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Appendix
Proofs of some stated results

Corollary 2: The maximizer of µλ also maximizes

µ2
λ =

λTζζTλ

λTξλ

Because ξ is positive definite, there exists a positive definite
matrix ξ1/2 such that ξ1/2ξ1/2 = ξ. Letting ν = ξ1/2λ, the
above expression can be rewritten as

µ2
λ =

νTξ−1/2ζζTξ−1/2ν

νTν

The claim then follows directly from the Rayleigh-Ritz
theorem for Hermitian matrices.

Lemma 3: τλ(G ) is a U-statistics with kernel function
h(Y1, Y2, Y3) = Y1Y2Y3. By the theory of U-statistics, we know
that

τλ(G )−E[τ∗λ(G )]
p

Var[τ∗λ(G )]

d−→N (0, 1) (1)

provided that Var[τλ(G )−τ∗λ(G )] =o(Var[τ∗λ(G )]).

By the independent edge assumption, we have

E[h(Yi , Yj , Yk ) =E[Yi ]E[Yj ]E[Yk ] (2)

E[h(Yi , Yj , Yk )|Yi ] = YiE[Yj ]E[Yk ]. (3)

Thus, for t < t ∗, we have E[τ∗λ(G (t ))] =
�n

3

�

〈λ,π00〉3 and

Var[τ∗λ(G (t ))] =Var
h ∑

{u ,v,w }

Yu vE[Yu w ]E[Yv w ]
i

= (n −2)2〈λ,π00〉4Var
h∑

{u ,v }

Yu v

i

= (n −2)2〈λ,π00〉4
�n

2

�

〈λ,η00λ〉.

(4)

We now sketch the derivation of Var[τ∗λ(G (t ))] for t = t ∗. We
partition the set {u , v } ∈

�V
2

�

into the sets

S1 = {u , v ∈ [m ]},
S2 = {u ∈ [m ], v ∈ [n ] \ [m ]},
S3 = {u , v ∈ [n ] \ [m ]}.

We can thus decompose Var[τ∗λ(G (t ))] as

Var[τ∗λ(G (t ))] =S2
1Var[

∑

{u ,v }∈S1

Yu v ]+S2
2Var[

∑

{u ,v }∈S2

Yu v ]

+S2
3Var[

∑

{u ,v }∈S3

Yu v ]
(5)

Now, for {u , v } ∈S1, we have

S1Yu v =
∑

w 6=u ,v

E[h(Yu v , Yu w , Yv w ) |Yu v ]

= ((m −2)〈λ,π11〉2+(n −m )〈λ,π10〉2)Yu v .

(6)

The above expression is reasoned as follows. If w ∈ [m ],
then E[Yu w ] =E[Yv w ] = 〈λ,π11〉 and there are m−2 possible
choices for w ∈ [m ] different from u and v . If w ∈ [n ]\[m ],
then E[Yv w ] =E[Yu w ] = 〈λ,π10〉 and there are n−m possible
choices for w . Analogous reasoning gives the expressions
for S2 and S3 in the statement of the lemma.

We also have

Var[Yu v ] =







〈λ,η00λ〉 if {u , v } ∈S1

〈λ,η01λ〉 if {u , v } ∈S2

〈λ,η11λ〉 if {u , v } ∈S3

. (7)

and thus

Var[τ∗λ(G (t ))] =
�m

2

�

〈λ,η00λ〉S2
1+m (n −m )〈λ,η01λ〉S2

2

+
�n−m

2

�

〈λ,η00λ〉S2
3

as desired. To complete the proof one must show that
Var[τλ(G )−τ∗λ(G )] = o(Var[τ∗λ(G )]) and this follows directly
from the argument in [1] or [2].

Proposition 5: Let v ∈V (t ) and denote by dλ(v ; t ) the
(fused) degree of vertex v , i.e.,

dλ(v ; t ) =
∑

w∈N (v )

〈λ,Γv w 〉.

