
A TUTORIAL ON SUBSPACE CLUSTERING

René Vidal

Johns Hopkins University

The past few years have witnessed an explosion in the
availability of data from multiple sources and modalities. For
example, millions of cameras have been installed in build-
ings, streets, airports and cities around the world. This has
generated extraordinary advances on how to acquire, com-
press, store, transmit and process massive amounts of com-
plex high-dimensional data. Many of these advances have
relied on the observation that, even though these data sets
are high-dimensional, their intrinsic dimension is often much
smaller than the dimension of the ambient space. In com-
puter vision, for example, the number of pixels in an image
can be rather large, yet most computer vision models use only
a few parameters to describe the appearance, geometry and
dynamics of a scene. This has motivated the development of
a number of techniques for finding a low-dimensional repre-
sentation of a high-dimensional data set. Conventional tech-
niques, such as Principal Component Analysis (PCA), assume
that the data is drawn from a single low-dimensional subspace
of a high-dimensional space. Such approaches have found
widespread applications in many fields, e.g., pattern recogni-
tion, data compression, image processing, bioinformatics, etc.

In practice, however, the data points could be drawn from
multiple subspaces and the membership of the data points to
the subspaces might be unknown. For instance, a video se-
quence could contain several moving objects and different
subspaces might be needed to describe the motion of differ-
ent objects in the scene. Therefore, there is a need to simul-
taneously cluster the data into multiple subspaces and find a
low-dimensional subspace fitting each group of points. This
problem, known as subspace clustering, has found numerous
applications in computer vision (e.g., image segmentation [1],
motion segmentation [2] and face clustering [3]), image pro-
cessing (e.g., image representation and compression [4]) and
systems theory (e.g., hybrid system identification [5]).

A number of approaches to subspace clustering have been
proposed in the past two decades. A review of methods from
the data mining community can be found in [6]. This article
will present methods from the machine learning and computer
vision communities, including algebraic methods [7, 8, 9, 10],
iterative methods [11, 12, 13, 14, 15], statistical methods [16,
17, 18, 19, 20], and spectral clustering-based methods [7, 21,
22, 23, 24, 25, 26, 27]. We review these methods, discuss their
advantages and disadvantages, and evaluate their performance
on the motion segmentation and face clustering problems.

P

L1 L2

R3

Fig. 1: A set of sample points in R3 drawn from a union of
three subspaces: two lines and a plane.

1. THE SUBSPACE CLUSTERING PROBLEM

Consider the problem of modeling a collection of data points
with a union of subspaces, as illustrated in Figure 1. Specif-
ically, let {xj ∈ RD}Nj=1 be a given set of points drawn
from an unknown union of n ≥ 1 linear or affine subspaces
{Si}ni=1 of unknown dimensions di = dim(Si), 0< di < D,
i = 1, . . . , n. The subspaces can be described as

Si = {x ∈ RD : x = µi + Uiy}, i = 1, . . . , n, (1)

where µi ∈ RD is an arbitrary point in subspace Si (µi = 0
for linear subspaces), Ui ∈ RD×di is a basis for subspace Si
and y ∈ Rdi is a low-dimensional representation for point
x. The goal of subspace clustering is to find the number of
subspaces n, their dimensions {di}ni=1, the subspace bases
{Ui}ni=1, the points {µi}ni=1 (in the case of affine subspaces),
and the segmentation of the points according to the subspaces.

When the number of subspaces is equal to one, this prob-
lem reduces to finding a vectorµ ∈ RD, a basis U ∈ RD×d, a
low-dimensional representation Y = [y1, . . . ,yN] ∈ Rd×N ,
and the dimension d. This problem is known as Principal
Component Analysis (PCA) [28]1 and can be solved in a re-
markably simple way: µ = 1

N

∑N
j=1 xj is the mean of the

data points, (U, Y) can be obtained from the rank-d singu-
lar value decomposition (SVD) of the (mean-subtracted) data
matrix X = [x1 − µ,x2 − µ, . . . ,xN − µ] ∈ RD×N as

U = U and Y = ΣV>, where X = UΣV>, (2)
1The problem of matrix factorization dates back to the work Beltrami

[29] and Jordan [30]. In the context of stochastic signal processing, PCA is
also known as the Karhunen-Loeve transform [31]. In the applied statistics
literature, PCA is also known as the Eckart-Young decomposition [32].

1

and d can be obtained as d = rank(X) with noise free data, or
using model selection techniques when the data is noisy [28].

When n > 1, the subspace clustering problem becomes
significantly more difficult due to a number of challenges.

1. First, there is a strong coupling between data segmen-
tation and model estimation. Specifically, if the seg-
mentation of the data were known, one could easily fit
a single subspace to each group of points using stan-
dard PCA. Conversely, if the subspace parameters were
known, one could easily find the data points that best fit
each subspace. In practice, neither the segmentation of
the data nor the subspace parameters are known and
one needs to solve both problems simultaneously.

2. Second, the distribution of the data inside the subspaces
is generally unknown. If the data within each subspace
is distributed around a cluster center and the cluster
centers for different subspaces are far apart, then the
subspace clustering problem reduces to the simpler and
well studied central clustering problem, where the data
is distributed around multiple cluster centers. On the
other hand, if the distribution of the data points in the
subspaces is arbitrary and there are many points close
to the intersection of the subspaces, then the problem
cannot be solved with central clustering techniques.

3. Third, the relative position of the subspaces can be ar-
bitrary. When two subspaces intersect or are very close,
the subspace clustering problem becomes very hard.
However, when the subspaces are disjoint or indepen-
dent,2 the subspace clustering problem is less difficult.

4. The fourth challenge is that the data can be corrupted by
noise, missing entries, outliers, etc. Such nuisances can
cause the estimated subspaces to be completely wrong.
While robust estimation techniques have been devel-
oped for the case of a single subspace, the case of mul-
tiple subspaces is not as well understood.

5. Last, but not least, is the issue of model selection. In
classical PCA, the only parameter is the dimension of
the subspace, which can be found by searching for the
subspace of smallest dimension that fits the data with
a given accuracy. In the case of multiple subspaces,
one can fit the data with N different subspaces of di-
mension one, namely one subspace per data point, or
with a single subspace of dimensionD. Obviously, nei-
ther solution is satisfactory. The challenge is to find a
model selection criteria that favors a small number of
subspaces of small dimension.

In what follows, we present a number of subspace clustering
algorithms and show how they try to address these challenges.

2n linear subspaces are disjoint if every two subspaces intersect only at
the origin. n linear subspaces are independent if the dimension of their sum is
equal to the sum of their dimensions. Independent subspaces are disjoint, but
the converse is not always true. n affine subspaces are disjoint (independent)
if so are the corresponding linear subspaces in homogeneous coordinates.

2. SUBSPACE CLUSTERING ALGORITHMS

2.1. Algebraic Algorithms

We first review two algebraic algorithms for clustering noise
free data drawn from multiple linear subspaces, i.e., µi = 0.
The first algorithm is based on linear algebra, specifically ma-
trix factorization, and is applicable only to independent sub-
spaces. The second one is based on polynomial algebra and is
applicable to any kind of subspaces. While these algorithms
are designed for linear subspaces, in the case of noiseless data
they can also be applied to affine subspaces by considering an
affine subspace of dimension d in RD as a linear subspace
of dimension d + 1 in RD+1. Also, while these algorithms
operate under the assumption of noise free data, they provide
great insights into the geometry and algebra of the subspace
clustering problem. Moreover, they can be extended to handle
moderate amounts of noise, as we shall see.
Matrix factorization-based algorithms. These algorithms
obtain the segmentation of the data from a low-rank factoriza-
tion of the data matrix X . Hence, they are a natural extension
of PCA from one to multiple independent linear subspaces.

Specifically, letXi ∈ RD×Ni be the matrix containing the
Ni points in subspace i. The columns of the data matrix can
be sorted according to the n subspaces as [X1, X2, . . . , Xn] =
XΓ, where Γ ∈ RN×N is an unknown permutation matrix.
Because each matrix Xi is of rank di, it can be factorized as

Xi = UiYi i = 1, . . . , n, (3)

where Ui ∈ RD×di is an orthogonal basis for subspace i and
Yi ∈ Rdi×Ni is the low-dimensional representation of the
points with respect to Ui. Therefore, if the subspaces are in-
dependent, then r = rank(X) =

∑n
i=1 di ≤ min{D,N} and

XΓ =
[
U1, U2, · · · , Un

]

Y1

Y2
. . .

Yn

 , UY, (4)

where U ∈ RD×r and Y ∈ Rr×N . The subspace clustering
problem is then equivalent to finding a permutation matrix Γ
such that XΓ admits a rank-r factorization into a matrix U
and a block diagonal matrix Y . This idea is the basis for the
algorithms of Boult and Brown [7], Costeira and Kanade [8]
and Gear [9], which compute Γ from the SVD of X [7, 8] or
from the row echelon canonical form of X [9].

Specifically, the Costeira and Kanade algorithm proceeds
as follows. Let X = UΣV> be the rank-r SVD of the data
matrix, i.e., U ∈ RD×r, Σ ∈ Rr×r and V ∈ RN×r. Also, let

Q = VV> ∈ RN×N . (5)

As shown in [33, 2], the matrix Q is such that

Qjk = 0 if points j and k are in different subspaces. (6)

2

In the absence of noise, equation (6) can be immediately
used to obtain the segmentation of the data by thresholding
and sorting the entries of Q.3 For instance, [8] obtains the
segmentation by maximizing the sum of the squared entries of
Q in different groups, while [34] finds the groups by thresh-
olding the most discriminant rows ofQ. However, as noted in
[35, 33], this thresholding process is very sensitive to noise.
Also, the construction of Q requires knowledge of the rank of
X and using the wrong rank can lead to very poor results [9].

