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*Abstract We introduce a theory of scan statis-

tics on graphs and apply the ideas to the problem

of anomaly detection in a time series of Enron email

graphs.

Introduction. Consider a directed graph (di-
graph) D with vertex set V (D) and arc set A(D)
of directed edges. For instance, we may think
of D as a communications or social network,
where the n = |V (D)| vertices represent people
or computers or more general entities and an
arc (v, w) ∈ A(D) from vertex v to vertex w is
to be interpreted as meaning “the entity repre-
sented by vertex v is in directed communication
with or has a directed relationship with the en-
tity represented by vertex w.” We are interested
in testing the null hypothesis of “homogeneity”
against alternatives suggesting “local subregions
of excessive activity.” Toward this end, we de-
velop and apply a theory of scan statistics on
random graphs.

Scan Statistics. Scan statistics are commonly
used to investigate an instantiation of a ran-
dom field X (a spatial point pattern, perhaps,
or an image of pixel values) for the possible
presence of a local signal. Known in the en-
gineering literature as “moving window analy-
sis”, the idea is to scan a small window over
the data, calculating some local statistic (num-
ber of events for a point pattern, perhaps, or
average pixel value for an image) for each win-
dow. The supremum or maximum of these lo-
cality statistics is known as the scan statistic,
denoted M(X). Under some specified “homo-
geneity” null hypothesis H0 on X (Poisson point
process, perhaps, or Gaussian random field) the
approach entails specification of a critical value
cα such that PH0

[M(X) ≥ cα] = α. If the maxi-

∗

Corresponding author: Carey E. Priebe = <cep@jhu.edu>

†

Johns Hopkins University, Baltimore, MD
‡

IDA Center for Computing Sciences, Bowie, MD
§

NSWC B10, Dahlgren, VA

mum observed locality statistic is larger than or
equal to cα, then the inference can be made that
there exists a nonhomogeneity — a local region
with statistically significant signal.

An intuitive approach to testing these hy-
potheses involves the partitioning of the region
X into disjoint subregions. For cluster detection
in spatial point processes this dates to Fisher’s
1922 “quadrat counts” [0]; see [0]. Absent
prior knowledge of the location and geometry of
potential nonhomogeneities, this approach can
have poor power characteristics.

Analysis of the univariate scan process (d =
1) has been considered by many authors, in-
cluding [0], [0], [0], and [0]. For a few simple
random field models exact p−values are avail-
able; many applications require approximations
to the p−value. The generalization to spatial
scan statistics is considered in [0], [0], [0], and
[0]. As noted by [0], exact results for d = 2 have
proved elusive; approximations to the p−value
based on extreme value theory are in general all
that is available. [0] present an alternative ap-
proach, using importance sampling, to this prob-
lem of p−value approximation.

Scan Statistics on Graphs. The order of the
digraph, n = |V (D)|, is the number of vertices.
The size of the digraph, |A(D)|, is the number
of arcs. For v, w ∈ V (D) the digraph distance
d(v, w) is defined to be the minimum directed
path length from v to w in D.

For non-negative integer k (the scale) and
vertex v ∈ V (D) (the location), consider the
closed kth-order neighborhood of v in D, denoted
Nk[v; D] = {w ∈ V (D) : d(v, w) ≤ k}. We define
the scan region to be the induced subdigraph
thereof, denoted

Ω(Nk[v; D]),

with vertices V (Ω(Nk[v; D])) = Nk[v; D] and arcs
A(Ω(Nk[v; D])) = {(v, w) ∈ A(D) : v, w ∈ Nk[v; D]}.
A locality statistic at location v and scale k
is any specified digraph invariant Ψk(v) of the
scan region Ω(Nk[v; D]). For concreteness con-
sider for instance the size invariant, Ψk(v) =



|A(Ω(Nk[v; D]))|. Notice, however, that any di-
graph invariant (e.g. density, domination num-
ber, etc.) may be employed as the locality
statistic, as dictated by application. The
“scale-specific” scan statistic Mk(D) is given by
some function of the collection of locality statis-
tics {Ψk(v)}v∈V (D); consider for instance the max-
imum locality statistic over all vertices,

Mk(D) = max
v∈V (D)

Ψk(v).