For t < t ∗, each of the Γv w is a multinomial trial with
probability vector π00. The following statements are made
as n→∞ for fixed K . By the central limit theorem, we have

dλ(v ; t )− (n −1)〈λ,π00〉
p

(n −1)〈λ,η00λ〉
d−→N (0, 1). (8)

We can thus consider the degree sequence of G (t ) for t < t ∗

as a sequence of dependent normally distributed random
variables. By an argument analogous to the argument for
Erdös-Renyi random graphs in [3, §III.1] we can show that
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the dependency among the {dλ(v ; t )}v∈V (t ) can be ignored.
Another way of doing this is to note that the covariance
between Xu and Xv , where Xu and Xv are the ratio in Eq. (8)
for vertices u and v , is given by

r =Cov(Xu , Xv ) =
3〈λ,π00〉

p

(n −1)〈λ,η00λ〉
. (9)

Because r log n→ 0 as n→∞, the sample maximum of the
Xu converges to the sample maximum of a sequence of
independent N (0, 1) random variables. dλ(v ; t ), can thus be
considered as a sequence of independent random variables
from a normal distribution. It is well known that the sample
maximum of standard normal random variables converges
weakly to a Gumbel distribution [4, §2.3]. It is, however,
not clear whether the convergence of ∆λ(t ) to a Gumbel
distribution continues to hold under the composition of
weak convergence as outlined above. We avoid this problem
by showing directly that

P
�

∆λ(t )−(n−1)〈λ,π00〉p
(n−1)〈λ,η00λ〉

≤ a n +bn x
�

→ e−e−x
. (10)

Let ζv =
dλ(v ;t )−(n−1)〈λ,π00〉p

(n−1)〈λ,η00λ〉
and Fn (u ) = P(ζv ≤ u ). If n →∞

and u =O(
p

log n ), we have the following moderate devia-
tions result [5], [6, Theorem 2, §XVI.7].

1− Fn (u )
1−Φ(u )

=
h

1+(C u 3
p

n
)+O( u 6

n
)
i

(11)

for some constant C . Letting u n = a n +bn x in Eq. (11), we
have

Fn (u n ) = 1− (1−Φ(u n ))(1+C
u 3

np
n
+O( u 6

n

n
))

= Φ(u n )+ (1−Φ(u n ))(C
u 3

np
n
+O( u 6

n

n
))

= Φ(u n )+O( 1
u n n 1−δ )(C

u 3
np
n
+O( u 6

n

n
))

= Φ(u n )+O( u 5
n

n 3/2−δ )

for some sufficiently small δ> 0. We therefore have

P(max
v∈[n ]

ζ(v )≤ u n ) = (Fn (u n ))n

=
h

Φ(u n )+O( u 5
n

n 3/2−δ )
in

= (Φ(u n ))n +O( u 5
n

n 1/2−δ )

→ e−e−x
.

(12)

Eq. (10) is established and we obtain the limiting Gumbel
distribution for ∆λ(t ) for t < t ∗.

The case when t = t ∗ can be derive in a similar manner.
We first show that if m = Ω(

p

n log n ) then ∆λ(v ; t ∗)
d−→

maxv∈[m ]dλ(v ; t ∗) [7, Lemma 3.1]. We then show, again by

the central limit theorem, that for v ∈ [m ], dλ(v ;t ∗)−µ2

σ2

d−→
N (0, 1). It then follows, similar to our previous reasoning for

the case where t < t ∗, that maxv∈[m ]
dλ(v ;t ∗)−µ2

σ2

d−→G (a m ,bm )
and we obtain the limiting Gumbel distribution for ∆λ(t )
for t = t ∗.

Theorem 6: Let X ∼G (α,β ). We consider the normal-
ization X−µ

σ
. We have

P
h

X−µ
σ
≤ z
i

=P[X ≤ zσ+µ] = e−e−(zσ+µ−α)/β

= e−e−(z−(α−µ)/σ)/(β/σ) .

Thus, X−µ
σ
∼ G (α−µ

σ
, β
σ
). Because the sample mean and the

sample variance are consistent estimators, the claim follows
after an application of Slutsky’s theorem.

Lemma 7: Let φλ(v ; t ) = ψλ(v ; t ) − dλ(v ; t ) be the
(fused) locality statistics for vertex v at time t not including
the (fused) degree of v , i.e.,

φλ(v ; t ) =
∑

u w∈N (v )
u ,w 6=v

〈λ,Γu w 〉. (13)

The following statements are conditional on |N (v )|= l . First
of all, we have

φλ(v ; t ) =
K
∑

k=1

λk z k

where the (z 1, . . . , z K ) are distributed as

(z 1, z 2, . . . , z K )∼multinomial
�

�l
2

�

,π00

�

.

By the central limit theorem, we have

φλ(v ; t )−
�l

2

�

〈λ,π00〉
Æ

�l
2

�

〈λ,η00λ〉

d−→N (0, 1).