Wu et al. [35] use an agglomerative process to reduce
the effects of noise. The entries of Q are first thresholded to
obtain an initial over-segmentation of the data. A subspace
is then fit to each group Gi and two groups are merged when
some distance between their subspaces is below a threshold.
Kanatani [33, 36] uses the Geometric Akaike Information
Criterion [37] (G-AIC) to decide when to merge two groups.
Specifically, the G-AIC of Gi and Gj as separate groups,
G-AICGi,Gj , is compared to their G-AIC as a single group,
G-AICGi∪Gj , and used to scale the entries of Q as follows

Q̂jk =
G-AICGj ,Gk

G-AICGj∪Gk

max
xl∈Gj ,xm∈Gk

|Qlm| . (7)

While these approaches indeed reduce the effect of noise,
in practice they are not effective because the equation Qjk =
0 holds only when the subspaces are independent. In the case
of dependent subspaces, one can use the subset of the columns
of V that do not span the intersections of the subspaces. Un-
fortunately, we do not know which columns to choose a priori.
Zelnik-Manor and Irani [38] propose to use the top columns
of V to define Q. However, this heuristic is not provably
correct. Another issue with factorization-based algorithms is
that, with a few exceptions, they do not provide a method for
computing the number of subspaces, n, and their dimensions,
{di}ni=1. The first exception is when n is known. In this case,
di can be computed from each group after the segmentation
has been obtained. The second exception is for independent
subspaces of equal dimension d. In this case rank(X) = nd,
hence we may determine n when d is known or vice versa.
Generalized PCA (GPCA). GPCA (see [10, 39]) is an
algebraic-geometric method for clustering data lying in (not
necessarily independent) linear subspaces. The main idea
behind GPCA is that one can fit a union of n subspaces with
a set of polynomials of degree n, whose derivatives at a point
give a vector normal to the subspace containing that point.
The segmentation of the data is then obtained by grouping
these normal vectors using several possible techniques. More
specifically, the GPCA algorithm proceeds as follows.

The first step, which is not strictly needed, is to project the
data points onto a subspace of RD of dimension r = dmax+1,
where dmax = max{d1, . . . , dn}.4 The rationale behind this

3Boult and Brown [7] use instead the eigenvectors of Q to find the seg-
mentation by using spectral clustering, as we will see in Section 2.4.

4The value of r is determined using model selection techniques when the
subspace dimensions are unknown.

step is as follows. Since the maximum dimension of each sub-
space is dmax, with probability one a projection onto a generic
subspace of RD of dimension dmax + 1 preserves the number
and dimensions of the subspaces. As a byproduct, the dimen-
sionality of the problem is reduced to clustering subspaces of
dimension at most dmax in Rdmax+1. As we shall see, this will
be very important to reduce the computational complexity of
the GPCA algorithm. With an abuse of notation, we will de-
note both the original and projected subspaces as Si, and both
the original and projected data matrix as

X = [x1, . . . ,xN] ∈ RD×N or Rr×N . (8)

The second step is to fit a homogeneous polynomial of
degree n to the (projected) data. The rationale behind this step
is as follows. Imagine, for instance, that the data came from
the union of two planes in R3, each one with normal vector
bi ∈ R3. The union of the two planes can be represented as
the set of points such that p(x) = (b>1 x)(b>2 x) = 0. This
equation is nothing but the equation of a conic of the form

c1x
2
1 + c2x1x2 + c3x1x3 + c4x

2
2 + c5x2x3 + c6x

2
3 = 0. (9)

Imagine now that the data came from the plane b>x = 0 or
the line b>1 x = b>2 x = 0. The union of the plane and the line
is the set of points such that p1(x) = (b>x)(b>1 x) = 0 and
p2(x) = (b>x)(b>2 x) = 0. More generally, data drawn from
the union of n subspaces of Rr can be represented with poly-
nomials of the form p(x) = (b>1 x) · · · (b>nx) = 0, where the
vector bi ∈ Rr is orthogonal to Si. Each polynomial is of
degree n in x and can be written as c>νn(x), where c is the
vector of coefficients and νn(x) is the vector of all monomials
of degree n in x. There are Mn(r) =

(
n+r−1
n

)
monomials.

In the case of noiseless data, the vector of coefficients c
of each polynomial can be computed from

c>[νn(x1), νn(x2), · · · , νn(xN)] = c>V n = 0> (10)

and the number of polynomials is simply the dimension of
the null space of V n. While in general the relationship be-
tween the number of subspaces, n, their dimensions, {di}ni=1,
and the number of polynomials involves the theory of Hilbert
functions [40], in the particular case where all the dimensions
are equal to d, and r = d + 1, there is a unique polynomial
that fits the data. This fact can be exploited to determine both
n and d. For example, given d, n can be computed as

n = min{i : rank(V i) = Mi(r)− 1}. (11)

In the case of data contaminated with small to moder-
ate amounts of noise, the polynomial coefficients (10) can be
found using least squares – the vectors c are the left singular
vectors of V n corresponding to the smallest singular values.
To handle larger amounts of noise in the estimation of the
polynomial coefficients, one can resort to techniques from ro-
bust statistics [20] or rank minimization [41]. Model selec-
tion techniques can be used to determine the rank of V n and

3

hence the number of polynomials, as shown in [42]. Model
selection techniques can also be used to determine the num-
ber of subspaces of equal dimensions in (11), as shown in
[10]. However, determining n and {di}ni=1 for subspaces of
different dimensions from noisy data remains very challeng-
ing. The reader is referred to [43] for a model selection crite-
ria called minimum effective dimension, which measures the
complexity of fitting n subspaces of dimensions {di}ni=1 to
a given dataset within a certain tolerance, and to [42, 40] for
algebraic relationships among n, {di}ni=1 and the number of
polynomials that could be used for model selection purposes.

The last step is to compute the normal vectors bi from
the vector of coefficients c. This can be done by taking the
derivatives of the polynomials at a data point. For example, if
n = 2 we have∇p(x) = (b>2 x)b1 + (b>1 x)b2. Thus if x be-
longs to the first subspace, then∇p(x) ∼ b1. More generally,
in the case of n subspaces we have p(x) = (b>1 x) · · · (b>nx)
and ∇p(x) ∼ bi if x ∈ Si. We can use this result to obtain
the set of all normal vectors to Si from the derivatives of all
the polynomials at x ∈ Si. This gives us a basis for the or-
thogonal complement of Si from which we can obtain a basis
Ui for Si. Therefore, if we knew one point per subspace, then
we could immediately compute the n subspace bases from the
derivatives of the polynomials. Given the subspace basis, we
could obtain the segmentation by assigning each data point to
its closest subspace. There are several ways of choosing one
point per subspace. A simple method is to choose any point in
the dataset as the first point. The basis for this subspace can
hence be computed as well as the points that belong to this
subspace. Such points can then be removed from the data and
a second point can be chosen and so on. In Section 2.4 we will
describe an alternative method based on spectral clustering.

The first advantage of GPCA is that it is an algebraic al-
gorithm, thus it is computationally cheap when n and d are
small. Second, intersections between subspaces are automat-
ically allowed, hence GPCA can deal with both independent
and dependent subspaces. Third, in the noiseless case, it does
not require the number of subspaces or their dimensions to be
known beforehand. Specifically, the theory of Hilbert func-
tions [40] may be used to determine n and {di}.

The first drawback of GPCA is that its complexity in-
creases exponentially with the n and {di}. Specifically, each
vector c is of dimension O(Mn(r)), while there are only
O(r

∑
(r − di)) unknowns in the n sets of normal vectors.

Second, the vector c is computed using least-squares, thus
the computation of c is sensitive to outliers. Third, the least-
squares fit does not take into account nonlinear constraints
among the entries of c (recall that p must factorize as a prod-
uct of linear factors). These issues cause the performance
of GPCA to deteriorate as n increases. Fourth, the method
in [40] to determine n and {di} does not handle noisy data.
Fifth, while GPCA can be applied to affine subspaces by us-
ing the data in homogeneous coordinates, in practice it does
not work very well when the data is contaminated with noise.

2.2. Iterative Methods

A very simple way of improving the performance of algebraic
algorithms in the case of noisy data is to use iterative refine-
ment. Intuitively, given an initial segmentation, we can fit a
subspace to each group using classical PCA. Then, given a
PCA model for each subspace, we can assign each data point
to its closest subspace. By iterating these two steps till con-
vergence, we can obtain a refined estimate of the subspaces
and of the segmentation. This is the basic idea behind the
K-planes [11] and K-subspaces [12, 13] algorithms, which
are generalizations of the K-means algorithm [44] from data
distributed around cluster centers to data drawn from hyper-
planes and affine subspaces of any dimensions, respectively.

The K-subspaces algorithm proceeds as follows. Let
wij = 1 if point j belongs to subspace i and wij = 0 oth-
erwise. Referring back to (1), assume that the number of
subspaces n and the subspace dimensions {di} are known.
Our goal is to find the points {µi ∈ RD}ni=1, the subspace
bases {Ui ∈ RD×di}ni=1, the low-dimensional representa-
tions {Yi ∈ Rdi×Ni}ni=1 and the segmentation of the data
{wij}j=1,...,N

i=1,...,n . We can do so by minimizing the sum of the
squared distances from each data point to its own subspace

min
{µi},{Ui},{yi},{wij}

N∑
j=1

n∑
i=1

wij‖xj − µi − Uiyj‖2

subject to wij ∈ {0, 1} and
n∑
i=1

wij = 1.

(12)

Given {µi}, {Ui}, {yj}, the optimal value for wij is

wij =

1 if i = arg min
k=1,...,n

‖xj − µk − Ukyj‖2

0 else
. (13)

Given {wij}, the cost function in (12) decouples as the sum of
n cost functions, one per subspace. The optimal values forµi,
Ui, yj are hence obtained by applying PCA to each group of
points. TheK-subspaces algorithm then proceeds by alternat-
ing between assigning points to subspaces and re-estimating
the subspaces. Since the number of possible assignments of
points to subspaces is finite, the algorithm is guaranteed to
converge to a local minimum in a finite number of iterations.

The main advantage of K-subspaces is its simplicity,
since it alternates between assigning points to subspaces and
estimating the subspaces via PCA. Another advantage is that
it can handle both linear and affine subspaces explicitly. The
third advantage is that it converges to a local optimum in a
finite number of iterations. However, K-subspaces suffers
from a number of drawbacks. First, its convergence to the
global optimum depends on good initialization. If a random
initialization is used, several restarts are often needed to find
the global optimum. In practice, one may use any of the algo-
rithms described in this paper to reduce the number of restarts

4

needed. We refer the reader to [45, 22] for two additional ini-
tialization methods. Second, K-subspaces is sensitive to
outliers, partly due to the use of the 2-norm. This issue can be
addressed by using a robust norm, such as the 1-norm, as done
by the median K-flats algorithm [15]. However, this results
in a more complex algorithm, which requires solving a robust
PCA problem at each iteration. Alternative, one can resort
to nonlinear minimization techniques, which are only guar-
anteed to converge to a local minimum. Third, K-subspaces
requires n and {di} to be known beforehand. One possible
avenue to be explored is to use the model selection criteria for
mixtures of subspaces proposed in [43]. We refer the reader
to [46] for a more detailed analysis of some of this issues
and to [45] for a theoretical study on the conditions for the
existence of a solution to the optimization problem in (12).

