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Outline

Scan Statistics on Graphs, and on Time Series thereof
Scan Statistics on Enron Graphs
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Introduction

Objective: to develop and apply a theory of scan statistics on
random graphs to perform change point / anomaly detection
in graphs and in time series thereof.
Hypotheses:

H0: homogeneity
HA: local subregion of excessive activity
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Scan Statistics

“moving window analysis”:
to scan a small “window” (scan region) over data,
calculating some locality statistic for each window;
e.g.,
• number of events for a point pattern,
• average pixel value for an image,
• ...
scan statistic ≡ maximum of locality statistic:
If maximum of observed locality statistics is large,
then the inference can be made that
there exists a subregion of excessive activity.

Scan Statistics on Enron Graphs – p.5/46



< > - +

Scan Statistics on Graphs

directed graph (digraph): D = (V, A)

order: |V (D)|

size: |A(D)|

k-th order neighborhood of v:
Nk[v; D] = {w ∈ V (D) : d(v, w) ≤ k}

scan region (example: induced subdigraph): Ω(Nk[v; D])

locality statistic (example: size): Ψk(v) = |A(Ω(Nk[v; D]))|

“scale-specific” scan statistic: Mk(D) = maxv∈V (D) Ψk(v)
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HA1
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Figure 1: Alternative random graph hypothesis HA1
.
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Monte Carlo SimulationH0
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Gumbel Conjecture
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Example: H0

size = 26, scan0 = 5, scan1 = 5, scan2 = 11.
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Example: HA1

size = 32, scan0 = 5, scan1 = 7, scan2 = 11.
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Example: Monte Carlo Simulation H0 vs HA1H0

unrandomized size = 0.044
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HA2

consider now a structured alternative . . .
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Example: HA2

size = 34, scan0 = 5, scan1 = 5, scan2 = 17.

Scan Statistics on Enron Graphs – p.14/46



< > - +

Example: HA2

size = 34, scan0 = 5, scan1 = 5, scan2 = 17.
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Example: Monte Carlo Simulation H0 vs HA2H0
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Time Series
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Time Series
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Time Series
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Enron
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Enron Data

125,409 distinct messages from 184 unique “From” field,
mostly Enron executives.
189 weeks, from 1988 through 2002.
directed edges (arcs) At = {(v, w): vertex v sends at least one
email to vertex w during the t-th week (“To”, “CC”, or “BCC”)}
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Statistics and Time Series

scale-k locality statistics: Ψk,t(v) = |A(Ω(Nk[v; Dt]))|

k = 0 : Ψ0,t(v) = outdegree(v; Dt).
scan statistic: Mk,t = maxv Ψk,t(v); k = 0, 1, 2

vertex-dependent standardized locality statistic:
Ψ̃k,t(v) = (Ψk,t(v) − µ̂k,t,τ (v)) / max(σ̂k,t,τ (v), 1)

µ̂k,t,τ (v) = 1
τ

∑t−1
t′=t−τ Ψk,t′(v)

σ̂2
k,t,τ (v) = 1

τ−1

∑t−1
t′=t−τ (Ψk,t′(v) − µ̂k,t,τ (v))2

standardized scan statistic: M̃k,t = maxv Ψ̃k,t(v)
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Statistics and Time Series
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Anomaly Detection

temporally-normalized scan
statistics: Sk,t =

(M̃k,t − µ̃k,t,`)/ max(σ̃k,t,`, 1)

detection: time t such that
Sk,t > 5

t∗ = 132 (May, 2001)
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Detection Graph D132
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Detection Graph D132

Details for the ‘detection’ graph D132

time t∗ 132 (week of May 17, 2001)
size(D132) 267

scale k Mk,132 M̃k,132 Sk,132

0 66 8.3 0.32

1 93 7.8 −0.35

2 172 116.0 7.30

3 219 174.0 5.20

number of isolates 50
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Anomaly Detection (Aliasing)

v∗ = arg maxv Ψ̃2,132(v) = k..allen

k..allen == phillip.allen?
k..allen had no activity before t∗ = 132.
At t∗ = 132, phillip.allen switched to k..allen.

Matched Filter:
For each vertex v ∈ V \ {v∗},

st∗,κ(v; v∗) =

t∗−1∑

t′=t∗−κ

|N1(v; Dt′) ∩ N1(v
∗; Dt∗)|

Is this a detection we want?
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New York Times (May 22, 2005)
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New York Times (May 22, 2005)
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Enron Timeline
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Anomaly Detection (another )

Non-zero activity: Ψ̃k,t(v) · I{µ̂0,t,τ (v) > c}

For c = 1, v∗ = roy.hayslett at t∗ = 152.

scale k Ψk,t∗−5:t∗(v
∗)

0 [ 1 , 2 , 1 , 3 , 1 , 2]
1 [ 1 , 2 , 2 , 9 , 2 , 4]
2 [ 1 , 2 , 2 , 19 , 4 , 175]
3 [ 1 , 2 , 2 , 58 , 6 , 268]

Scan Statistics on Enron Graphs – p.31/46



< > - +

Anomaly Detection (another )

roy.hayslett communicates with sally.beck , who is a k = 0

detection!

scale k Ψk,t∗−5:t∗(v)

0 [ 3 , 2 , 0 , 2 , 3 , 62]
1 [ 3 , 3 , 0 , 3 , 6 , 154]
2 [ 4 , 3 , 0 , 37 , 11 , 229]
3 [ 4 , 3 , 0 , 98 , 16 , 267]
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Anomaly Detection (chatter )

Seek a detection in which the excess activity is due to chatter
amongst the 2-neighbors!

