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Introduction

Problem:

Objective:

Hypotheses:

Time series of graphs are becoming more and more
common, e.g., communication graphs, social
networks, etc., and methods for statistical inferences
are required.

To develope and apply a theory of scan statistics on
graphs and hypergraphs to perform change point /
anomaly detection in graphs and in time series
thereof.

Hy: homogeneity

H,: local subregion of excessive activity
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Scan Statistics
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“moving window analysis” [1992 R.A. Fisher, 1965 J. Naus]:
to scan a small “window” (scan region) over data,
calculating some locality statistic for each window;
eg.,
e number of events for a point pattern,
e average pixel value for an image,

e number of email messages, ...

scan statistic = maximum of locality statistic:

If maximum of observed locality statistics is large,

then the inference can be made that

there exists a subregion of excessive activity — detection!
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directed graph (digraph): D = (V,A)

order: |V(D)|
size: |A(D))]
neighborhood: k" order neighborhood of v:
Nilo; D] ={w € V(D) : d(v,w) < k}
scan region: (example: induced subdigraph): Q(N[v; D])
locality statistic: (example: size): Wi (v) = |A(Q(Nilv; DI))|
scan statistic: (“scale specific’) My(D) = maxycy(p) Yk(v)
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The simplest and most common type of random graph is the
Erdos-Renyi random graph [Bollobas02]:

e Given a probability p
e Place an edge v;v; between vertices v; and v; with probability

p-

¥ Bollobas, B.,
Random Graphs, 2nd ed.,
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e A social network is a set of vertices corresponding to “actors”
(individual entities) and edges representing relationships.

e Out intuition is that actors with similar interests should be
related: In some sense, the probability of an edge should be
proportional to the amount of overlap of interests. (e.g.,
religion, education, sports, ...)
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[Scheinerman07]:
Each vertex v; has associated with it a vector x;.

Place an edge v;v; between vertices v; and v; with probability
proportional to x;x;, the dot product of x; and x;.

Thus pjj =f(x;, x;). e.g., identity function.

The edges in the random graph are no longer independent.

Further, this can be interpreted in the manner of our social
network motivation.

¥ Ed Scheinerman and Kimberly Tucker,
Modeling graphs using dot product representations,
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Let {Di} t=1,..., tmax be a time series of directed graphs.

Scan region: induced subgraph of k-neighborhood:
Q(Ng(v; D).

Locality statistic: Wi ;(v) = size(Q(Ng(v; Dt))).
Scan statistic: My ; = max, (W ¢(0)).
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Energy company famous for “creating accounting” measures
to boost stock value.

Email sent and received between executives at Enron over a
period of about 4 years (189 weeks).

125,409 distinct messages from 150 executives (184 email
addresses — some duplication).

From-To pairs extracted from the headers of the email to
construct a communications graph:

Each graph covers one week (non-overlapping).

Vertices correspond to email addresses.

An edge between u and v if v sent an email with v in the To,
CC, or BCC field during the week.

Duplicates not counted.
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Vertex Standardization
e We want to standardize the vertices (“loud” vertices don't
drown out “quiet” ones).
e Let T be an integer (temporal window).

o Vertex-dependent standardized locality statistic:

~ _ Wet(0) = He g1 (0)
Hil0) = X Brea(0), 1)

° ﬁktw(v): 1Zt’ = Tq’kt/( )
° G%m 0) 1Zt' t o (Wgr(0) = iy 1. (0))?

e standardized scan statistic: Mk,t = maxvqlk’t(v).
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Normalizing the Scan Statistic

e If we want to detect anomalies, we need to detrend.

e temporally-normalized scan statistics:

Mt — g re

Skt = max(0y g, 1)

where 1 ; o and 0y, are the running mean and standard
deviation of My ; based on the most recent { time steps.

e detection: time ¢ such that Sp; > 5
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Details for the ‘detection’ graph D13,

time t* 132 (week of May 17, 2001)
size(D13p) 267
‘ scale k ‘ M 132 ‘ M 132 ‘ Sk132 ‘
0 66 8.3 0.32
1 93 7.8 —0.35
2 172 | 116.0 7.30
3 219 | 174.0 5.20

‘ number of isolates ‘ 50 ‘




A detection graph
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vt = argmaxv‘?z,lg,z(v) =k..allen
k..allen == phillip.allen?

e k..allen had no activity before t* = 132.
e At t* =132, phillip.allen switched to k. .allen.