2.3. Statistical Methods

The approaches described so far seek to cluster the data ac-
cording to multiple subspaces by using mostly algebraic and
geometric properties of a union of subspaces. While these
approaches can handle noise in the data, they do not make ex-
plicit assumptions about the distribution of the data inside the
subspaces or about the distribution of the noise. Therefore,
the estimates they provide are not optimal, e.g., in a maxi-
mum likelihood (ML) sense. To address this issue, we need to
define a proper generative model for the data in the subspaces.

Mixtures of Probabilistic PCA (MPPCA). Resorting back
to the geometric PCA model (1), Probabilistic PCA (PPCA)
[47] assumes that the data within a subspace S is generated as

x = µ+ Uy + ε, (14)

where y and ε are independent zero-mean Gaussian random
vectors with covariance matrices I and σ2I , respectively.
Therefore, x is also Gaussian with mean µ and covariance
matrix Σ = UU> + σ2I . It can be shown that the ML esti-
mate of µ is the mean of the data, and the ML estimates of U
and σ can be obtained from the SVD of the data matrix X .

PPCA can be naturally extended to be a generative model
for a union of subspaces ∪ni=1Si by using a Mixture of PPCA
(MPPCA) [16] model. LetG(x;µ,Σ) be the probability den-
sity function of a D-dimensional Gaussian with mean µ and
covariance matrix Σ. MPPCA uses a mixture of Gaussians

p(x) =

n∑
i=1

πiG(x;µi, UiU
>
i + σ2

i I), (15)

where the parameter πi, called the mixing proportion, repre-
sents the a priori probability of drawing a point from subspace
Si. The ML estimates of the parameters of this mixture model
can be found using Expectation Maximization (EM) [48]. EM
is an iterative procedure that alternates between data segmen-
tation and model estimation. Specifically, given initial values

for the model parameters θi = (µi, Ui, σi, πi), in the E-step
the probability that xj belongs to subspace i is computed as

pij =
G(xj ;µi, UiU

>
i + σ2

i I)πi
p(xj)

, (16)

and in the M-step the pij’s are used to recompute the subspace
parameters θi using PPCA. Specifically, πi and µi are updated
as

π̃i =
1

N

N∑
j=1

pij , µ̃i =
1

Nπ̃i

N∑
j=1

pijxj , (17)

and σi and Ui are updated from the SVD of

Σ̃i =
1

Nπ̃i

N∑
j=1

pij(xj − µ̃i)(xj − µ̃i)>. (18)

These two steps are iterated until convergence to a local max-
ima of the log-likelihood. Notice that MPPCA can be seen as
a probabilistic version of K-subspaces that uses soft assign-
ments pij ∈ [0, 1] rather than hard assignments wij = {0, 1}.

As in the case ofK-subspaces, the main advantage of MP-
PCA is that it is a simple and intuitive method, where each
iteration can be computed in closed form by using PPCA.
Moreover, the MPPCA model is applicable to both linear and
affine subspaces, and can be extended to accommodate out-
liers [49] and missing entries in the data points [50]. How-
ever, an important drawback of MPPCA is that the number
and dimensions of the subspaces need to be known before-
hand. One way to address this issue is by putting a prior on
these parameters, as shown in [51]. Also, MPPCA is not opti-
mal when the distribution of the data inside each subspace or
the noise are not Gaussian. Another issue with MPPCA is that
it often converges to a local maximum, hence good initializa-
tion is critical. The initialization problem can be addressed by
using any of the methods described earlier for K-subspaces.
For example, the Multi-Stage Learning (MSL) algorithm [17]
uses the factorization method of [8] followed by the agglom-
erative refinement steps of [33, 36] for initialization.

Agglomerative Lossy Compression (ALC). The ALC algo-
rithm [18] assumes that the data is drawn from a mixture of
degenerate Gaussians. However, unlike MPPCA, ALC does
not aim to obtain a ML estimate of the parameters of the mix-
ture model. Instead, it looks for the segmentation of the data
that minimizes the coding length needed to fit the points with
a mixture of degenerate Gaussians up to a given distortion.

Specifically, the number of bits needed to optimally code
N i.i.d. samples from a zero-mean D-dimensional Gaussian,
i.e., X ∈ RD×N , up to a distortion ε can be approximated as
N+D

2 log2 det(I+ D
ε2NXX

>). Thus, the total number of bits
for coding a mixture of Gaussians can be approximated as

n∑
i=1

Ni+D

2
log2 det

(
I+

D

ε2Ni
XiX

>
i

)
−Ni log2

(Ni
N

)
, (19)

5

where Xi ∈ RNi×D is the data from subspace i and the last
term is the number of bits needed to code (losslessly) the
membership of the N samples to the n groups.

The minimization of (19) over all possible segmentations
of the data is, in general, an intractable problem. ALC deals
with this issue by using an agglomerative clustering method.
Initially, each data point is considered as a separate group. At
each iteration, two groups are merged if doing so results in
the greatest decrease of the coding length. The algorithm ter-
minates when the coding length cannot be further decreased.
Similar agglomerative techniques have been used in [52, 53],
though with a different criterion for merging subspaces.

ALC can naturally handle noise and outliers in the data.
Specifically, it is shown in [18] that outliers tend to cluster
either as a single group or as small separate groups depend-
ing on the dimension of the ambient space. Also, in principle,
ALC does not need to know the number of subspaces and their
dimensions. In practice, however, the number of subspaces is
directly related to the parameter ε. When ε is chosen to be
very large, all the points could be merged into a single group.
Conversely, when ε is very small, each point could end up
as a separate group. Since ε is related to the variance of the
noise, one can use statistics on the data to determine ε (see
e.g., [33, 22] for possible methods). In cases the number of
subspaces is known, one can run ALC for several values of
ε, discard the values of ε that give the wrong number of sub-
spaces, and choose the ε that results in the segmentation with
the smallest coding length. This typically increases the com-
putational complexity of the method. Another disadvantage
of ALC, perhaps the major one, is that there is no theoretical
proof for the optimality of the agglomerative procedure.
Random Sample Consensus (RANSAC). RANSAC [54] is
a statistical method for fitting a model to a cloud of points cor-
rupted with outliers in a statistically robust way. More specif-
ically, if d is the minimum number of points required to fit a
model to the data, RANSAC randomly samples d points from
the data, fits a model to these d points, computes the residual
of each data point to this model, and chooses the points whose
residual is below a threshold as the inliers. The procedure is
then repeated for another d sample points, until the number
of inliers is above a threshold, or enough samples have been
drawn. The outputs of the algorithm are the parameters of the
model and the labeling of inliers and outliers.

In the case of clustering subspaces of equal dimension d,
the model to be fit by RANSAC is a subspace of dimension
d. Since there are multiple subspaces, RANSAC proceeds in
a greedy fashion to fit one subspace at a time as follows:

1. Apply RANSAC to the original data set and recover a
basis for the first subspace along with the set of inliers.
All points in other subspaces are considered as outliers.

2. Remove the inliers from the current data set and repeat
step 1 until all the subspaces are recovered.

3. For each set of inliers, use PCA to find an optimal basis

for each subspace. Segment the data into multiple sub-
spaces by assigning each point to its closest subspace.

The main advantage of RANSAC is its ability to handle
outliers explicitly. Also, notice that RANSAC does not re-
quire the subspaces to be independent, because it computes
one subspace at a time. Moreover, RANSAC does not need
to know the number of subspaces beforehand. In practice,
however, determining the number of subspaces depends on
user defined thresholds. An important drawback of RANSAC
is that its performance deteriorates quickly as the number of
subspaces n increases, because the probability of drawing d
inliers reduces exponentially with the number of subspaces.
Therefore, the number of trials needed to find d points in the
same subspace grows exponentially with the number and di-
mension of the subspaces. This issue can be addressed by
modifying the sampling strategy so that points in the same
subspace are more likely to be chosen than points in differ-
ent subspaces, as shown in [55]. Another critical drawback of
RANSAC is that it requires the dimension of the subspaces
to be known and equal. In the case of subspaces of different
dimensions, one could start from the largest to the smallest
dimension or vice versa. However, those procedures suffer
from a number of issues, as discussed in [20].

2.4. Spectral Clustering-Based Methods

Spectral clustering algorithms (see [56] for a review) are a
very popular technique for clustering high-dimensional data.
These algorithms construct an affinity matrix A ∈ RN×N ,
whose jk entry measures the similarity between points j and
k. Ideally,Ajk = 1 if points j and k are in the same group and
Ajk = 0 if points j and k are in different groups. A typical
measure of similarity is Ajk = exp(−dist2jk), where distjk
is some distance between points j and k. Given A, the seg-
mentation of the data is obtained by applying the K-means
algorithm to the eigenvectors of a matrix L ∈ RN×N formed
from A. Specifically, if {vj}Nj=1 are the eigenvectors of L,
then a subset of n � N eigenvectors are chosen and stacked
into a matrix V ∈ RN×n. The K-means algorithm is then
applied to the rows of V . Typical choices for L are the affin-
ity matrix itself L = A, the Laplacian L = diag(A1) − A,
where 1 is the vector of all 1’s, and the normalized Lapla-
cian Lsym = diag(A1)−1/2Adiag(A1)−1/2. Typical choices
for the eigenvectors are the top n eigenvectors of the affinity
or the bottom n eigenvectors of the (normalized) Laplacian,
where n is the number of groups.

One of the main challenges in applying spectral cluster-
ing to the subspace clustering problem is how to define a good
affinity matrix. This is because two points could be very close
to each other, but lie in different subspaces (e.g., near the in-
tersection of two subspaces). Conversely, two points could be
far from each other, but lie in the same subspace. As a conse-
quence, one cannot use the typical distance-based affinity.

6

In what follows, we describe several methods for building
an affinity between pairs points lying in multiple subspaces.
The first two methods (factorization and GPCA) are designed
for linear subspaces, though they can be applied to affine sub-
spaces by using homogeneous coordinates. The remaining
methods can handle either linear or affine subspaces.

