð‘‘0xxj ; ‘‘
00
xxj
ÞgNj¼1 to

compute the multibody epipoles cc0 and cc00 from the

linear systems in (26). Compute the epipole pairs

fðee0i; ee00i Þg
n
i¼1 from the gradients of p0ð‘‘0Þ ¼ cc0>e‘‘0 and

p00ð‘‘00Þ ¼ cc00> e‘‘00 as shown in Section 3.3.
5. Feature clustering from epipoles and epipolar

lines. Assign point correspondence ðxxj; xx0j; xx00j Þ to
motion i according to (30).

6. Individual trifocal tensors and camera matrices.
Compute the individual trifocal tensors fTigni¼1 by
applying the seven-point algorithm to the groups
obtained in Step 5. Compute the camera matrices Pi,
P0i, and P00i from each Ti, as shown in Section 3.5.

7. Feature clustering from trifocal tensors. Use trian-
gulation to find the 3D point XXj associated with each
point ðxxj; xx0j; xx00j Þ. Assign ðxxj; xx0j; xx00j Þ to motion i
according to (39).
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8. Iterative refinement. Starting from the segmentation
in Step 7, alternate between computing (linearly) the
trifocal tensors for each motion class (41) and
clustering the correspondences according to (30), as
described in Section 3.6.

4 EXPERIMENTS

In this section, we present several experiments on various

synthetic and real sequences. The experiments compare our

three-view algorithm and variations of it against two-view

perspective and multiview affine algorithms. More specifi-

cally, we compare the following methods:

1. Two-view perspective algorithms

a. Algebraic (2-A). This algorithm parallels Steps 2-
5 of Algorithm 5 but uses fundamental matrices
instead of trifocal tensors. See [32] for details.

b. Algebraic+Sampson (2-A+S). This algorithm
parallels Steps 2-7 of Algorithm 5 but uses
fundamental matrices instead of trifocal tensors
and the Sampson error instead of the reprojec-
tion error in Step 7. See [32] for details.

2. Three-view perspective algorithms

a. Algebraic (3-A). This algorithm follows Steps 2-
5 of Algorithm 5.

b. Algebraic+Reprojection (3-A+R). This algo-
rithm follows Steps 2-7 of Algorithm 5.

c. Algebraic+Reprojection+Ktrifocal (3-A+R+T).
This algorithm follows Steps 2-8 of Algorithm 5.

3. Multiview affine algorithms

a. Algebraic (3-Aff). This algorithm assumes an
affine projection model. Under this model, the
trajectories of a point in F views live in a
subspace of IR2F of dimension d � 4. Motion

segmentation is then equivalent to clustering the
motion subspaces. The algorithm uses GPCA to
segment the motion subspaces. See [27] for
details. In our experiments, we use F ¼ 3 views
to make the comparison fair.

4.1 Experiments on Synthetic Sequences

We first test our algorithm on synthetic data. We randomly

generate two groups of 100 3D points each with a depth

variation of 100-400 units of focal length (u.f.l.). These points

are rotated and translated according to two rigid-body

motions with a random axis of rotation and a random

direction of translation. The interframe rotation is � 2 f0; 5g
degrees, and the interframe translation is 	 2 f70; 100g u.f.l.

The third configuration of points is obtained by applying

another pair of rigid-body motions to the same 3D points. The

three views are obtained by perspective projection using an

image size of 1; 000� 1; 000 pixels. Zero-mean Gaussian noise

with a standard deviation of � 2 ½0; 1
 pixels is added to the

so-obtained point correspondences in three views.
Figs. 6, 7, and 8 show the performance of perspective

motion segmentation algorithms for ð	; �Þ ¼ ð100; 0Þ,
ð	; �Þ ¼ ð100; 5Þ, and ð	; �Þ ¼ ð70; 5Þ, respectively, as a func-

tion of the level of noise �. The performance measures are the

percentage of misclassified correspondences and the error in

the estimation of the translation direction in degrees,

averaged over 1,000 trials. Two-view algorithms are applied

to views 1-2 and 1-3, and the errors are averaged. We notice

the following:

1. The performance of all five algorithms deteriorates
with the amount of noise and with the amount of
rotation.

2. The algebraic algorithms 2-A and 3-A have a
comparable performance in terms of segmentation
error, but 3-A consistently gives better estimates of
the translation. Notice also that as the amount of
rotation increases, the relative performance of 3-A
versus 2-A improves.

3. Using the Sampson error (2-A+S) or the reprojection
error (3-A+R) instead of the algebraic distance from
epipoles to epipolar lines (2-A and 3-A) improves
the performance of the algebraic algorithms both in
terms of motion segmentation and motion estima-
tion errors.

4. Algorithm 3-A+R outperforms 2-A+S in terms of
segmentation error. As per the error in translation,
2-A+S outperforms 3-A+R for zero rotation, but
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Fig. 6. Motion segmentation and motion estimation errors as a function

of noise for 	 ¼ 100 u.f.l. and � ¼ 0 degree.

Fig. 7. Motion segmentation and motion estimation errors as a function

of noise for 	 ¼ 100 u.f.l. and � ¼ 5 degrees.