Matched Filter:
e For each vertex v € V' \ {v*},
1
st (0;0%) = D IN1(0; D) NNy (0*; Dy )|

t=t*—x

Is this a detection we want?
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e Non-zero activity: q’k,t(v) -HHo ¢ ~(v) > c}
e Forc =1, v* =roy.hayslett at t* = 152.

| scale k | W 5. (0F)
0 1,2,1,3,1,2
1 1,2,2,9,2,4
2 1,2,2,19,4,175
3 1,2,2,58,6, 268
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e roy.hayslett communicates with sally.beck, who is a
k = 0 detection!

‘scalek‘ Y g5 (0) ‘
0 [3,2,0,2,3,62]
1 [3,3,0,3,6, 154]
2 [4,3,0,37,11, 229]
3 [4,3,0,98, 16, 267]
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e Seek a detection in which the excess activity is due to chatter
amongst the 2-neighbors!

¥(0) = (¥24(0) - 91(0)) / max(yi(0), 1)

Ji(v) =1 x I x I3
I =g ¢« > 1},
I =I{¥(v) < T t,(v)c2 + Ho 1, (V)]
I3 =I{¥1(v) < ©014<(v)c3 + H1,1,2(0)}.
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o (v*,t*) = (steven.kean, 109)

| scale k | Wy pe_gupe (07)

0 [3,5,4,5,4, 5|

1 [11, 13,10, 10, 11, 18]

2 | [14,35,21,38, 13,69
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Hypergraphs
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o A graph in which generalized edges (called hyperedges) may
connect more than two vertices.
= better suited to email data than a graph!

e A hypergraph H = (V, £) consists of a set of vertices
V ={vq,---,v,} and a set of hyperedges & ={eq, -, em},
withe; 2@ and ¢; CV fori=1,--- ,m [Berged9].

@ C. Berge,
Hypergraphs: Combinatorics of Finite Sets,
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Hypergraphs
900

hypergraph: H = (V, €)

order: order(H) = |V| =n,
size: size(H) = |E] = m,
neighborhood: (1%t-order) Ny (v, H) = Upee, eice €is
neighborhood: (k-order) N (v, H) = Uven,_,(o,1) N1(v, H) for
k>2,
induced subgraph: Q(N(v,H)), where & ={e; € € : ¢; C Ny},

48

63



Hypergraphs
(o] [0}

hypergraph: H = (V, €)

locality statistic: Wi (v, H) = size(Q(Ny (v, H))), for k > 1,

scan statistic: (“scale-specific”) My(H) = max,cy () Yk (v, H).

locality statistic: (vertex-dependent standardized)

Yy (v, H) — T 1. (0)
max (0 s (v),1)

Wi i(0, H) =

scan statistic: (standardized) ]\N/Ik’t(H) = maxU‘T’k’t(v,H).
scan statistic: (temporally-normalized)
My (H) — s 0

Spplal) = max(Gy s, 1)
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Detection by raw scan statistics
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Figure: Time series scan statistics for weekly Enron email graphs.



Detection by raw scan statistics
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Detection by normalized scan statistics
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Detection by normalized scan statistics
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Comparison of scan statistics
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Comparison of scan statistics
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Conclusions & Discussions

Scan Statistics offers promise for detecting anomalies
in time series of graphs and hypergraphs.

Weighted /Directed Hypergraph
Content Analysis
Real-time Data (streaming graphs)

http://www.cis. jhu.edu/~parky/Enron
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Appendix

e A hypergraph HP = (V, A) consists of a set of vertices
V ={vq,--- ,v,} and a set of directed hyperedges
A={e, - ,eu}l, withe; A0 ande, CVfori=1,--- m.

e A directed hyperedge or hyperarc is an ordered pair,
e; = (T, H), of disjoint subsets of vertices; T is the tail while
H is the head of e;.

e Incidence matrix of HP is a n x m matrix [ai]']:

1 if 0; € T(e]-),
ajj = -1 ify e H(ej),

0 otherwise.



Incidence Matrix
€1 € €3 €4 65 6

|1 1 0 0 0 1
»u|0 0 -1 -1 0 0
-1 0 1 0 1 -1
o]0 -1 0 1 -1 -1

e size(HP) = |A| = 6,

e Yy(v, HP) = outdegrees =
{# of I's} = {3, 0, 2, 1},

e Y(v,HP) = |Q(Ni(v, HP))|
for k > 0.
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