Factorization-based affinity. Interestingly, one of the first
subspace clustering algorithms is based on both matrix fac-
torization and spectral clustering. Specifically, the algorithm
of Boult and Brown [7] obtains the segmentation of the data
from the eigenvectors of the matrix Q = VV> in (6). Since
these eigenvectors are the singular vectors of X , the segmen-
tation is obtained by clustering the rows of V . However, recall
that the affinity Ajk = Qjk has a number of issues. First, it is
not necessarily the case that Ajk ≈ 1 when points i and j are
in the same subspace. Second, the equation Qjk = 0 is sensi-
tive to noise and it is valid only for independent subspaces.

GPCA-based affinity. The GPCA algorithm can also be
used to define an affinity between pairs of points. Recall that
the derivatives of the polynomials p(xj) at a point xj ∈ Si
provide an estimate of the normal vectors to subspace Si.
Therefore, one can use the angles between the subspaces to
define an affinity as Ajk =

∏min(dj ,dk)
m=1 cos2(θmjk), where

θmjk is the mth subspace angle between the bases of the esti-
mated subspaces at points j and k, Ŝj and Ŝk, respectively, for
j, k = 1, . . . , N . The segmentation of the data is then found
by applying spectral clustering to the normalized Laplacian.

Local Subspace Affinity (LSA) and Spectral Local Best-fit
Flats (SLBF). The LSA [21] and SLBF [22] algorithms are
based on the observation that a point and its nearest neighbors
(NNs) often belong to the same subspace. Therefore, we can
fit an affine subspace Ŝj to each point j and its d-NNs using,
e.g., PCA. In practice, we can choose K ≥ d NNs, hence d
does not need to be known exactly: we only need an upper
bound. Then, if two points j and k lie in the same subspace
Si, their locally estimated subspaces Ŝj and Ŝk should be the
same, while if the two points lie in different subspaces Ŝj and
Ŝk should be different. Therefore, we can use a distance be-
tween Ŝj and Ŝk to define an affinity between the two points.

The first (optional) step of the LSA and SLBF algorithms
is to project the data points onto a subspace of dimension r =
rank(X) using the SVD of X . With noisy data, the value of
r is determined using model selection techniques. In the case
data drawn from linear subspaces, the LSA algorithm projects
the resulting points in Rr onto the hypersphere Sr−1.

The second step is to compute the K-NNs of each point
j and to fit a local affine subspace Ŝj to the point and its
neighbors. LSA assumes that K is specified by the user. The
K-NNs are then found using the angle between pairs of data
points or the Euclidean distance as a metric. PCA is then
used to fit the local subspace Ŝj . The subspace dimension dj
is determined using model selection techniques. SLBF de-
termines both the number of neighbors Kj and the subspace

Ŝj for point j automatically. It does so by searching for the
smallest value of Kj that minimizes a certain fitting error.

The third step of LSA is to compute an affinity matrix as

Ajk = exp
(
−

min(dj ,dk)∑
m=1

sin2(θmjk)
)
, (20)

where the θmjk is the mth principal angle between the bases of
subspaces Ŝj and Ŝk. In the case of data drawn from affine
subspaces, Ajk would need to be modified to also incorporate
a distance between points j and k. SLBF uses an affinity
matrix that is applicable to both linear and affine subspaces as

Ajk = exp(−d̂jk/2σ2
j) + exp(−d̂jk/2σ2

k), (21)

where d̂jk =
√

dist(xj , Ŝk)dist(xk, Ŝj) and dist(x, S) is the
Euclidean distance from point x to subspace S. The segmen-
tation of the data is then found by applying spectral clustering
to the normalized Laplacian.

The LSA and SLBF algorithms have two main advan-
tages when compared to GPCA. First, outliers are likely to
be “rejected”, because they are far from all the points and so
they are not considered as neighbors of the inliers. Second,
LSA requires only O(ndmax) data points, while GPCA needs
O(Mn(dmax + 1)). On the other hand, LSA has two main
drawbacks. First, the neighbors of a point could belong to a
different subspace. This is more likely to happen near the in-
tersection of two subspaces. Second, the selected neighbors
may not span the underlying subspace. Thus, K needs to be
small enough so that only points in the same subspace are
chosen and large enough so that the neighbors span the local
subspace. SLBF resolves these issues by choosing the size of
the neighborhood automatically.

Notice also that both GPCA and LSA are based on a linear
projection followed by spectral clustering. While in principle
both algorithms can use any linear projection, GPCA prefers
to use the smallest possible dimension r = dmax + 1, so as
to reduce the computational complexity. On the other hand,
LSA uses a slightly larger dimension r = rank(X) ≤

∑
di,

because if the dimension of the projection is too small (less
than rank(X)), the projected subspaces are not independent
and LSA has problems near the intersection of two subspaces.
Another major difference is that LSA fits a subspace locally
around each projected point, while GPCA uses the gradients
of a polynomial that is globally fit to the projected data.
Locally Linear Manifold Clustering (LLMC). The LLMC
algorithm [23] is also based on fitting a local subspace to a
point and its K-NNs. Specifically, every point j is written as
an affine combination of all other points k 6= j. The coeffi-
cients wjk are found in closed form by minimizing the cost

N∑
j=1

‖xj −
∑
k 6=j

wjkxk‖2 = ‖(I −W)X>‖2F , (22)

7

subject to
∑
k 6=j wjk = 1 and wjk = 0 if xk is not a K-NN

of xj . Then, the affinity matrix and the matrix L are built as

A = W +W>−W>W and L = (I −W)>(I −W). (23)

It is shown in [23] that when every point and its K-NNs are
always in the same subspace, then there are vectors v in the
null space of L with the property that vj = vk when points j
and k are in the same subspace. However, these vectors are
not the only vectors in the null space and spectral clustering
is not directly applicable. In this case, a procedure for prop-
erly selecting linear combinations of the eigenvectors of L is
needed, as discussed in [23].

A first advantage of LLMC is its robustness to outliers
This is because, as in the case of LSA and SLBF, outliers are
often far from the inliers, hence it is unlikely that they are
chosen as neighbors of the inliers. Another important advan-
tage of LLMC is that it is also applicable to non-linear sub-
spaces, while all the other methods discussed so far are only
applicable to linear (or affine) subspaces. However, LLMC
suffers from the same disadvantage of LSA, namely that it is
not always the case that a point and itsK-NNs are in the same
subspace, especially when the subspaces are not independent.
Also, properly choosing the number of nearest neighbors is
a challenge. These issues could be resolved by choosing the
neighborhood automatically, as done by SLBF.
Sparse Subspace Clustering (SSC). SSC [24, 25] is also
based on the idea of writing a data point as a linear (affine)
combination of neighboring data points. However, the key
difference with LSA, SLBF and LLMC is that, instead of
choosing neighbors based on the angular or Euclidean dis-
tance between pairs of points (which can lead to errors in
choosing the neighbors), the neighbors can be any other
points in the data set. In principle, this leads to an ill-posed
problem with many possible solutions. To resolve this issue,
the principle of sparsity is invoked. Specifically, every point
is written as a sparse linear (affine) combination of all other
data points by minimizing the number of nonzero coefficients
wjk subject to xj =

∑
k 6=j wjkxk (and

∑
wjk = 1 in the

case of affine subspaces). Since this problem is combinato-
rial, a simpler `1 optimization problem is solved

min
{wjk}

∑
k 6=j

|wjk| s.t. xj =
∑
k 6=j

wjkxk
(
and

∑
k 6=j

wjk = 1
)
.(24)

It is shown in [24] and [25] that when the subspaces are either
independent or disjoint, the solution to the optimization prob-
lem in (24) is such that wjk = 0 only if points j and k are in
different subspaces. In other words, the sparsest representa-
tion is obtained when each point is written as a linear (affine)
combination of points in its own subspace.

In the case of data contaminated by noise, the SSC algo-
rithm does not attempt to write a data point as an exact linear
(affine) combination of other points. Instead, a penalty in the
2-norm of the error is added to the `1 norm. Specifically, the

sparse coefficients are found by solving the problem

min
{wjk}

∑
k 6=j

|wjk|+ µ‖xj −
∑
k 6=j

wjkxk‖2
(

s.t.
∑
k 6=j

wjk = 1
)
,

(25)
where µ > 0 is a parameter. Obviously, different solutions for
{wjk} will be obtained for different choices of the parameter
µ. However, we are not interested in the specific values of
wjk: all what matters is that, for each point j, the top nonzero
coefficients come from points in the same subspace.

In the case of data contaminated with outliers, the SSC
algorithm algorithm assumes that xj =

∑
k 6=j wjkxk + ej ,

where the vector of outliers ej is also sparse. The sparse co-
efficients and the outliers are found by solving the problem

min
{wjk},{ej}

∑
k 6=j

|wjk|+‖ej‖1+µ‖xj−
∑
k 6=j

wjkxk−ej‖2 (26)

subject to
∑
k 6=j wjk = 1 in the case of affine subspaces.

Given a sparse representation for each data point, the
graph affinity matrix is defined as

A = |W |+ |W>|. (27)

The segmentation is then obtained by applying spectral clus-
tering to the Laplacian.

The SSC algorithm presents several advantages with re-
spect to all the algorithms discussed so far. With respect to
factorization-based methods, the affinity in (27) is very ro-
bust to noise. This is because the solution changes continu-
ously with the amount of noise. Specifically, with moderate
amounts of noise the top nonzero coefficients will still corre-
spond to points in the same subspace. With larger amounts of
noise, some of the nonzero coefficients will come from other
subspaces. These mistakes can be handled by spectral cluster-
ing, which is also robust to noise (see [56]). With respect to
GPCA, SSC is more robust to outliers because, as in the case
of LSA, SLBF and LLMC, it is very unlikely that a point in
a subspace will write it self as a linear combination of a point
that is very far from the all the subspaces. Also, the compu-
tational complexity of SSC does not grow exponentially with
the number of subspaces and their dimensions. Nonetheless,
it requires solving N optimization problems in N variables,
as per (24), (25) or (26), hence it can be slow. With respect to
LSA and LLMC, the great advantage of SSC is that the neigh-
bors of a point are automatically chosen, without having to
specify the value of K. Indeed, the number of nonzero coef-
ficients should correspond to the dimension of the subspace.
More importantly, the SSC algorithm is provably correct for
independent and disjoint subspaces, hence its performance is
not affected when the NNs of a point (in the traditional sense)
do not come from the same subspace containing that point.
Another advantage of SCC over GPCA is that does not re-
quire the data to be projected onto a low-dimensional sub-
space. A possible disadvantage of SSC is that it is provably

8

correct only in the case of independent or disjoint subspaces.
However, the experiments will show that SSC performs well
also for non-disjoint subspaces.