Let λ(2) be the element-wise square of λ. Define C00 and
p00 to be

C00 =
〈λ(2),π00〉
〈λ,π00〉

, p00 =
(〈λ,π00〉)2
〈λ(2),π00〉

. (14)

We note that p00 ∈ [0, 1]. Now let Yl =C00Bin(
�l

2

�

, p00). Then

E[Yl ] =
�l

2

�

〈λ,π00〉 and Var[Yl ] =
�l

2

�

〈λ,η00λ〉 and again by
the central limit theorem, we have

ψλ(v ; t )−
�l

2

�

〈λ,π00〉
Æ

�l
2

�

〈λ,η00λ〉

d−→
Yl −

�l
2

�

〈λ,π00〉
Æ

�l
2

�

〈λ,η00λ〉
. (15)

Eq. (15) states that the locality statistics for our attributed
random graphs model with t < t ∗ can be approximated by
the locality statistics for an Erdös-Renyi graph with edge
probability p00. The lemma then follows from Theorem 1.1
in [7].

Lemma 8: For ease of exposition we drop the index
t ∗ from our discussion. Let φλ(v ) =ψλ(v )−dλ(v ). Let M (v )
be the number of neighbors of v that lies in [m ] and W (v )
be the number of neighbors of v that lies in [n ] \ [m ].
The following statements are conditional on M (v ) = lζ and
W (v ) = lξ. We have

φλ(v ) =
K
∑

k=1

λk (y
(ζ)
k + y (ξ)k + y (ω)k ) (16)
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where (y (ζ)1 , . . . , y (ζ)K ), (y
(ξ)
1 , . . . , y (ξ)K ), (y

(ω)
1 , . . . , y (ω)K ) are dis-

tributed as

(y (ζ)1 , . . . , y (ζ)K )∼multinomial
�

�lζ
2

�

,π11

�

(y (ξ)1 , . . . , y (ξ)K )∼multinomial
�

�lξ
2

�

,π00

�

(y (ω)1 , . . . , y (ω)m )∼multinomial
�

lζlξ,π10

�

.

Let ρ and ς be defined as

ρ = 〈λ,
�lζ

2

�

π11+
�lξ

2

�

π00+ lζlξπ10〉

ς= 〈λ,
�

�lζ
2

�

η11+
�lξ

2

�

η00+ lζlξη10

�

λ.〉

By the central limit theorem, as lζ→∞ and lξ→∞

φλ(v )−ρ
ς

d−→N (0, 1) (17)

Let λ(2) be the element-wise square of λ. Define C00, C01,
C11 and p00, p01, p11 to be

C00 =
〈λ(2),π00〉
〈λ,π00〉

; p00 =
(〈λ,π00〉)2
〈λ(2),π00〉

(18)

C11 =
〈λ(2),π11〉
〈λ,π11〉

; p11 =
(〈λ,π11〉)2
〈λ(2),π11〉

(19)

C10 =
〈λ(2),π11〉
〈λ,π10〉

; p10 =
(〈λ,π10〉)2
〈λ(2),π10〉

(20)

We note that p00, p01, and p11 are all elements of [0, 1].
Now let Yζ ∼ C11Bin

�

�lζ
2

�

, p11

�

, Yξ ∼ C00Bin
�

�lξ
2

�

, p00

�

and

Yω ∼C10Bin
�

lζlξ, p10

�

. We also set Y = Yζ+Yξ+Yω. By the
central limit theorem, we have

φλ(v )−ρ
ς

d−→
Y −ρ
ς

. (21)

Eq. (21) states that the locality statistics φλ(v ) for
our attributed random graphs model at time t = t ∗

can be approximated by the locality statistics Y (v ) for
an unattributed kidney and egg model. The limiting
distribution for the scan statistics in unattributed kidney-
egg graphs had previously been considered in [7]. We
provided a sketch of the arguments from [7] below, along
with some minor changes to handle the case where the
probability of kidney-kidney and kidney-egg connections
are different.

Let G be an instance of κ(n , m , p11, p10, p00), an unattributed
kidney-egg graph with the probability of egg-egg, egg-
kidney, and kidney-kidney connections being p11, p10, and
p00, respectively. D(v ) = M (v ) +W (v ) is then the degree
of v in G . We now show two inequalities relating the tail
distribution of ∆(G ) and Υ(G ) =maxv∈V (G )Y (v ).

lim sup P(Υ(G )≥ a n ,m )≤ limP(∆(G )≥Nκ), (22)

lim inf P(Υ(G )≥ a n ,m )≥ limP(∆(G )≥Nκ). (23)

Eq. (22): Let C ∗ = max{C11,C10,C00} and d n ,m =
p

2a n ,m /C ∗. We first note that

Υ(G )≥ a n ,m ⇒C ∗
�D(v )

2

�

≥ a n ,m ⇒D(v )≥ d n ,m .