This idea is introduced in [0].
Under a null model for the random digraph

D (for instance, the Erdos-Renyi random di-
graph model) the variation of Ψk(v) can be char-
acterized and Mk(D) large indicates the exis-
tence of an induced subdigraph (scan region)
Ω(Nk[v; D]) with excessive activity. A test can be
constructed for a specific alternative of interest
concerning the structure of the excessive activity
anticipated. However, if the anticipated alterna-
tive is, more generally, some form of “chatter”
in which one (small) subset of vertices communi-
cate amongst themselves (in either a structured
or an unstructured manner) then our scan statis-
tic approach promises more power than other
approaches.

Finally, we wish to consider the scan statistic
which accounts for variable scale. Let K ⊂
{1, · · · , n − 1} be a collection of scales, and let Ψ′

k

be a scale-standardized version of the locality
statistic Ψk. For instance, for given α ∈ (0, 1),
find gk,α(·) such that Ψ′

k(v) = gk,α(Ψk(v)) satisfies
P [Ψ′

k(v) ≥ cα] ≈ α for all v ∈ V (D) and for
all k ∈ K. This standardization imposes upon
each locality statistic the same probability of
exceedance. Then the scan statistic MK(D) is
given by

MK(D) = max
k∈K

max
v∈V (D)

Ψ′

k(v)

and we reject for large values of MK(D).
For the Enron data considered in this paper,

as for much social network data, no appropriate
simple null random graph model is obvious. The
dataset, as we process it, consist of a time series
of digraphs D1, D2, · · · , DT=189. We will proceed
conditionally: we will assume that the data
(or the statistics derived from the data) have
some short-time stationarity properties under
the null, so that a moving window approach
is appropriate. We will be concerned with
discovering anomalies that appear as digraphs

which differ substantially from those seen in the
recent past. In particular, we wish to detect
subdigraphs with an unusually high connectivity,
as measured by our statistic. This conditional
approach alleviates the requirement to posit an
appropriate and simple null graph model — but
does require some (approximate) stationarity.

The Enron Data. The Enron email dataset
is available online [0]. This dataset consists of
a collection of 150 folders corresponding to the
email to and from senior management and oth-
ers at Enron, collected over a period from about
1998 to 2002. The emails have been minimally
processed to correct integrity problems. Some
emails have been deleted, as have all attach-
ments. Thus, while imperfect, this dataset rep-
resents a rich environment in which to perform
text analysis and link analysis. More informa-
tion on this dataset can be found online [0].

One consequence of the processing of these
data is that some of the original email addresses
have been changed. Invalid addresses were
converted to no address@enron.com. In several
cases, individuals have multiple addresses, which
are clearly a result of some post-processing: for
example, Phillip K. Allen has email addresses
phillip.allen@enron.com and k..allen@enron.com. In
this study we will treat such cases as distinct;
one potential goal might be to recognize this
“aliasing” from the link analysis alone, without
reference to the content of the messages. This
will be discussed further in Section 7.1.

Whence Our Enron Graphs? The data are
collected from “about 150 users” — mostly En-
ron executives, but also some energy traders,
executive assistants, etc. However, our graphs
are based on 184 users, which is the number
of unique addresses we obtain from the ‘From’
line of emails in the ‘Sent’ boxes after manu-
ally removing some addresses which are clearly
not associated with the 150 users. (NB: Neither
of the two extreme options — keeping all ad-
dresses, or merging to the point of one-to-one
correspondence between addresses and known
users — seems practical; the former yields too
many obvious aliases and extraneous addresses,
and no simple unassailable version of the latter
presents itself to us. Thus, we proceed with an
admittedly imperfect collection of vertices.) In
addition, some of the time stamps in the original
data are clearly invalid, occurring before Enron
existed, so we restrict our attention to a period
of 189 weeks, from 1998 through 2002.
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Figure 1: Time series of scan statistics and max degree
(Mk,t for k = 0, 1, 2), as well as digraph size, for weekly
Enron email digraphs during a period of 189 weeks from
1998–2002. (See also Figures 8–11.)