Low-Rank Representation (LRR). This algorithm [26] is
very similar to SSC, except that it aims to find a low-rank
representation instead of a sparse representation. Before ex-
plaining the connection further, let us first rewrite the SSC al-
gorithm in matrix form. Specifically, recall that SSC requires
solving N optimization problems in N variables, as per (24).
As it turns out, these optimization problems can be written as
a single optimization problem in O(N2) variables as

min
{wjk}

N∑
j=1

∑
k 6=j

|wjk| s.t. xj =
∑
k 6=j

wjkxk
(
and

∑
k 6=j

wjk = 1
)
.

(28)
This problem can be rewritten in matrix form as

min
W
‖W‖1 s.t. X = XW>, diag(W) = 0

(
and W1 = 1

)
.

(29)
Similarly, in the case of data contaminated with noise, the N
optimization problems in (25) can be written as

min
W,E

‖W‖1 + µ‖E‖2F

s.t. X = XW>+ E, diag(W) = 0
(
and W1 = 1

)
.

(30)

The LRR algorithm aims to minimize rank(W) instead of
‖W‖1. Since this rank-minization problem is NP hard, the
authors replace the rank of W by its nuclear norm ‖W‖∗ =∑
σi(W), where σi(W) is the ith singular value ofW . In the

case of noise free data drawn from linear (affine) subspaces,
this leads to the following (convex) optimization problem

min
W
‖W‖∗ s.t. X = XW>

(
and W1 = 1

)
. (31)

It can be shown that when the data is noise free and drawn
from independent linear subspaces, the optimal solution to
(31) is given by the matrix Q of the Costeira and Kanade al-
gorithm, as defined in (5). Recall that this matrix is such that
Qjk = 0 when points j and k are in different subspaces (see
(6)), and can be used to build an affinity matrix.

In the case of data contaminated with noise or outliers, the
LRR algorithm solves the (convex) optimization problem

min
W
‖W‖∗ + µ‖E‖2,1 s.t. X=XW>+E

(
and W1=1.

)
,

(32)

where ‖E‖2,1 =
∑N
k=1

√∑N
j=1 |Ejk|2 is the `2.1 norm of

the matrix of errors E. Notice that this problem is analogous
to (30), except that the `1 and the Frobenious norms are re-
placed by the nuclear and the `2,1 norms, respectively.

The LRR algorithm proceeds by solving the optimization
problem in (32) using an augmented Lagrangian method. The
optimal W is used to define an affinity matrix A as in (27).

The segmentation of the data is then obtained by applying
spectral clustering to the normalized Laplacian.

One of the main attractions of the LRR algorithm is that it
results on very interesting connections between the Costeira
and Kanade algorithm and the SSC algorithm. A second ad-
vantage is that, similarly to SSC, the optimization problem is
convex. Perhaps the main drawback of LRR is that the opti-
mization problem involves O(N2) variables.
Spectral Curvature Clustering (SCC). The methods dis-
cussed so far choose a data point plus d NNs (LSA, SLBF,
LLMC) or d “sparse” neighbors (SSC), fit an affine subspace
to each of theseN groups of d+1 points, and build a pairwise
affinity by comparing these subspaces. In contrast, multiway
clustering techniques such as [57, 58, 27] are based on the ob-
servation that a minimum of d+ 1 points are needed to define
an affine subspace of dimension d (d for linear subspaces).
Therefore, they consider d+ 2 points, build a measure of how
likely these points are to belong to the same subspace, and use
this measure to construct an affinity between pairs of points.

Specifically, letXd+2 = {xj`}
d+2
`=1 be d+2 randomly cho-

sen data points. One possible affinity is the volume spanned
by the (d + 1)-simplex formed by these points, vol(Xd+2),
which is equal to zero if the points are in the same subspace.
However, one issue with this affinity is that it is not invari-
ant to data transformations, e.g., scaling of the d + 2 points.
The SCC algorithm [27] is based on the concept of polar cur-
vature, which is also zero when the points are in the same
subspace. The multi-way affinity Aj1,j2,...,jd+2

is defined as

exp
(
− 1

2σ2
diam2(Xd+2)

d+2∑
`=1

(d+ 1)!2vol2(Xd+2)∏
1≤m≤d+2

m6=`
‖xjm−xj`‖2

)
(33)

if j1, j2, . . . , jd+2 are distinct and zero otherwise. A pairwise
affinity matrix is then defined as

Ajk =
∑

j2,...,jd+1

Aj,j2,...,jd+2
Ak,j2,...,jd+2

. (34)

This requires computing O(Nd+2) entries ofA and summing
over O(Nd+1) elements of A. Therefore, the computational
complexity of SCC grows exponentially with the dimension
of the subspaces. A practical implementation of SCC uses a
fixed number c of (d+1)-tuples (c� Nd+1) for each point to
build the affinity A. A choice of c ≈ c0n

d+2 is suggested in
[27], which is much smaller, but still exponential in d. In prac-
tice, the method appears to be not too sensitive to the choice
of c but more importantly to how the d+ 1 points are chosen.
[27] argues that a uniform sampling strategy does not perform
well, because many samples could contain subspaces of dif-
ferent dimensions. To avoid this, two stages of sampling are
performed. The first stage is used to obtain an initial cluster-
ing of the data. In the second stage, the initial clusters are used
to guide the sampling and thus obtain a better affinity. Given
A, the segmentation is obtained by applying spectral cluster-
ing to the normalized Laplacian. One difference of SCC with

9

respect to the previous methods is that SCC uses a procedure
for initializing K-means based on maximizing the variance
among all possible combinations of K rows of V .

One advantage of SCC (and also of SSC) over LSA, SLBF
and LLMC is that it incorporates many points to define the
affinities, while LSA, SLBF and LLMC restrict themselves
to K-NNs. This ultimately results in better affinities, espe-
cially for subspaces that are not independent. One advantage
of SCC over factorization-based methods and GPCA is that it
can handle noisy data drawn from both linear and affine sub-
spaces. Another advantage of SCC over GPCA is that does
not require the data to be projected onto a low-dimensional
subspace. Also, when the data are sampled from a mixture of
distributions concentrated around multiple affine subspaces,
SCC performs well with overwhelming probability, as shown
in [59]. Finally, SCC can be extended to nonlinear manifolds
by using kernel methods [60]. However, the main drawbacks
of SCC are that it requires sampling of the affinities to re-
duce the computational complexity and that it requires the
subspaces to be of known and equal dimension d. In practice,
the algorithm can still be applied to subspaces of different di-
mensions by choosing d = dmax, but the effect of this choice
on the definition of spectral curvature remains unknown.

3. APPLICATIONS IN COMPUTER VISION

3.1. Motion segmentation from feature point trajectories

Motion segmentation refers to the problem of separating a
video sequence into multiple spatiotemporal regions corre-
sponding to different rigid-body motions. Most existing mo-
tion segmentation algorithms proceed by first extracting a set
of point trajectories from the video using standard tracking
methods. As a consequence, the motion segmentation prob-
lem is reduced to clustering these point trajectories according
to the different rigid-body motions in the scene.

The mathematical models needed to describe the motion
of the point trajectories vary depending on the type of camera
projection model. Under the affine model, all the trajectories
associated with a single rigid motion live in a 3-dimensional
affine subspace. To see this, let {xfj ∈ R2}f=1,...,F

j=1,...,N denote
the 2-D projections of N 3-D points {Xj ∈ R3}Nj=1 on a
rigidly moving object onto F frames of a moving camera.
The relationship between the tracked feature points and their
corresponding 3-D coordinates is

xfj = Af

[
Xj

1

]
, (35)

where Af ∈ R2×4 is the affine motion matrix at frame f . If
we form a matrix containing all the F tracked feature points

(a) 1R2RCT B (b) 2T3RCRT

(c) cars3 (d) cars10

(e) people2 (f) kanatani3

Fig. 2: Sample images from some sequences in the database
with tracked points superimposed.

corresponding to a point on the object in a column, we get x11 · · ·x1N...
...

xF1 · · ·xFN


2F×N

=

A1

...
AF


2F×4

[
X1 · · ·XN

1 · · · 1

]
4×N

(36)

We can briefly write this as W = MS>, where M ∈ R2F×4

is called the motion matrix and S ∈ RN×4 is called the struc-
ture matrix. Since rank(M) ≤ 4 and rank(S) ≤ 4 we get

rank(W) = rank(MS>) ≤ min(rank(M), rank(S))≤4.(37)

Moreover, since the last row of S> is 1, the feature point tra-
jectories of a single rigid-body motion lie in an affine sub-
space of R2F of dimension at most three.

Assume now that we are given N trajectories of n rigidly
moving objects. Then, these trajectories will lie in a union
of n affine subspaces in R2F . The 3-D motion segmentation
problem is the task of clustering these N trajectories into n
different groups such that the trajectories in the same group
represent a single rigid-body motion. Therefore, the motion
segmentation problem reduces to clustering a collection of
point trajectories according to multiple affine subspaces.

In what follows, we evaluate a number of subspace clus-
tering algorithms on the Hopkins155 motion segmentation

10

database, which is available online at http://www.vision.
jhu.edu/data/hopkins155 [61]. The database consists of
155 sequences of two and three motions which can be di-
vided into three main categories: checkerboard, traffic, and
articulated sequences. The checkerboard sequences contain
multiple objects moving independently and arbitrarily in 3D
space, hence the motion trajectories lie in independent affine
subspaces of dimension three. The traffic sequences contain
cars moving independently on the ground plane, hence the
motion trajectories lie in independent affine subspaces of di-
mension two. The articulated sequences contain motions of
people, cranes, etc., where object parts do not move indepen-
dently, and so the motion subspaces are dependent. For each
sequence, the trajectories are extracted automatically with a
tracker and outliers are manually removed. Therefore, the
trajectories are corrupted by noise, but do not have missing
entries or outliers. Figure 2 shows sample images from videos
in the database with the feature points superimposed.