Fig. 8. Motion segmentation and motion estimation errors as a function

of noise for 	 ¼ 70 u.f.l. and � ¼ 5 degrees.



3-A+R outperforms 2-A+S as the amount of rotation
increases.

5. Iterative refinement using the K-trifocal algorithm
gives the best performance, with a misclassification
ratio of less than 1.5 percent and a translation error
of less than 1.5 degrees.

6. The performance of all algorithms deteriorates as the
baseline 	 reduces. However, three-view algorithms
are in general less sensitive to the reduction of the
baseline.

7. It is reported in [13] that if one randomly chooses
two lines passing through each image point in
Algorithms 1 and 2, then algorithms 3-A, 3-A+R,
and 3-A+R+T give misclassification errors of 0-
20 percent, 0-9 percent, and 0-3 percent, respec-
tively, and translation errors of 0-22 degrees, 0-
12 degrees, and 0-3.7 degrees, respectively. There-
fore, choosing two canonical lines passing through
each image point in Algorithms 1 and 2, as we have
done in this paper, gives significantly better results
than choosing the lines at random.

Figs. 9, 10, and 11 show the performance of perspective
motion segmentation algorithms as a function of the
number of outliers. For each one of the three views, outliers
are drawn uniformly on the image domain. As expected,

the most robust algorithm is 3-A+R+T, followed by 3-A+R
and 2-A+S, because they use a more robust error for
clustering the correspondences. Notice, however, that 2-A is
more robust than 3-A, even though 3-A uses more views. At
a high level, the main difference between algorithms 2-A
and 3-A is the computation of epipolar lines (Step 3 of
Algorithm 5): 2-A computes the epipolar lines directly from
the derivatives of the multibody epipolar constraint [32],
whereas 3-A needs to solve for the common root of a set of
univariate polynomials. The robustness of the 3-A algo-
rithm would likely benefit by using a more robust algorithm
for computing the common root of a set of polynomials.

4.2 Experiments on Real Sequences

We now test the performance of all algorithms on several
frame triples from two traffic sequences: cars2-06 (Fig. 12) and
cars2-07 (Fig. 13). These sequences contain two cars translat-
ing and rotating (groups 1 and 2) and are taken with a moving
hand held camera (group 3). Point correspondences are
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Fig. 9. Motion segmentation and motion estimation errors as a function

of the number of outliers for 	 ¼ 100 u.f.l. and � ¼ 0 degree.

Fig. 10. Motion segmentation and motion estimation errors as a function

of the number of outliers for 	 ¼ 100 u.f.l. and � ¼ 5 degrees.

Fig. 11. Motion segmentation and motion estimation errors as a function

of the number of outliers for 	 ¼ 100 u.f.l. and � ¼ 10 degrees.

Fig. 12. Top: frames 1, 6, and 12 of the cars2-06 sequence. Bottom: 2D
displacements of the 123 correspondences from the current view (“o”) to
the next (“! ”). (a) Frame 1. (b) Frame 6. (c) Frame 12. (d) Two-
dimensional displacements from frames 1 to 6. (e) Two-dimensional
displacements from frames 6 to 12. (f) Two-dimensional displacements
from frames 12 to 1.

Fig. 13. Top: frames 5, 9, and 13 of the cars2-07 sequence. Bottom: 2D
displacements of the 212 correspondences from the current view (“o”) to
the next (“! ”). (a) Frame 5. (b) Frame 9. (c) Frame 13. (d) Two-
dimensional displacements from frames 5 to 9. (e) Two-dimensional
displacements from frames 9 to 13. (f) Two-dimensional displacements
from frames 13 to 5.



extracted automatically using OpenCV, which is available at
http://sourceforge.net/projects/opencvlibrary/. For the
purposes of ground truth comparison, the point trajectories
are manually segmented according to the three independent
motions in the scene. We use point correspondences from
groups 1-2, 1-3, and 2-3 for two-body motion segmentation
and 1-2-3 for three-body motion segmentation.

4.2.1 Results on the Cars-06 Sequence

Tables 2, 3, and 4 show segmentation results for point
correspondences associated with groups 1-2, 2-3, and 1-3,
respectively, of the cars2-06 sequence. With few exceptions,
2-A and 2-A+S give an error of about 20-40 percent, 3-A
gives an error of about 15-30 percent, 3-A+R gives an error of
about 0-15 percent, 3-A+R+T gives an error of about 0-
10 percent, and 3-Aff gives an error of about 0-5 percent.
However, there are triplets of frames for which the
misclassification error of perspective algorithms is high
(frames 2-4-5 in Table 2), 2-A and 2-A+S perform better than

3-A and 3-A+R (frames 3-10-11 in Table 2), or 3-A+R
initialized with 3-A works worse than 3-A (frames 11-13-15
in Table 3). Table 5 show segmentation results for point
correspondences associated with groups 1-2-3. In general,
algorithms 2-A, 2-A+S, 3-A, and 3-A+R have high errors,
whereas 3-A+R+T and 3-Aff give an error of about
0-19 percent.