For each week t = 1, · · · , 189, there is a digraph
Dt = (V, At) with |V | = 184 vertices and directed
edges (arcs) At, where (v, w) ∈ At ⇐⇒ vertex
v sends at least one e-mail to vertex w during
the t-th week. We make no distinction between
emails sent “To”, “CC” or “BCC”.

Statistics and Time Series. Our
time-dependent scale-k locality statistic is
given by

Ψk,t(v) = |A(Ω(Nk[v; Dt]))|

for k ∈ {1, 2, · · · , K}. In an abuse of notation, we
will let Ψ0,t(v) = outdegree(v; Dt).

Figure 1 shows the three statistics

Mk,t = max
v

Ψk,t(v); k = 0, 1, 2

as well as size(Dt), as functions of time (weeks)
t = 1, · · · , 189 for the 189 weeks under considera-
tion. (Figures 8–11 show these four curves sep-
arately.)

The raw locality statistics Ψk,t(v) are inade-
quate for our purposes. Consider, for instance,
the situation in which one vertex, v, has a lot of
activity throughout time, and another vertex, w,
has but one tenth this amount of activity until

one week in which w triples its activity. Without
some form of vertex-dependent standardization,
the increase in activity for w will go unnoticed,
as v = argmax Ψk,t(v) regardless of w’s increased
activity. Thus the locality statistics Ψk,t(v) must
be standardized using vertex-dependent recent
history.

Our vertex-standardized locality statistic,
for k = 0, 1, 2, is given by

Ψ̃k,t(v) = (Ψk,t(v) − µ̂k,t,τ (v)) / max(σ̂k,t,τ (v), 1)

where

µ̂k,t,τ (v) =
1

τ

t−1∑

t′=t−τ

Ψk,t′(v)

and

σ̂k,t,τ (v) =
1

τ − 1

t−1∑

t′=t−τ

(Ψk,t′(v) − µ̂t,τ (v))2.

That is, we standardize the locality statistic
Ψk,t(v) by a vertex-dependent mean and stan-
dard deviation based on recent history. (The de-

nominator in Ψ̃k,t(v) is forced to be greater than
or equal to one to eliminate fragility due to ver-
tices with little or no variation in activity.)

In Figure 2 we plot the standardized scan
statistics

M̃k,t = max
v

Ψ̃k,t(v)

against t over the 189 weeks. (Figures 12–14
show these three curves separately.)

This approach requires a vertex-dependent
local stationarity assumption. The validity
of a stationarity assumption is obviously sus-
pect over the entire 189 weeks, but short-time
near-stationarity (we use τ = 20) may be reason-
able as a null model.

Anomaly Detection. Given the standardized
scan statistic time series M̃k,t presented in Figure
2, we now consider anomaly detection.

For simplicity, we consider a
temporally-normalized version of M̃k,t,

Sk,t = (M̃k,t − µ̂k,t,`)/ max(σ̂k,t,`, 1),

where µ̂k,t,` and σ̂k,t,` are the running mean and

standard deviation estimates of M̃k,t based on the
most recent ` time steps. (Here we use ` = 20.)
Detections are defined here as weeks for which
M̃k,t achieves a value greater than five standard
deviations above its mean; i.e., times t such that
Sk,t > 5
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Figure 2: Time series of standardized scan statistics and
max degree (M̃k,t for k = 0, 1, 2) for weekly Enron email
digraphs during a period of 189 weeks from 1998–2002.
(See also Figures 12–14.)

Figure 3 depicts S2,t for a 20 week period
from February 2001 through June 2001. We ob-
serve that the second order scan statistic indi-
cates a clear anomaly at t∗ = 132 (maxv Ψ̃2,132(v) is
a seven sigma event) in May 2001. This anomaly
is apparent, in hindsight, in Figure 2.