In order to make our results comparable to those in the
existing literature, for each method we apply the same pre-
processing steps described in their respective papers. Specifi-
cally, we project the trajectories onto a subspace of dimension
r ≤ 2F using either PCA (GPCA, RANSAC, LLMC, LSA,
ALC, SCC) or a random projection matrix (SSC) whose
entries are drawn from a Bernoulli (SSC-B) or Normal (SSC-
N) distribution. Historically, there have been two choices
for the dimension of the projection: r = 5 and r = 4n.
These choices are motivated by algebraic methods, which
model 3-D affine subspaces as 4-D linear subspaces. Since
dmax = 4, GPCA chooses r = dmax + 1 = 5, while factor-
ization methods use the fact that for independent subspaces
r = rank(X) = 4n. In our experiments, we use r = 5 for
GPCA and RANSAC and r = 4n for GPCA, LLMC, LSA,
SCC and SSC. For ALC, r is chosen automatically for each
sequence as the minimum r such that r ≥ 8 log(2F/r). We
will refer to this one as the sparsity preserving (sp) projec-
tion. We refer the reader to [62] for more recent work that
determines the dimension of the projection automatically.
Also, for the algorithms that make use of K-means, either a
single restart is used when initialized by another algorithm
(LLMC, SCC), or 10 restarts are used when initialized at
random (GPCA, LLMC, LSA). SSC uses 20 restarts.

For each algorithm and each sequence, we record the clas-
sification error defined as

classification error =
of misclassified points

total # of points
%. (38)

Table 1 reports the average and median misclassification
errors and Figure 3 shows, the percentage of sequences
for which the classification error is below a given per-
centage of misclassification. More detailed statistics with
the classification errors and computation times of each al-
gorithm on each of the 155 sequences can be found at
http://www.vision.jhu.edu/data/hopkins155/.

By looking at the results, we can draw the following con-
clusions about the performance of the algorithms tested.

GPCA. To avoid using multiple polynomials, we use an im-
plementation of GPCA based on hyperplanes in which the
data is interpreted as a subspace of dimension r − 1 in Rr,
where r = 5 or r = 4n. For two motions, GPCA achieves a
classification error of 4.59% for r = 5 and 4.10% for r = 4n
Notice that GPCA is among the most accurate methods for the
traffic and articulated sequences, which are sequences with
dependent motion subspaces. However, GPCA has higher er-
rors on the checkerboard sequences, which constitute the ma-
jority of the database. This result is expected, because GPCA
is best designed for dependent subspaces. Notice also that in-
creasing r from 5 to 4n improves the results for checkerboard
sequences, but not for the traffic and articulated sequences.
This is also expected, because the rank of the data matrix
should be high for sequences with full-dimensional and inde-
pendent motions (checkerboard), and low for sequences with
degenerate (traffic) and dependent (articulated) motions. This
suggest that using model selection to determine a different
value of r for each sequence should improve the results. For
three motions, the results are completely different with a seg-
mentation error of 29-37%. This is expected, because the
number of coefficients fitted by GPCA grows exponentially
with the number of motions, while the number of feature
points remains of the same order. Furthermore, GPCA uses
a least-squares method for fitting the polynomial, which ne-
glects nonlinear constraints among the coefficients. The num-
ber of nonlinear constraints neglected also increases with the
number of subspaces.

RANSAC. The results for this purely statistical algorithm
are similar to what we found for GPCA. In the case of two
motions the results are a bit worse than those of GPCA. In
the case of three motions, the results are better than those
of GPCA, but still quite far from those of the best perform-
ing algorithms. This is expected, because as the number of
motions increases, the probability of drawing a set of points
from the same group reduces significantly. Another drawback
of RANSAC is that its performance varies between two runs
on the same data. Our experiments report the average perfor-
mance over 1,000 trials for each sequence.

LSA. When the dimension for the projection is chosen as
r = 5, this algorithm performs worse than GPCA. This is
because points in different subspaces are closer to each other
when r = 5, and so a point from a different subspace is more
likely to be chosen as a nearest neighbor. GPCA, on the other
hand, is not affected by points near the intersection of the sub-
spaces. The situation is completely different when r = 4n.
In this case, LSA clearly outperforms GPCA and RANSAC,
achieving an error of 3.45% for two groups and 9.73% for
three groups. These errors could be further reduced by using
model selection to determine the dimension of each subspace.
Another important thing to observe is that LSA performs bet-

11

http://www.vision.jhu.edu/data/hopkins155
http://www.vision.jhu.edu/data/hopkins155
http://www.vision.jhu.edu/data/hopkins155/

Table 1: Classification errors of several subspace clustering algorithms on the Hopkins 155 motion segmentation database. All
algorithms use two parameters (d, r), where d is the dimension of the subspaces and r is the dimension of the projection. Affine
subspace clustering algorithms treat subspaces as 3-dimensional affine subspaces, i.e., d = 3, while linear subspace clustering
algorithms treat subspaces as 4-dimensional linear subspaces, i.e., d = 4. The dimensions of the projections are r = 5,
r = 4n, where n is the number of motions, and r = 2F , where F is the number of frames. ALC uses a sparsity preserving (sp)
dimension for the projection. All algorithms use PCA to perform the projection, except for SSC which uses a random projection
with entries drawn from a Bernoulli (SSC-B) or Normal (SSC-N) distribution. The results for GPCA correspond to the spectral
clustering-based GPCA algorithm. LLMC-G denotes LLMC initialized by the algebraic GPCA algorithm.

Two motions Three motions All
Check. (78) Traffic (31) Articul. (11) All (120) Check. (26) Traffic (7) Articul. (2) All (35) (155)

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
GPCA (4,5) 6.09 1.03 1.41 0.00 2.88 0.00 4.59 0.38 31.95 32.93 19.83 19.55 16.85 16.85 28.66 28.26 10.34 2.54
GPCA (4n-1,4n) 4.78 0.51 1.63 0.00 6.18 3.20 4.10 0.44 36.99 36.26 39.68 40.92 29.62 29.62 37.11 37.18 11.55 1.36
RANSAC (4,5) 6.52 1.75 2.55 0.21 7.25 2.64 5.56 1.18 25.78 26.00 12.83 11.45 21.38 21.38 22.94 22.03 9.76 3.21
LSA (4,5) 8.84 3.43 2.15 1.00 4.66 1.28 6.73 1.99 30.37 31.98 27.02 34.01 23.11 23.11 29.28 31.63 11.82 4.00
LSA (4,4n) 2.57 0.27 5.43 1.48 4.10 1.22 3.45 0.59 5.80 1.77 25.07 23.79 7.25 7.25 9.73 2.33 4.94 0.90
LLMC (4,5) 4.85 0.00 1.96 0.00 6.16 1.37 4.22 0.00 9.06 7.09 6.45 0.00 5.26 5.26 8.33 3.19 5.15 0.00
LLMC (4,4n) 3.96 0.23 3.53 0.33 6.48 1.30 4.08 0.24 8.48 5.80 6.04 4.09 9.38 9.38 8.04 4.93 4.97 0.87
LLMC-G (4,5) 4.34 0.00 2.13 0.00 6.16 1.37 3.95 0.00 8.87 7.09 5.62 0.00 5.26 5.26 8.02 3.19 4.87 0.00
LLMC-G (4,4n) 2.83 0.00 3.61 0.00 5.94 1.30 3.32 0.00 8.20 5.26 6.04 4.60 8.32 8.32 7.78 4.93 4.37 0.53
MSL 4.46 0.00 2.23 0.00 7.23 0.00 4.14 0.00 10.38 4.61 1.80 0.00 2.71 2.71 8.23 1.76 5.03 0.00
ALC (4,5) 2.56 0.00 2.83 0.30 6.90 0.89 3.03 0.00 6.78 0.92 4.01 1.35 7.25 7.25 6.26 1.02 3.76 0.26
ALC (4,sp) 1.49 0.27 1.75 1.51 10.70 0.95 2.40 0.43 5.00 0.66 8.86 0.51 21.08 21.08 6.69 0.67 3.37 0.49
SCC (3, 4) 2.99 0.39 1.20 0.32 7.71 3.67 2.96 0.42 7.72 3.21 0.52 0.28 8.90 8.90 6.34 2.36 3.72
SCC (3, 4n) 1.76 0.01 0.46 0.16 4.06 1.69 1.63 0.06 6.00 2.22 1.78 0.42 5.65 5.65 5.14 1.67 2.42
SCC (3, 2F) 1.77 0.00 0.63 0.14 4.02 2.13 1.68 0.07 6.23 1.70 1.11 1.40 5.41 5.41 5.16 1.58 2.47
SCC (4, 5) 2.31 0.25 0.71 0.26 5.05 1.08 2.15 0.27 5.56 2.03 1.01 0.47 8.97 8.97 4.85 2.01 2.76
SCC (4, 4n) 1.30 0.04 1.07 0.44 3.68 0.67 1.46 0.16 5.68 2.96 2.35 2.07 10.94 10.94 5.31 2.40 2.33
SCC (4, 2F) 1.31 0.06 1.02 0.26 3.21 0.76 1.41 0.10 6.31 1.97 3.31 3.31 9.58 9.58 5.90 1.99 2.42
SLBF (3, 2F) 1.59 0.00 0.20 0.00 0.80 0.00 1.16 0.00 4.57 0.94 0.38 0.00 2.66 2.66 3.63 0.64 1.66
SSC-B (4,4n) 0.83 0.00 0.23 0.00 1.63 0.00 0.75 0.00 4.49 0.54 0.61 0.00 1.60 1.60 3.55 0.25 1.45 0.00
SSC-N (4,4n) 1.12 0.00 0.02 0.00 0.62 0.00 0.82 0.00 2.97 0.27 0.58 0.00 1.42 0.00 2.45 0.20 1.24 0.00

Fig. 3: Percentage of sequences for which the classification error is less than or equal to a given percentage of misclassification.
The algorithms tested are GPCA (4,5), RANSAC (4,5), LSA (4,4n), LLMC (4,4n), MSL, ALC (4,sp), SCC (4,4n), SSC-N
(4,4n).

12

ter on the checkerboard sequences, but has larger errors than
GPCA on the traffic and articulated sequences. This confirms
that LSA has difficulties with dependent subspaces.