Among the perspective algorithms, the one with the best
performance on this sequence is 3-A+R+T. However, the
affine algorithm 3-Aff performs well in most cases, particu-
larly for groups 1-2 where it gives perfect segmentation. This
is because groups 1-2 contain degenerate motions (two cars
moving on a straight line on the same plane) for which an
affine model may be more appropriate than a fundamental
matrix or a trifocal tensor. In fact, when group 3 (camera) is
present, the scene has more perspective effects, and 3-A+R+T
and 3-Aff perform similarly.

4.2.2 Results on the Cars-07 Sequence

Tables 6, 7, and 8 show segmentation results for point
correspondences associated with groups 1-2, 2-3, and 1-3,
respectively, of the cars2-07 sequence. In general, the
performance of the two-view algorithms is about the same
as for the cars2-06 sequence (20-40 percent), whereas the
performance of the three-view algorithms on this sequence is
a bit better, particularly for groups 2-3. However, there still
are triplets of frames for which the best misclassification error
is high (frames 4-9-10 in Table 8), 2-A and 2-A+S perform
better than 3-A (frames 7-10-20 in Table 6), or 3-A+R
initialized with 3-A works worse than 3-A (frames 10-17-18
in Table 7).
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TABLE 2
Misclassification Rates for Sequence Cars2-06-g12

TABLE 3
Misclassification Rates for Sequence Cars2-06-g23

TABLE 4
Misclassification Rates for Sequence Cars2-06-g13

TABLE 5
Misclassification Rates for Sequence Cars2-06-g123

TABLE 6
Misclassification Rates for Sequence Cars2-07-g12

TABLE 7
Misclassification Rates for Sequence Cars2-07-g23

TABLE 8
Misclassification Rates for Sequence Cars2-07-g13



Table 9 show segmentation results for point correspon-
dences associated with groups 1-2-3. In general, algorithms
2-A, 2-A+S, and 3-A have high errors (40-50 percent), 3-A+R
gives an error of about 10-20 percent, 3-A+R+T gives an
error of about 0-8 percent and 3-Aff gives an error of about
5-10 percent.

5 DISCUSSION

The fact that the relative performance of the algorithms is not
always as expected should come at no surprise, because the
quality of the segmentation of a given scene depends on
whether the model (mixture of trifocal tensors) is appropriate
to describe the 3D motion of the scene. Often, 3D scenes
contain planar structures, two objects whose motion is similar
in a few frames, objects moving approximately on a straight
line or in the same plane, and so forth. All these degenerate
situations affect the quality of the motion estimates and, thus,
the quality of the segmentation.

The overall findings of our experiments were that the
multibody trifocal tensor methods described in this paper
generally outperform the comparable two-view methods
based on the multibody fundamental matrix [34], [32].
Although this was true most of the time, there were
occasional instances in which the fundamental matrix
algorithm worked better. The advantage of using the
trifocal-tensor method is that critical configurations (often
fatal to success) are less likely to occur.

The iterative methods to refine the results were generally
essential for acceptable results. They were not always
successful, however, and would sometimes even lead to a
deterioration of the results. The lesson to be learned from
this is that the success in motion segmentation is very
dependent on the particulars of the dynamics of the scene. It
occurs not infrequently that the dynamics of the scene or
the camera motion is so constrained that it is not possible to
distinguish separate motions based only on multiple-
motion epipolar geometry, as investigated in this paper.
In such cases, results tend to be more aleatoric.

The present algorithm is mainly recommended for cases
in which only three views are available or affine geometry is
not a good approximation for the geometry of the scene.
The advantage of using many views such as a complete
video sequence is a much greater ability to distinguish
different motions. We have found that the affine-motion
multiple-view algorithm described in [27] gives more
reliable results in cases where it may be applied. We expect
(and demonstrate with our synthetic results) that the
present algorithm will work more reliably when there are
strong perspective effects (which make the affine approx-
imation nonviable).

For this reason, the trifocal algorithm performs better on
synthetic data. However, for real-world scenes, the advan-
tage seems to lie with the affine multiple-view algorithm in

[27]. In most real scenes, the affine approximation is
reasonable, and we often have many more than three views.

6 CONCLUSIONS AND FUTURE WORK

The multibody trifocal tensor is effective in the analysis of
dynamic scenes involving several moving objects. The
algebraic method of motion classification involves compu-
tation of the multibody tensor, computation of the epipoles
for different motions, and classification of the points
according to the compatibility of epipolar lines with the
different epipoles. Our reported implementation of this
algorithm was sufficiently good to provide an initial
classification of points into different motion classes. This
classification can be refined using an iterative algorithm
with excellent results. It is likely that more careful methods
of computing the tensor (analogous with the best methods
for the single-body trifocal tensor) could give a better
initialization, as could a classification method that pro-
ceeded by algebraically extracting the single-body tensors
from the multibody trifocal tensor. These methods have not
yet been tried. The algebraic properties of the multibody
trifocal tensor are in many respects analogous to those of
the single-body tensor but provide many surprises and
avenues of research that we have not yet exhausted.
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