Inference performed using simple sigmages is
inadequate in this case, of course, because there
is no reason to believe that the distribution of
Sk,t is normal or that Sk,t and Sk,t′ are inde-
pendent. Computational methods such as the
bootstrap would be appropriate. We consider
exceedance probabilities of an extreme value
distribution, the Gumbel, fit via the method
of moments. S2,132 = 7.3; 7.3 standard devia-
tions yields a p−value < 10−10, assuming normal-
ity. While the significance for the detection at
t∗ = 132 is not so drastic under the more rea-
sonable Gumbel model, we nevertheless obtain
an exceedance probability < 10−6, which remains
convincing. Bonferonni analysis suggests that if
the Ψ̃k,t are approximately distributed as a t19
then the detection is significant; however, if the
distribution of the Ψ̃k,t has extraordinarily heavy
tails (e.g., Cauchy) then the α = 0.05 level criti-
cal value may be greater than 7.3. Thus, under
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Figure 3: Sk,t, the temporally-normalized standardized
scan statistics, on zoomed-in time series of Enron e-mail
graphs during a period of 20 weeks in 2001. Top: k = 0;
Middle: k = 1; Bottom: k = 2. This figure shows a
detection (a standardized statistic M̃k,t which achieves
a value greater than 5 standard deviations above its
running mean, or a temporally-normalized standardized
statistic Sk,t in this plot taking a value greater than 5)
at week t∗ = 132 in May 2001 for scale k = 2, but not
for k = 1 or k = 0.
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Figure 4: Plot of the ‘detection’ Enron email graph D132

(sans isolates) for which our scan statistic methodology
detects an anomaly. The center vertex, k..allen, is
v∗ = argmaxv Ψ̃2,132.

a reasonable range of null distributions, the de-
tection at t∗ = 132 is statistically significant.

Figure 4 shows the graph topology, sans
isolates, for our ‘detection’ graph D132. Our
vertex of interest, v∗ = arg maxv Ψ̃2,132(v), is
identified with email address k..allen. Of note
is the fact that arg maxv Ψ0,132(v) = john.lavorato.
That is, the vertex of maximum outdegree
for t∗ = 132 is not the cause of our de-
tection. Furthermore, arg maxv Ψ1,132(v) =
john.lavorato, arg maxv Ψ2,132(v) = richard.shapiro,

argmaxv Ψ̃0,132(v) = richard.shapiro, and

argmaxv Ψ̃1,132(v) = joannie.williamson. Thus
the detection based on v∗ = k..allen is apparent
only when using the standardized second order
scan statistic.

Table 1 gives some relevant numerical values
for the ‘detection’ graph D132.

There is excessive activity among the ele-
ments of the closed 2-neighborhood of our ver-
tex of interest v∗ which is not accounted for by
its outdegree (or its closed 1-neighborhood). In
fact, v∗ communicates, in particular, with other
vertices each of which has high outdegree. This
type of excessive local activity is precisely the

time t∗ 132 (week of May 17, 2001)
size(D132) 267

scale k Mk,132 M̃k,132 Sk,132

0 66 8.3 0.32
1 93 7.8 −0.35
2 172 116.0 7.30
3 219 174.0 5.20

number of isolates 50

Table 1: Details for the ‘detection’ graph D132.

raison d’etre for our scan statistics; our approach
exhibits the ability to detect this anomaly.

Is this detection an event of interest? It
is statistically significant, but the objective of
our scan statistic methodology is to sift through
massive communications data to find potentially
informative events for the purpose of directing
additional, more time consuming investigations.
The ultimate determination of the practical sig-
nificance of this or any detection must be made
on the basis of subsequent analysis. There is
a coinciding insider trading event on the Enron
time line . . . but there are many insider trading
events on the Enron time line! Ideally, one would
hope to find a link between the detected excess
activity and that insider trading. Such a forensic
analysis will require delving into the content of
the email messages and associated meta-data.