Ψ̃′

t(v) =
(
Ψ̃2,t(v) · It,τ (v)

)
/ max(γt(v), 1)

It,τ (v) =I1 × I2 × I3

I1 =I{µ̂0,t,τ > c1},

I2 =I{Ψ0(v) < σ̂0,t,τ (v)c2 + µ̂0,t,τ (v)},

I3 =I{Ψ1(v) < σ̂1,t,τ (v)c3 + µ̂1,t,τ (v)}.
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Anomaly Detection (chatter )
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Anomaly Detection (chatter )

(v∗, t∗) = (steven.kean, 109)

scale k Ψk,t∗−5:t∗(v
∗)

0 [ 3 , 5 , 4 , 5 , 4 , 5]
1 [11 , 13 , 10 , 10 , 11 , 18]
2 [14 , 35 , 21 , 38 , 13 , 65]
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Anomaly Detection (chatter )
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Anomaly Detection (chatter )
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What were they saying?

Text Data for Week 109 Detection
1092 transactions among 22 users
343 files
91 unique messages
Counts and Subject Lines:
9
5 Analysis of Joskow / Hogan Papers
4 FERC Request
3 Data on Monthly Generation for SCE
3 Draft Talking points about California Gas market
3 EnronOnline question
3 Presentations from GA Meeting on December 8
2 California Price Issues
2 Conectiv / Delmarva
2 Davis, Hoecker and Richardson
2 FYI-Edison wants Reregulation
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Clustering Based on Content

Find emails with similar content based on terms that occurs.
Terms: space-delimited string of characters from {a, b, c, · · · , z},
after text is lower cased and all other characters and stop words
are removed.
Need to restrict our attention to (signature terms).

terms that occur more often then expected.
based on mutual information.
Dunning 1993, Hovy & Lin 2000.
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Example Message
Subject: Re: Analysis of Joskow / Hogan Papers
Sounds very good.
Might be useful to get a "reputable" economist to write a paper that 1)
describes traditional means for defining, identifying and mitigating
market power, 2) compares those with the "new" means folks are
coming up with these days, and 3) comments on the "split" in the
academic community over the issues.
When Steve Kean and I discussed the notion initially, thought it might
be a good idea to gently "pile on" to the public discussion with the goal
of making clear 1) just how complex this issue is and 2) how important
it will be to have a thorough analysis (say, about 12+ months worth?)
before rushing to judgment on anything Joskow might allege in his
paper. Thoughts?
Best, Jeff
Signature Terms: analysis, california, com, economists, enron, hogan,
joskow, kahn, market, na, paper, power
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Simple Clustering

Preprocessing: remove any line with 2 or more @’s
Compute signature terms for each message.
Form an n × d matrix F , where
F (i, j) = number of sigterm i occurs in doc j.

Calculate R = corrcoef(F ) and P = d × d matrix of p-values for R.
Form a graph G(P < τ), that is, two documents are connected if
there is a significant overlap in their signature terms!
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Sample Clusters
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Your mother is near?

Subject: Organizational Changes
———————- Forwarded by Richard Shapiro/NA/Enron on 12/08/2000=
Subject: Re: Analysis of Joskow / Hogan Papers
Having read the Hogan paper, I think that the "academic" community is ...
paper by three prominent economists done for San Diego Gas and Electric. The ...
paper by John D. Chandley, Scott M. Harvey, and William W. Hogan argues that
Subject: Hogan-California Market Power
FYI. Not sure if you had seen this. Hogan makes many of the arguments about
Subject: Re: Draft Talking points about California Gas market
Given the way the numbers came out, I guess we don’t need the talking points,
Subject: Re: FERC Request
Drew is okay with this. I will email the list to FERC.
Subject: Update on FERC California Gas/Electric Matters
into the California market last summer....
Various Enron units continue to receive informal data requests from FERC ...
staff regarding current California gas/electric
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Related News Item

January 13, 2001 Leading economists Paul Jaskow and Edward Kahn conclude that
high wholesale prices observed in summer 2000 [in California] cannot be explained as
the natural outcome of ‘market fundamentals in competitive markets since there is a very
significant gap between actual market prices and competitive benchmark prices.
(Source: CATO Policy Analysis)

http://cantwell.senate.gov/news/releases/2002_04_18_consumer.html
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Discussion

scan statistics offers promise for
detecting anomalies in time series of graphs.
extensions:
• weighted graphs (# of messages)
• coloured hypergraphs (“To”, “CC”, or “BCC”)
• sliding window (online analysis)
• exponential smoothing, detrending, variance stabilization
• ...
“Content and Scan Statistics for Enron” — John Conroy, et al.
“Random Dot Product Graphs” — Ed Scheinerman, et al.
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Kronecker Quote

“The wealth of your practical experience
with sane and interesting problems

will give to mathematics
a new direction and a new impetus.”

– Leopold Kronecker to Hermann von Helmholtz –
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