LLMC. The results of this algorithm also represent a clear
improvement over GPCA and RANSAC, especially for three
motions. The only cases where GPCA outperforms LLMC
are for traffic and articulated sequences. This is expected, be-
cause LLMC is not designed to handle dependent subspaces.
Unlike LSA, LLMC is not significantly affected by the choice
of r, with a classification error of 5.15% for r = 5 and 4.97%
for r = 4n. Notice also that the performance of LLMC im-
proves when initialized with GPCA to 4.87% for r = 5 and
4.37% for r = 4n. However, there are a few sequences for
which LLMC performs worse than GPCA even when LLMC
is initialized by GPCA. This happens for sequences with de-
pendent motions, which are not well handled by LLMC.

MSL. By looking at the average classification error, we can
see that MSL, LSA and LLMC have a similar accuracy. Fur-
thermore, their segmentation results remain consistent when
going from two to three motions. However, sometimes the
MSL method gets stuck in a local minimum. This is reflected
by high classification errors for some sequences, as it can be
seen by the long tails in Figure 3.

ALC. This algorithm represents a significant increase in per-
formance with respect to all previous algorithms, especially
for the checkerboard sequences, which constitute the major-
ity of the database. However, ALC does not perform very
well on the articulated sequences. This is because ALC typ-
ically needs the samples from a group to cover the subspace
with sufficient density, while many of the articulated scenes
have very few feature point trajectories. With regard to the
projection dimension, the results indicate that, overall, ALC
performs better with an automatic choice of the projection,
rather than with a fixed choice of r = 5. One drawback of
ALC is that it needs to be run about 100 times for different
choices of the distortion parameter ε in order to obtain the
right number of motions and the best segmentation results.

SCC. This algorithm performs even better than ALC, in al-
most all motion categories. The only exception is for the ar-
ticulated sequences with three motions. This is because these
sequences contain few trajectories for the sampling strategy to
operate correctly. Another advantage of SCC with respect to
ALC is that it is not very sensitive to the choice of the param-
eter c (number of sampled subsets), while ALC needs to be
run for several choices of the distortion parameter ε. Notice
also that the performance of SCC is not significantly affected
by the dimension of the projection r = 5, r = 4n or r = 2F .

SSC. This algorithm performs extremely well, not only for
checkerboard sequences, which have independent and fully-
dimensional motion subspaces, but also for traffic and articu-
lated sequences, which are the bottleneck of almost all exist-
ing methods, because they contain degenerate and dependent
motion subspaces. This is surprising, because the algorithm is

provably correct only for independent or disjoint subspaces.
Overall, the performance of SSC is not very sensitive to the
choice of the projection (Bernoulli versus Normal), though
SSC-N gives slightly better results. We have observed also
that SSC is not sensitive to the dimension of the projection
(r = 5 vs. r = 4n vs. r = 2F) or the parameter µ.

SLBF. This algorithm performs extremely well for all motion
sequences. Its performance is essentially on par with that of
SSC. We refer the reader to [22] for additional experiments.

3.2. Face clustering under varying illumination

Given a collection of unlabeled images {Ij ∈ RD}Nj=1 of n
different faces taken under varying illumination, the face clus-
tering problem consists of clustering the images correspond-
ing to the face of the same person. For a Lambertian object,
it has been shown that the set of all images taken under all
lighting conditions forms a cone in the image space, which
can be well approximated by a low-dimensional subspace [3].
Therefore, the face clustering problem reduces to clustering a
collection of images according to multiple subspaces.

In what follows, we report experiments from [22], which
evaluate the GPCA, ALC, SCC, SLBF and SSC algorithms
on the face clustering problem. The experiments are per-
formed on the Yale Faces B database, which is available at
http://cvc.yale.edu/projects/yalefacesB/
yalefacesB.html. This database consists of 10× 9× 64
images of 10 faces taken under 9 different poses and 64 dif-
ferent illumination conditions. For computational efficiency,
the images are downsampled to 120 × 160 pixels. Nine sub-
sets of n = 2, . . . , 10 are considered containing the following
indices: [5, 8], [1, 5, 8], [1, 5, 8, 10], [1, 4, 5, 8, 10], [1, 2,
4, 5, 8, 10], [1, 2, 4, 5, 7, 8, 10], [1, 2, 4, 5, 7, 8, 9, 10], [1,
2, 3, 4, 5, 7, 8, 9, 10] and [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Since
in practice the number of pixels D is still large compared
with the dimension of the subspaces, PCA is used to project
the images onto a subspace of dimension r = 5 for GPCA
and r = 20 for ALC, SCC, SLBF and SSC. In all cases, the
dimension of the subspaces is set to d = 2.

Table 2 shows the average percentage of misclassified
faces. As expected, GPCA does not perform well, since it is
hard to distinguish faces from only 5 dimensions. Nonethe-
less, GPCA cannot handle 20 dimensions, especially as the
number of groups increases. All other algorithms perform
extremely well in this dataset, especially SLBF and ALC.

Table 2: Mean percentage of misclassification on clustering
Yale Faces B data set.

n 2 3 4 5 6 7 8 9 10
GPCA 0.0 49.5 0.0 26.6 9.9 25.2 28.5 30.6 19.8
ALC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCC 0.0 0.0 0.0 1.1 2.7 2.1 2.2 5.7 6.6
SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.9
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 4.6

13

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

4. CONCLUSIONS AND FUTURE DIRECTIONS

Over the past few decades, significant progress has been made
in clustering high-dimensional datasets distributed around a
collection of linear and affine subspaces. This article pre-
sented a review of such progress, which included a number
of existing subspace clustering algorithms together with an
experimental evaluation on the motion segmentation problem
in computer vision. While earlier algorithms were designed
under the assumptions of perfect data and perfect knowledge
of the number of subspaces and their dimensions, through-
out the years algorithms started to handle noise, outliers, data
with missing entries, unknown number of subspaces and un-
known dimensions. In the case of noiseless data drawn from
linear subspaces, the theoretical correctness of existing algo-
rithms is well studied and some algorithms such as GPCA
are able to handle an unknown number of subspaces of un-
known dimensions in an arbitrary configuration. However,
while GPCA is applicable to affine subspaces, a theoretical
analysis of GPCA for affine subspaces in the noiseless case is
still due. In the case of noisy data, the theoretical correctness
of existing algorithms is largely untouched. To the best of our
knowledge, the first works in this direction are [45, 59]. By
and large, most existing algorithms assume that the number
of subspaces and their dimensions are known. While some
algorithms can provide estimates for these quantities, their es-
timates come with no theoretical guarantees. In our view, the
development of theoretically sound algorithms for finding the
number of subspaces and their dimension in the presence of
noise and outliers is a very important open challenge. On the
other hand, it is important to mention that most existing algo-
rithms operate in a batch fashion. In real-time applications, it
is important to cluster the data as it is being collected, which
motivates the development of online subspace clustering al-
gorithms. The works of [63] and [15] are two examples in
this direction. Finally, in our view the grand challenge for
the next decade will be to develop clustering algorithms for
data drawn from multiple nonlinear manifolds. The works of
[64, 65, 66, 67] have already considered the problem of clus-
tering quadratic, bilinear and trilinear surfaces using algebraic
algorithms designed for noise free data. The development of
methods that are applicable to more general manifolds with
corrupted data is still at its infancy.

5. AUTHOR

René Vidal (rvidal@jhu.edu) received his B.S. degree in
Electrical Engineering (highest honors) from the Pontificia
Universidad Católica de Chile in 1997 and his M.S. and
Ph.D. degrees in Electrical Engineering and Computer Sci-
ences from the University of California at Berkeley in 2000
and 2003, respectively. He was a research fellow at the Na-
tional ICT Australia in 2003 and joined The Johns Hopkins
University in 2004 as a faculty member in the Department

of Biomedical Engineering and the Center for Imaging Sci-
ence. He was co-editor of the book “Dynamical Vision” and
has co-authored more than 100 articles in biomedical image
analysis, computer vision, machine learning, hybrid systems,
and robotics. He is recipient of the 2009 ONR Young In-
vestigator Award, the 2009 Sloan Research Fellowship, the
2005 NFS CAREER Award and the 2004 Best Paper Award
Honorable Mention at the European Conference on Com-
puter Vision. He also received the 2004 Sakrison Memorial
Prize for “completing an exceptionally documented piece of
research”, the 2003 Eli Jury award for “outstanding achieve-
ment in the area of Systems, Communications, Control, or
Signal Processing”, the 2002 Student Continuation Award
from NASA Ames, the 1998 Marcos Orrego Puelma Award
from the Institute of Engineers of Chile, and the 1997 Award
of the School of Engineering of the Pontificia Universidad
Católica de Chile to the best graduating student of the school.
He is a member of the IEEE and the ACM.

6. REFERENCES

[1] A. Yang, J. Wright, Y. Ma, and S. Sastry, “Unsupervised
segmentation of natural images via lossy data compres-
sion,” Computer Vision and Image Understanding, vol.
110, no. 2, pp. 212–225, 2008.

[2] R. Vidal, R. Tron, and R. Hartley, “Multiframe motion
segmentation with missing data using PowerFactoriza-
tion and GPCA,” International Journal of Computer Vi-
sion, vol. 79, no. 1, pp. 85–105, 2008.

[3] J. Ho, M. H. Yang, J. Lim, K.C. Lee, and D. Kriegman,
“Clustering appearances of objects under varying illu-
mination conditions.,” in IEEE Conf. on Computer Vi-
sion and Pattern Recognition, 2003.

[4] Wei Hong, John Wright, Kun Huang, and Yi Ma,
“Multi-scale hybrid linear models for lossy image rep-
resentation,” IEEE Trans. on Image Processing, vol. 15,
no. 12, pp. 3655–3671, 2006.

[5] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “An alge-
braic geometric approach to the identification of a class
of linear hybrid systems,” in Conference on Decision
and Control, 2003, pp. 167–172.

[6] L. Parsons, E. Haque, and H. Liu, “Subspace clustering
for high dimensional data: a review,” ACM SIGKDD
Explorations Newsletter, 2004.

[7] T.E. Boult and L.G. Brown, “Factorization-based seg-
mentation of motions,” in IEEE Workshop on Motion
Understanding, 1991, pp. 179–186.

[8] J. Costeira and T. Kanade, “A multibody factorization
method for independently moving objects.,” Int. Journal
of Computer Vision, vol. 29, no. 3, 1998.

14

[9] C. W. Gear, “Multibody grouping from motion images,”
Int. Journal of Computer Vision, vol. 29, no. 2, pp. 133–
150, 1998.