Time t∗ = 132 is the only week among the
189 under consideration for which S2,t ≥ 5.
Detections for the other scan statistics — orders
0, 1, and 3 — that may be worth pursuing are
summarized here. For maximum standardized
outdegree, there are three weeks with S0,t ≥ 5:
58, 96, 146; for the standardized first order
scan statistic, we obtain (almost) the same three
detections: 58, 94, 146. The standardized third
order scan statistic produces detections at t∗ =
132 and at week 87.

0.1 Aliasing. In the case of the detection at
t∗ = 132,

v∗ = argmax
v

Ψ̃2,132(v) = k..allen,

perusal of the emails shows that k..allen and
phillip.allen are really the same person. User
k..allen had no activity before t∗ = 132, at which
time phillip.allen switched to the k..allen identi-
fier. Thus we have detected an instance of alias-
ing, which could perhaps have been addressed



during the manual merging stage wherein we set-
tled on the collection of 184 vertices to consider.
Of course, this identification does in fact require
perusal of the emails, which perusal was sug-
gested by the detection . . . precisely the point of
the exercise!

However, it may be possible to automatically
identify such aliasing events. Given the detec-
tion (v∗, t∗) we can immediately identify k..allen
as having had no activity prior to t∗ = 132. From
this point, we may employ a “matched filter”
scheme to determine candidates for aliasing by
matching the pattern of k..allen’s activity at or
after t∗ = 132 against the pattern of other ver-
tices’ activity prior to t∗ = 132. Vertices with
a high score for some matching function will be
deemed likely candidates for further investiga-
tion.

For instance, we may compute, for each
vertex v ∈ V \ {v∗}, the simple score

st∗,κ(v; v∗) =
t∗−1∑

t′=t∗−κ

|N1(v; Dt′) ∩ N1(v
∗; Dt∗)|.

In this case we obtain phillip.allen =
argmaxv st∗,κ(v; v∗). That is, for this simple
case, the aliasing can be automatically identified
and resolved.

This idea of employing matched filters to
time series of graphs, introduced here in a very
simplistic fashion, will be pursued in more detail
elsewhere.

0.2 Another Detection. The detection of v∗ =
argmaxv Ψ̃2,132(v) = k..allen at t∗ = 132, while real
and interesting, is due to the fact that k..allen
had not been active prior to t∗ = 132. We may
be interested, instead, in detections for which
activity increases from a non-zero baseline. That
is, we consider the statistic

Ψ̃k,t(v) · I{µ̂0,t,τ (v) > c},

where I{E} is the indicator function taking value
one if event E occurs and taking value zero
otherwise, which requires there to have been
some recent activity.

For c = 1, one such detection of this type, for
which the order k = 2 scan statistic detects but
the order k = 0 and k = 1 scan statistics do not
detect, is v∗ = rod.hayslett at t∗ = 152 (the week
of October 4, 2001).

Table 2 gives the scan statistics for this
detection for the weeks up to and including t∗.

Here we see clearly the increase in activity, and
we see that it is not due to order 0 or order 1
locality statistics. (N.B. It does appear that a
detection at t∗ − 2 may be appropriate.)

scale k Ψk,t∗−5:t∗(v
∗)

0 [ 1 , 2 , 1 , 3 , 1 , 2]
1 [ 1 , 2 , 2 , 9 , 2 , 4]
2 [ 1 , 2 , 2 , 19 , 4 , 175]
3 [ 1 , 2 , 2 , 58 , 6 , 268]

Table 2: Locality statistics Ψk,t(v
∗ = rod.hayslett)

for the time range {t∗ − 5, · · · , t∗} leading up to the
v∗ = rod.hayslett detection at t∗ = 152.

However, further investigation indicates that
this detection is due to the fact that rod.hayslett
communicates with sally.beck, and sally.beck is an
order 0 locality statistic detection at t∗ = 152 due
to a massive increase in outdegree (see Table 3).

scale k Ψk,t∗−5:t∗(v)

0 [ 3 , 2 , 0 , 2 , 3 , 62]
1 [ 3 , 3 , 0 , 3 , 6 , 154]
2 [ 4 , 3 , 0 , 37 , 11 , 229]
3 [ 4 , 3 , 0 , 98 , 16 , 267]

Table 3: Locality statistics Ψk,t(v = sally.beck) for
the time range {t∗ − 5, · · · , t∗} leading up to the v∗ =
rod.hayslett detection at t∗ = 152.