Let us define h(v ) =E[Y (v )], i.e.,

h(v ) =C00p00
�D(v )

2

�

+(C11p11−C00p00)
�M (v )

2

�

+(C10p10−C00p00)M (v )W (v ).

We then have

P(Υ(G )≥ a n ,m ) =P
�
⋃

v∈V (G )

Y (v )≥ a n ,m

�

=P
�
⋃

v∈V (G )

Y (v )≥ a n ,m , D(v )≥ d n ,m

�

≤ P1+P2

where

ϑn =C00

h

�n
2

�

p00(1−p00)
i1/2

log n

P1 =P(
⋃

v∈V (G )

D(v )≥ d n ,m , h(v )≥ a n ,m −ϑn )

P2 =P(
⋃

v∈V (G )

D(v )≥ d n ,m , Y (v )−h(v )≥ ϑn ).

We now show that P2 is negligible as n →∞. To proceed,
let A be the event {M (v ) = e , W (v ) = f } and let pe , f =P(A).
P2 can then be bounded as follows

P2

n
≤

∑

e+ f ≥d n ,m

P(Y (v )−h(v )≥ ϑn |A)pe , f

=
∑

e+ f ≥d n ,m

P
�

Y (v )−h(v )
Var[Y (v )]1/2 ≥

ϑn

Var[Y (v )]1/2

�

�

�A
�

pe , f

≤
∑

e+ f ≥d n ,m

(1+o(1))P(Z ≥Θ(log n ))pe , f

=o(n−1).

We now consider P1. We note that P1 ≤R1+R2 where

R1 =P
�
⋃

v∈[m ]

D(v )≥ d n ,m , h(v )≥ a n ,m −ϑn

�

,

R2 =P
�

⋃

v∈[n ]\[m ]

D(v )≥ d n ,m , h(v )≥ a n ,m −ϑn

�

.

Let us define g (v ) = h(v )−C00p00
�D(v )

2

�

. R1 is then bounded
as follows

R1 ≤P
�
⋃

v∈[m ]

h(v )≥ a n ,m −ϑn

�

≤P
�
⋃

v∈[m ]

D(v )≥
q

2(a n ,m−ϑn−g (v ))
C00p00

�

.
(24)

We now consider the term a n ,m − g (v ). We have

a n ,m − g (v ) =C00p00
�Nκ

2

�

+(C11p11−C00p00)(
�µE

2

�

−
�M (v )

2

�

)

+ (C10p10−C00p00)(µEµF −M (v )W (v )).

Let E and F be sets of vertices defined by

E= {v : |M (v )−µE | ≤σE log m } (25)

F= {v : |W (v )−µF | ≤σF log (n −m )}. (26)

Then we have, for v ∈E∩F

a n ,m − g (v ) =C00p00
�Nκ

2

�

+Θ(m 3/2 log m )

+Θ(m
p

n −m )
(27)
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When m =Ω(
p

n log n ), Eq. (27) gives

a n ,m − g (v ) =N 2
κ

�

C00p00

2
+O(n−1/2−a log n )

�

. (28)

for some a > 0. The set {v ∈ [m ]} can be partition into
{v ∈ [m ]∩ (E∩F)} and {v ∈ [m ] \ (E∩F)}. We can show that
P{v ∈ [m ]\(E∩F)}=o(1) by using a concentration inequality,
e.g., Hoeffding’s bound. We thus have

R1 ≤P
�

⋃

v∈[m ]
v∈E∩F

D(v )≥Nκ

Æ

1+O( log n
n 1/2+a )

�

+o(n−1)

=P
�
⋃

v∈[m ]

D(v )≥Nκ+O(n 1/2−a log n )
�

+o(n−1)

=P
�

∆≥µE+F +σE+F (z m +O( log n
n a ))

�

+o(n−1)

→P(∆≥Nκ).

(29)

The same argument can be applied to R2 to show that

R2 ≤P
�

⋃

v∈[n ]\[m ]

D(v )≥Nκ(1+o(1))
�

=o(1). (30)

Eq. (22) is therefore established.

