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Introduction to LLM Context

LLM Prompt Engineering

Three optimization methods that enterprises can use to get more value out
of large language models (LLMs)

▶ Prompt engineering

▶ Fine-tuning

▶ Retrieval augmented generation (RAG)

Instructed Prompt Augmentation

prompt = f”””
Give a precise answer to the question based on the context.
CONTEXT: {augmentation}
QUESTION: Describe R.A. Fisher in exactly one sentence.
ANSWER:

”””
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Introduction to LLM Context

LLM Setting

Consider a random function f as a pre-trained LLM.

Consider models {fi}, i ∈ [n], where fi is the one with augmentation augi ,
s.t. fi (qj) = f (qj ; augi ).

Consider queries {qj}, j ∈ [m].

Consider replicates {fi (qj)k}, k ∈ [r ].

Let g be a deterministic embedding function that maps model responses
fi (qj)k to Rp.

Then the embedded response of model i to query j for replicate k is given
by xijk := g(fi (qj)k) ∼iid Fij on Rp.
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Introduction to LLM Context

LLM Setting

Let Xi be the m × p matrix whose jth row (Xi )j is the mean over
replicates of the ith model’s response to the jth query. As r → ∞,

(Xi )j :=
1

r

r∑
k=1

xijk →P EFij
[xijk ] =: (µi )j ,

where (µi )j refers to the jth row of the m × p matrix µi .

Let D be the n × n pairwise distance matrix with entries

Dii ′ :=
1√
m
∥Xi − Xi ′∥F →P 1√

m
∥µi − µi ′∥F =: ∆ii ′ ,

as r → ∞ by Slutsky’s theorem and continuous mapping theorem.
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Representing LLMs as a Mixture of Gaussian

Data Kernel Perspective Space (DKPS)

Classical multidimensional scaling (CMDS) applied to ∆ does:

1 Compute the matrix

B = −1

2
(I− 11⊤

n
)∆(2)(I− 11⊤

n
),

where ∆(2) is obtained by element-wise squaring entries of ∆.

2 Extract the d1 largest positive eigenvalues s1, . . . , sd1 of B and the
corresponding eigenvectors u1, . . . ,ud1 .

3 Let Ψ = UBSB
1/2, where UB = (u1, . . . ,ud1) is a n × d1 matrix and

SB
1/2 = diag(s

1/2
1 , . . . , s

1/2
d1

) is a diagonal d1 × d1 matrix.

Each row of Ψ represents the coordinate of a point in the data kernel
perspective space, s.t. ∥Ψi −Ψi ′∥2 ≈ ∆ii ′ .

Similarly, CMDS(D) gives Ψ̂ ∈ Rn×d1 with ∥Ψ̂i − Ψ̂i ′∥2 ≈ Dii ′ .
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Representing LLMs as a Mixture of Gaussian

GMM in DKPS

Theorem

Denote rk(B) = d. It follows that there exist fixed z1, . . . , zn ∈ Rd

s.t. ∆ii ′ = ∥zi − zi ′∥2.
Assume ẑi = zi + ξi , where ξi ∈ Rd is a subgaussian vector with Orlicz
norm σ. We observe D where Dii ′ = ∥ẑi − ẑi ′∥2.
Let Ψ̂ be the d1-dimensional (d1 ≪ d) CMDS results of the noisily
observed distance matrix D. There exist a sequence of d1 × d1 orthogonal
matrices {W(n)}∞n=1 such that for any α ∈ Rd1 and any fixed i ,

P
(√

n
(
W(n)Ψ̂i −Ψi

)
≤ α

)
→ Φ(α,Σ∗

i ), n → ∞,

where Φ(α,Σ∗
i ) is the CDF function of a multivariate Gaussian

distribution with mean 0 and covariance Σ∗
i ∈ Rd1×d1 , evaluated at α.
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Representing LLMs as a Mixture of Gaussian

GMM in DKPS

Corollary

Assume that the augmentations come from a mixture of components,
{augi} ∼iid

∑C
c=1 πcAc , i ∈ [n].

By the Theorem above, we can represent a collection of LLMs as a
mixture of Gaussian in the data kernel perspective space, as r , n → ∞.
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LLM Experiment

LLM Experiment: Augmentations

Examples of augmentations (from ChatGPT)

Statistics
▶ The Wilcoxon rank-sum test is a non-parametric test used to compare two

independent samples.

▶ The mean is calculated by adding all numbers in a dataset and dividing by
the number of elements.

Eugenics
▶ Eugenics is the study of improving the genetic quality of the human

population through selective breeding.

▶ The eugenics movement gained significant traction in the early 20th century
in both the United States and Europe.

Fruits
▶ Apples are a great source of fiber and vitamin C.