Thus, in some sense, neither the k..allen
/ phillip.allen detection at t∗ = 132 nor the
rod.hayslett / sally.beck detection at t∗ = 152 is
really due to the type of excessive “chatter” in
which we are most interested.

0.3 Detecting Chatter. For each time t and
vertex v, consider the order 2 statistic

Ψ̃′

t(v) =
(
Ψ̃2,t(v) · It,τ (v)

)
/ max(γt(v), 1).

Here the term It,τ (v) is the product of three
indicator functions,

I{µ̂0,t,τ > c1},

I{Ψ0(v) < σ̂0,t,τ (v)c2 + µ̂0,t,τ (v)},

and
I{Ψ1(v) < σ̂1,t,τ (v)c3 + µ̂1,t,τ (v)}.

That is, we gate the second order scan statistic
so that some minimal level of recent activity is
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Figure 5: Plot of order 2 statistics M̃ ′

t and S′

t showing
the maximum at t∗ = 109 in December 2000. This is
the steven.kean “excessive chatter” detection.

required, and we insist that the order 0 and
order 1 scan statistics do not yield detections.
In this way we narrow the class of alternatives
under consideration — the types of anomalous
activities that will be deemed detections; we seek
a detection in which the excess activity is due
to chatter amongst the 2-neighbors. We include
an “inhomogeneity penalty” γt(v), the standard
deviation of the outdegrees of the neighbors
N1(v

∗; Dt∗), in the denominator of Ψ̃′

t(v) to further
narrow our search to the case of “balanced
chatter” (and to rule out events such as the
rod.hayslett / sally.beck detection at t∗ = 152).

The argmax(v,t) Ψ̃′

t(v) is given by (v∗, t∗) =
(steven.kean, 109). (The value of t∗ = 109 corre-
sponds to the week of December 7, 2000.) Fig-

ure 5 displays M̃ ′

t = maxv Ψ̃′

t(v) as well as the
temporally-normalized version S ′

t.
The raw locality statistics Ψk,t(v

∗) for the
time range {t∗ − 5, · · · , t∗} leading up to this
detection are given in Table 4. As can be seen
from Table 4, the raw locality statistics for k = 0
and k = 1 do not have a substantial signal at
t∗ = 109, while for k = 2 the presence of an
anomaly is clear.

The inhomogeneity penalty for this detection

scale k Ψk,t∗−5:t∗(v
∗)

0 [ 3 , 5 , 4 , 5 , 4 , 5]
1 [11 , 13 , 10 , 10 , 11 , 18]
2 [14 , 35 , 21 , 38 , 13 , 65]

Table 4: Locality statistics Ψk,t(v
∗) for the time range

{t∗− 5, · · · , t∗} leading up to the steven.kean detection
at t∗ = 109.

is γt∗(v
∗) ≈ 1.7; the outdegrees of the five neigh-

bors of v∗ = steven.kean are 6,6,6,7,10.
The induced subdigraph at t∗ = 109,

Ω(N2[v
∗; Dt∗ ]), is depicted in Figure 6. We see

that v∗ = steven.kean has five neighbors, each
of which has outdegree between six and ten.
That is, this detection is due to v∗ communi-
cating with a moderate subset of vertices, each
of whom communicates with another moderate
subset. Comparing this graph with steven.kean’s
induced subdigraph Ω(N2[v