[10] R. Vidal, Y. Ma, and S. Sastry, “Generalized Principal
Component Analysis (GPCA),” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, no.
12, pp. 1–15, 2005.

[11] P. S. Bradley and O. L. Mangasarian, “k-plane clus-
tering,” J. of Global Optimization, vol. 16, no. 1, pp.
23–32, 2000.

[12] P. Tseng, “Nearest q-flat to m points,” Journal of Op-
timization Theory and Applications, vol. 105, no. 1, pp.
249–252, 2000.

[13] P. Agarwal and N. Mustafa, “k-means projective clus-
tering,” in ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of database systems, 2004.

[14] L. Lu and R. Vidal, “Combined central and subspace
clustering on computer vision applications,” in Interna-
tional Conference on Machine Learning, 2006, pp. 593–
600.

[15] T. Zhang, A. Szlam, and G. Lerman, “Median k-flats for
hybrid linear modeling with many outliers,” in Work-
shop on Subspace Methods, 2009.

[16] M. Tipping and C. Bishop, “Mixtures of probabilistic
principal component analyzers,” Neural Computation,
vol. 11, no. 2, pp. 443–482, 1999.

[17] Y. Sugaya and K. Kanatani, “Geometric structure of
degeneracy for multi-body motion segmentation,” in
Workshop on Statistical Methods in Video Processing,
2004.

[18] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmen-
tation of multivariate mixed data via lossy coding and
compression,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 9, pp. 1546–1562,
2007.

[19] S. Rao, R. Tron, Y. Ma, and R. Vidal, “Motion segmen-
tation via robust subspace separation in the presence of
outlying, incomplete, or corrupted trajectories,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2008.

[20] A. Y. Yang, S. Rao, and Y. Ma, “Robust statistical es-
timation and segmentation of multiple subspaces,” in
Workshop on 25 years of RANSAC, 2006.

[21] J. Yan and M. Pollefeys, “A general framework for
motion segmentation: Independent, articulated, rigid,
non-rigid, degenerate and non-degenerate,” in European
Conf. on Computer Vision, 2006, pp. 94–106.

[22] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hy-
brid linear modeling via local best-fit flats,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2010, pp. 1927–1934.

[23] A. Goh and R. Vidal, “Segmenting motions of different
types by unsupervised manifold clustering,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2007.

[24] E. Elhamifar and R. Vidal, “Sparse subspace cluster-
ing,” in IEEE Conference on Computer Vision and Pat-
tern Recognition, 2009.

[25] E. Elhamifar and R. Vidal, “Clustering disjoint sub-
spaces via sparse representation,” in IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, 2010.

[26] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmenta-
tion by low-rank representation,” in International Con-
ference on Machine Learning, 2010.

[27] G. Chen and G. Lerman, “Spectral curvature clustering
(SCC),” International Journal of Computer Vision, vol.
81, no. 3, pp. 317–330, 2009.

[28] I. Jolliffe, Principal Component Analysis, Springer-
Verlag, New York, 1986.

[29] E. Beltrami, “Sulle funzioni bilineari,” Giornale di
Mathematiche di Battaglini, vol. 11, pp. 98–106, 1873.

[30] M.C. Jordan, “Mémoire sur les formes bilinéaires,”
Journal de Mathématiques Pures et Appliqués, vol. 19,
pp. 35–54, 1874.

[31] H. Stark and J.W. Woods, Probability and Random Pro-
cesses with Applications to Signal Processing, Prentice
Hall, 3rd edition, 2001.

[32] C. Eckart and G. Young, “The approximation of one
matrix by another of lower rank,” Psychometrika, vol.
1, pp. 211–218, 1936.

[33] K. Kanatani, “Motion segmentation by subspace sepa-
ration and model selection,” in IEEE Int. Conf. on Com-
puter Vision, 2001, vol. 2, pp. 586–591.

[34] N. Ichimura, “Motion segmentation based on factoriza-
tion method and discriminant criterion,” in IEEE Int.
Conf. on Computer Vision, 1999, pp. 600–605.

[35] Y. Wu, Z. Zhang, T.S. Huang, and J.Y. Lin, “Multibody
grouping via orthogonal subspace decomposition,” in
IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 2001, vol. 2, pp. 252–257.

15

[36] K. Kanatani and C. Matsunaga, “Estimating the number
of independent motions for multibody motion segmen-
tation,” in European Conf. on Computer Vision, 2002,
pp. 25–31.

[37] K. Kanatani, “Geometric information criterion for
model selection,” International Journal of Computer Vi-
sion, pp. 171–189, 1998.

[38] L. Zelnik-Manor and M. Irani, “On single-sequence
and multi-sequence factorizations,” Int. Journal of Com-
puter Vision, vol. 67, no. 3, pp. 313–326, 2006.

[39] Y. Ma, A. Yang, H. Derksen, and R. Fossum, “Esti-
mation of subspace arrangements with applications in
modeling and segmenting mixed data,” SIAM Review,
2008.

[40] H. Derksen, “Hilbert series of subspace arrangements,”
Journal of Pure and Applied Algebra, vol. 209, no. 1,
pp. 91–98, 2007.

[41] N. Ozay, M Sznaier, C. Lagoa, and O. Camps, “Gpca
with denoising: A moments-based convex approach,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

[42] A. Yang, S. Rao, A. Wagner, Y. Ma, and R. Fossum,
“Hilbert functions and applications to the estimation of
subspace arrangements,” in IEEE International Confer-
ence on Computer Vision, 2005.

[43] K. Huang, Y. Ma, and R. Vidal, “Minimum effective
dimension for mixtures of subspaces: A robust GPCA
algorithm and its applications,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2004, vol. II,
pp. 631–638.

[44] R. Duda, P. Hart, and D. Stork, Pattern Classification,
Wiley, New York, 2nd edition, 2000.

[45] A. Aldroubi and K. Zaringhalam, “Nonlinear least
squares in RN ,” Acta Applicandae Mathematicae, vol.
107, no. 1-3, pp. 325–337, 2009.

[46] A. Aldroubi, C. Cabrelli, and U. Molter, “Optimal non-
linear models for sparsity and sampling,” Journal of
Fourier Analysis and Applications, vol. 14, no. 5-6, pp.
793–812, 2008.

[47] M. Tipping and C. Bishop, “Probabilistic principal com-
ponent analysis,” Journal of the Royal Statistical Soci-
ety, vol. 61, no. 3, pp. 611–622, 1999.

[48] A. Dempster, N. Laird, and D. Rubin, “Maximum likeli-
hood from incomplete data via the EM algorithm,” Jour-
nal of the Royal Statistical Society B, vol. 39, pp. 1–38,
1977.

[49] C. Archambeau, N. Delannay, and M. Verleysen, “Mix-
tures of robust probabilistic principal component ana-
lyzers,” Neurocomputing, vol. 71, no. 7–9, pp. 1274–
1282, 2008.

[50] A. Gruber and Y. Weiss, “Multibody factorization with
uncertainty and missing data using the EM algorithm,”
in IEEE Conf. on Computer Vision and Pattern Recog-
nition, 2004, vol. I, pp. 707–714.

[51] J. Paisley and L. Carin, “Nonparametric factor analysis
with beta process priors,,” in International Conference
on Machine Learning, 2009.

[52] A. Leonardis, H. Bischof, and J. Maver, “Multiple
eigenspaces,” Pattern Recognition, vol. 35, no. 11, pp.
2613–2627, 2002.

[53] Z. Fan, J. Zhou, and Y. Wu, “Multibody grouping by
inference of multiple subspaces from high-dimensional
data using oriented-frames,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 28, no. 1, pp.
91–105, 2006.

[54] M. A. Fischler and R. C. Bolles, “RANSAC random
sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartogra-
phy,” Communications of the ACM, vol. 26, pp. 381–
395, 1981.

[55] J. Yan and M. Pollefeys, “Articulated motion segmenta-
tion using RANSAC with priors,” in Workshop on Dy-
namical Vision, 2005.

[56] U. von Luxburg, “A tutorial on spectral clustering,”
Statistics and Computing, vol. 17, 2007.

[57] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona,
D. Kriegman, and S. Belongie, “Beyond pairwise clus-
tering,” in IEEE Conference on Computer Vision and
Pattern Recognition, June 2005, vol. 2, pp. 838–845.

[58] V. Govindu, “A tensor decomposition for geometric
grouping and segmentation,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2005, pp.
1150–1157.

[59] G. Chen and G. Lerman, “Foundations of a multi-way
spectral clustering framework for hybrid linear model-
ing,” Foundations of Computational Mathematics, vol.
9, no. 5, 2009.

[60] G. Chen, S. Atev, and G. Lerman, “Kernel spectral cur-
vature clustering (KSCC),” in Workshop on Dynamical
Vision, 2009.

[61] R. Tron and R. Vidal, “A benchmark for the compari-
son of 3-D motion segmentation algorithms,” in IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2007.

16

[62] F. Lauer and C. Schnörr, “Spectral clustering of linear
subspaces for motion segmentation,” in IEEE Interna-
tional Conference on Computer Vision, 2009.

[63] R. Vidal, “Online clustering of moving hyperplanes,” in
Neural Information Processing Systems, NIPS, 2006.

[64] R. Vidal, Y. Ma, S. Soatto, and S. Sastry, “Two-view
multibody structure from motion,” International Jour-
nal of Computer Vision, vol. 68, no. 1, pp. 7–25, 2006.

[65] R. Vidal and Y. Ma, “A unified algebraic approach to
2-D and 3-D motion segmentation,” Journal of Mathe-
matical Imaging and Vision, vol. 25, no. 3, pp. 403–421,
2006.

[66] R. Vidal and R. Hartley, “Three-view multibody struc-
ture from motion,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 30, no. 2, pp. 214–
227, 2008.

[67] S. Rao, A. Yang, S. Sastry, and Y. Ma, “Robust algebraic
segmentation of mixed rigid-body and planar motions
from two views,” International Journal of Computer
Vision, vol. 88, no. 3, pp. 425–446, 2010.

17

	 The Subspace Clustering Problem
	 Subspace Clustering Algorithms
	 Algebraic Algorithms
	 Iterative Methods
	 Statistical Methods
	 Spectral Clustering-Based Methods

	 Applications in Computer Vision
	 Motion segmentation from feature point trajectories
	 Face clustering under varying illumination

	 Conclusions and future directions
	 Author
	 References