▶ Bananas are rich in potassium and can give you an energy boost.
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LLM Experiment

LLM Experiment: Fixed Augmentation
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Figure: We generate n = 300 fixed augmentation sentences consisting of 100 fixed
repetitions from each component of statistics, eugenics, and fruits. Using a single
query (“Describe R.A. Fisher in exactly one sentence.”), we evaluate responses
from f = Meta-Llama2-7B-chat with r = 25 Monte Carlo replications, embedding
the collection using g = LlamaCPP. The Gaussian mixture is apparent with
p-values from Henze-Zirkler’s test 0.2427 (yes), 0.7604 (yes), and 0.9669 (yes).
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LLM Experiment

LLM Experiment: Random Augmentation
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Figure: We generate n = 300 random augmentations from a three component
mixture of statistics (100), eugenics (100), and fruits (100). Using a single query
(“Describe R.A. Fisher in exactly one sentence.”), we evaluate responses from
f = Meta-Llama2-7B-chat with r = 25 Monte Carlo replications, embedding the
collection using g = LlamaCPP. The Gaussian mixture is apparent with p-values
from Henze-Zirkler’s test being 0.1722 (yes), <0.0001 (no), and 0.3990 (yes).
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Discussion

Discussion

Future work

▶ Generalize the dissimilarity measure Dii ′ = ∥Xi − Xi ′∥F/
√
m, such as

trying a different norm or considering measures based on empirical
CDFs.

▶ Generalize to different types of error model and possibly incorporate
the phenomenon of missing data.

▶ Extend to the semiparametric case generalizing the augmentation
distribution.
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LLM Experiment I
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Figure: Scree plot of eigenvalues of B.



LLM Experiment II
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Figure: Scree plot of eigenvalues of B.



Proof Sketch I

By definition, B = −J∆(2)J/2 = JZZ⊤J and B̂ = −JD(2)J/2 = JẐẐ⊤J.
Consider the singular value decomposition JZ = U1Λ1V⊤

1 +U2Λ2V⊤
2 , for

U1 = UB ∈ Rn×d1 , U2 ∈ Rn×d2 , Λ1 = SB
1/2 ∈ Rd1×d1 , Λ2 ∈ Rd2×d2 .

V1 ∈ Od×d1 , V2 ∈ Od×d2 such that Ψ = JZV1. Similarly,
JẐ = Û1Λ̂1V̂⊤

1 + Û2Λ̂2V̂⊤
2 , for Û1 = UB̂ ∈ Rn×d1 , Û2 ∈ Rn×d2 ,

Λ̂1 = S
1/2

B̂
∈ Rd1×d1 , Λ̂2 ∈ Rd2×d2 , V̂1 ∈ Od×d1 , V̂2 ∈ Od×d2 , such that

Ψ̂ = JẐV̂1. Assume that Ẑ = Z+ Ξ, where Ξ ∈ Rn×d . So,
JẐ = JZ+ JΞ, which is equivalent to that

Û1Λ̂1V̂
⊤
1 + Û2Λ̂2V̂

⊤
2 = U1Λ1V

⊤
1 +U2Λ2V

⊤
2 + JΞ

Multiplying V1 on both sides,

Û1Λ̂1V̂
⊤
1 V1 + Û2Λ̂2V̂

⊤
2 V1 = U1Λ1 + JΞV1



Proof Sketch II

That is,

Ψ̂V̂⊤
1 V1 + Û2Λ̂2V̂

⊤
2 V1 = Ψ+ JΞV1

Let W
(1)
V = argminW∈Od1

∥V̂⊤
1 V1 −W∥F. Let V̂⊤

1 V1 = W1ΛW⊤
2 be the

singular value decomposition, where W1,W2 ∈ Od1 , and
Λ = diag(σ1, . . . , σd1) with σi = cos(θi ) where θi is the principal angles

between subspace spanned by V1 and V̂1. Then, W
(1)
V = W1W⊤

2 .



Proof Sketch III

Similarly, let W
(1)
U = argminW∈Od1

∥Û⊤
1 U1 −W∥F, and let

W
(2)
V = argminW∈Od2

∥V̂⊤
2 V2 −W∥F Consider the decomposition

Ψ̂W
(1)
V −Ψ

= ΞV1 + Û1Λ̂1(W
(1)
V − V̂⊤

1 V1)− Û2Λ̂2V̂
⊤
2 V1 −

11⊤

n
ΞV1

= ΞV1 + (Û1 −U1W
(1)
U )Λ̂1(W

(1)
V − V̂⊤

1 V1)

+U1W
(1)
U Λ̂1(W

(1)
V − V̂⊤

1 V1)− Û2Λ̂2V̂
⊤
2 V1 −

11⊤

n
ΞV1.
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