∗; Dt∗−1]) at t∗−1 = 108
(black arcs and associated vertices in Figure 7)
gives a clear, albeit simplistic, indication that
change has occurred. Figure 7 gives additional
information regarding this change, depicting the
subdigraph induced at t∗−1 = 108 by the union of
steven.kean’s 2-neighborhood at t∗ − 1 = 108 and
steven.kean’s 2-neighborhood at t∗ = 109. The
arcs corresponding to communications between
members of steven.kean’s closed 2-neighborhood
at t∗ − 1 = 108 are depicted in black; gray arcs
represent other communications in D108 between
vertices in steven.kean’s 2-neighborhood at t∗ =
109. Figure 7 shows that this detection is not
the result of a simple increase in the size of v∗’s
neighborhood, but that the vertices in the neigh-
borhood at t∗, while active at t∗−1, have also in-
creased their activity. Thus, the detection is not
due solely to v∗ joining a larger group; in addi-
tion, the group itself is more active as well. We
interpret this figure as suggesting that this de-
tection is robust — insensitive to small changes
in the graph.

Discussion. A theory of scan statistics on
graphs offers promise for detecting anomalies in
time series of graphs.

We have employed perhaps overly-simplistic
time series and inference methods, for purposes
of illustration; more elaborate methods such as
exponential smoothing, detrending, and vari-
ance stabilization may be appropriate. In ad-
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Figure 6: Plot of the ‘detection’ Enron email graph
Ω(N2[v

∗ = steven.kean; Dt∗=109]).

dition, multivariate time series (one time series
for each vertex v, in this case) have a theory all
their own — e.g., vector autoregressive models
— which we have ignored here. And, of course,
for data such as this Enron corpus, robust ver-
sions of moment estimates we have employed are
called for.

Nevertheless, despite our simplistic approach
to these various issues, we have demonstrated
the potential utility of the scan statistic ap-
proach to the problem of anomaly detection in
a time series of Enron email graphs. Much re-
mains to be done — mathematically, computa-
tionally, and with respect to data and meta-data
analysis. Of particular interest is the exten-
sion of these scan statistics to weighted graphs
(and hypergraphs), allowing for the detection of
anomalies related to the number (and possibly
type) of messages sent, as opposed to the sim-
pler case considered herein.

Noteworthy as a closing fact is that the
procedures introduced herein can all be per-
formed in a real-time, streaming data environ-
ment. That is, a sliding one-week window, rather
than disjoint one-week windows, can be utilized
and nothing presented herein causes a common
laptop computer difficulty in keeping up. Thus,
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Figure 7: An induced subgraph of D108. Black arcs
and associated vertices represent steven.kean’s induced
subdigraph Ω(N2[v

∗; Dt∗−1]) at t∗ − 1 = 108. Gray
arcs represent other communications in D108 between
vertices in steven.kean’s 2-neighborhood at t∗ = 109.
Comparing this figure with Figure 6 provides informa-
tion regarding the change from t∗− 1 = 108 to t∗ = 109
for the (v∗ = steven.kean, t∗ = 109) detection.



these procedures can be applied in scenarios of
on-line analysis, in addition to the forensic sce-
nario offered by this Enron corpus.
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Figure 8: Time series of digraph size for weekly Enron
email digraphs during a period of 189 weeks from
1998–2002. (See also Figure 1.)
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Figure 9: Time series of scan statistic M0,t (max degree)
for weekly Enron email digraphs during a period of 189
weeks from 1998–2002. (See also Figure 1.)
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Figure 10: Time series of scan statistic M1,t for weekly
Enron email digraphs during a period of 189 weeks from
1998–2002. (See also Figure 1.)
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Figure 11: Time series of scan statistic M2,t for weekly
Enron email digraphs during a period of 189 weeks from
1998–2002. (See also Figure 1.)
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Figure 12: Time series of standardized scan statistic
M̃0,t for weekly Enron email digraphs during a period
of 189 weeks from 1998–2002. (See also Figure 2.)
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Figure 13: Time series of standardized scan statistic
M̃1,t for weekly Enron email digraphs during a period
of 189 weeks from 1998–2002. (See also Figure 2.)
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Figure 14: Time series of standardized scan statistic
M̃2,t for weekly Enron email digraphs during a period
of 189 weeks from 1998–2002. (See also Figure 2.)