Eq. (23): We start by noting that

P(Υ(G )≥ a n ,m ) =P
�
⋃

v∈[n ]

Y (v )≥ a n ,m

�

≥P
�
⋃

v∈[m ]

Y (v )≥ a n ,m , D(v )≥Nκ

�

≥P
�
⋃

v∈[m ]

D(v )≥Nκ

�

−P
�
⋃

v∈[m ]

Y (v )< a n ,m , D(v )≥Nκ

�

.

We now show that P(∪v∈[m ]Y (v ) < a n ,m , D(v ) ≥ Nκ)→ 0 as
n → ∞. Let v ∈ [m ] be arbitrary. It is then sufficient to
show that mP(Y (v )< a n ,m , D(v )≥Nκ) = o(1). We note that
P(Y (v )< a n ,m , D(v )≥Nκ) can be rewritten as

∑

e+ f ≥Nκ

P(Y (v )≤ a n ,m |M (v ) = e , W (v ) = f )pe , f . (31)

We now split the indices set e+ f ≥Nκ in Eq. (31) into three
parts S1, S2 and S3, namely

S1 = {e ≥µE +σE log m } (32)

S2 = {e ≤µE +σE log m , e + f ≤Nκ+ϕ(n )} (33)

S3 = {e ≤µE +σE log m , e + f ≥Nκ+ϕ(n )} (34)

where ϕ(n ) = Θ(n 1/2−a ) for some a > 0. We can then show
that mP(M (v ) = e , W (v ) = f ,{e , f } ∈ S1) = o(1) by applying
a concentration inequality. Similarly, e + f ≥ Nκ and e ≤
µE +σE log m implies that

f ≥µF +(z m −o(1))σF (35)

and once again, by a concentration inequality, we can show
that mP(M (v ) = e , W (v ) = f ,{e , f } ∈ S2) = o(1). As for S3,
from the fact that e + f ≥Nκ+ϕ(n ), we have the bound

a n ,m −h(v )≤ (C11p11−C10p10)[mσE log m +
�log m

2

�

]

−C00p00Nκϕ(n ).
(36)

As Var[Y (v )] =Θ(Nκ) for {M (v ), W (v )} ∈S3, we have

pS3 =
∑

{e , f }∈S3

P(Y (v )< a n ,m )pe , f

≤
∑

{e , f }∈S3

P
�

Y (v )−h(v ))
Var[Y (v )]1/2 ≤

a n ,m−h(v )
Var[Y (v )]1/2

�

pe , f

≤
∑

{e , f }∈S3

P
h

Z ≤O
�m 3/2 log m

Nκ
−ϕ(n )

�

i

pe , f .

(37)

We now set a = 1
2(k+1) . Then for m =O(n k/(k+1)) and ϕ(n ) =

O(n 1/2−a ) we have

m 3/2 log m
Nκ

−ϕ(n ) =−O(n k/2(k+1))) (38)

which then implies

m pS3 ≤m
∑

{e , f }∈S3

P
h

Z ≤−O(n k/2(k+1)
i

pe , f =o(1). (39)

Thus P(Y (v )< a n ,m , D(v )≥Nκ)→ 0 as desired.

From Eq. (22) and Eq. (23), we have

limP(Υ(G )≥ a n ,m ) = limP(∆(G )≥Nκ). (40)

Let Nκ,y =Nκ+ y σE+Fp
2 log m

. We now define a n ,m ,y as

〈λ,π00〉
�Nκ,y

2

�

+ 〈λ,π11−π00〉
�µE

2

�

+ 〈λ,π10−π00〉µEµF .

The above expression is equal to

a n ,m + 〈λ,π00〉y
σE+F

p

2 log m

�

Nκ+ y
σ2

E+F

2
p

2 log m
+O(1)

�

. (41)

We thus have

a n ,m ,y = a n ,m +(y +o(1))bn ,m .

We therefore have

limP(Υ(G )≥ a n ,m ,y ) = limP
�Υ(G )−a n ,m

bn ,m
≥ y

�

= limP(∆(G )≥Nκ,y )

= limP
�∆(G )−Nκ

σE+F
≥

y
p

2 log m

�

.

Because ∆(G ) converges weakly to a Gumbel distribution
in the limit ([3], [7]), we have

P
�Υ(G )−a n ,m

bn ,m
≤ y

�

→ e−e−y
. (42)
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