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Appendix
Proofs of some stated results

Corollary 2: The maximizer of u, also maximizes

, ATZZTA
W= 3men

Because ¢ is positive definite, there exists a positive definite
matrix /2 such that £V/2£1/2 = £, Letting v = /22, the
above expression can be rewritten as

o vTE-1277TE-1/2y,
A vTy

The claim then follows directly from the Rayleigh-Ritz
theorem for Hermitian matrices. O

Lemma 3: 7,(G) is a U-statistics with kernel function
h(1, Y, ¥3)=Y Y, Y3. By the theory of U-statistics, we know
that

TA(G)_E[T;(G)]LN(O N m
Var[75(G)] '

provided that Var[7,(G) — 75(G)] = o(Var[75(G)]).
By the independent edge assumption, we have

E[h(Y;, Y}, Yi) = E[V]E[Y;]E[ Y] 2
E[h(Y;, Y}, Yi)lYi] = VE[V]E[Y;]. 3)

Thus, for ¢ < t*, we have E[7}(G(t))] = (g)()t, Too)® and

Var[3 (G =Var| Y Vi E[YuulEl Yo

{u,v,w}

= (1 —2)2(A, 7o) *Var [ > Y,”] )

{u,v}
=(n—2)*(A, 7o0)* (Z) (A, Moo
We now sketch the derivation of Var[73(G(f))] for = r*. We

partition the set {u,v}e (‘2/) into the sets

SA={u,ve[ml},
S ={uc[m],ven]\[ml},
S ={u,ve[n]\[m]}.

We can thus decompose Var[75(G(£))] as
Var[5(G(£)] =S2Var[ D Yuol+S2Var[ Y Y]
{u,vies; {u,vies

+S2Var| Z Yoo ]

{u,vies

)

Now, for {u,v}e. %, we have

S1Y, = Z E[h(Yuvr Yuw, Yuw)| Yuz/]
w#u,v (6)

=((m —2)(A, m11)* +(n— m)(A, 710)*) Yoo

The above expression is reasoned as follows. If w € [m],
then E[Y,,,,] =E[Y,,,] = (A, m11) and there are m —2 possible
choices for w € [m] different from u and v. If w €[n]\[m],
then E[Y,,,] =E[Y,,] = (A, m10) and there are n—m possible
choices for w. Analogous reasoning gives the expressions
for S, and S3 in the statement of the lemma.

We also have

(A)T]OOA) lf {u,v}e&"l
Var[Y,,] =1 (A, nauA) if {u,vies. @)
Anud) if {u,vie A

and thus
Var[ 75 (G()] = ('} ) (4, nooA)ST + m(n— m)(A,nn A)S;
+ (") (A 100 ) S]
as desired. To complete the proof one must show that

Var[7,(G) — 75(G)] = o(Var[73(G)]) and this follows directly
from the argument in [1] or [2]. O

Proposition 5: Let v € V(t) and denote by d,(v;t) the
(fused) degree of vertex v, i.e.,

d(vit)= D (AT
weN(v)

For ¢t < t*, each of the I',,, is a multinomial trial with
probability vector mgy. The following statements are made
as n — oo for fixed K. By the central limit theorem, we have

dx(v; 1) —(n—1){(A, 7o)
(n—1)(A,nooA)

We can thus consider the degree sequence of G(¢) for ¢ < t*

as a sequence of dependent normally distributed random

variables. By an argument analogous to the argument for
Erdos-Renyi random graphs in [3, SIII.1] we can show that

4, ¥(0,1). ®)
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the dependency among the {d;(v;t)},ev(,) can be ignored.
Another way of doing this is to note that the covariance
between X, and X,, where X, and X, are the ratio in Eq. (8)
for vertices u and v, is given by

r = Cov(Xy, X)) = o0l )

(n—1)(4, 100 )

Because rlogn — 0 as n — oo, the sample maximum of the
X, converges to the sample maximum of a sequence of
independent .#(0,1) random variables. d;(v; t), can thus be
considered as a sequence of independent random variables
from a normal distribution. It is well known that the sample
maximum of standard normal random variables converges
weakly to a Gumbel distribution [4, §2.3]. It is, however,
not clear whether the convergence of A,(f) to a Gumbel
distribution continues to hold under the composition of
weak convergence as outlined above. We avoid this problem
by showing directly that

HD(A%(I)*("*U(%T(OO) <a, +bnx) e

10
(n=1){An002) (10)

Let ¢, = LD ang F(u) =P, < u). If n — oo
(n—1){A,1002)

and u =0(4/logn), we have the following moderate devia-
tions result [5], [6, Theorem 2, §XVI.7].

I_Fn(u)_

Toe(w) 4y

[1+(c2)+0(%)]

for some constant C. Letting u, =a,+b,x in Eq. (11), we
have

Fy(tt) =1= (1= (2, )1+ C 7 + O(*2))

= (1) +(1— B(un))(C 2% +0(%2))
= ®(uu) + Oy ) C 5 +O0(54)

= @(un) +O(57t7)
for some sufficiently small 6 > 0. We therefore have
P(maxZ(v) < up) = (Fu(un))"
veln]

= [®(un)+ 0]

=(®(n))" + Ot

—e—X

(12)

—e

Eq. (10) is established and we obtain the limiting Gumbel
distribution for A;(t) for r < t*.

The case when ¢ = t* can be derive in a similar manner.
We first show that if m = Q(y/nlogn) then Aj,(v;t*) 4,
maXye[m) da(v; t*) [7, Lemma 3.1]. We then show, again by
the central limit theorem, that for v € [m], M+2)_‘” N
A(0,1). It then follows, similar to our previous reasoning for
the case where ¢ < t*, that max, e[ d’(+z)_’“ 4, Y(am,bm)
and we obtain the limiting Gumbel distribution for A;(t)
for t =1t*. |

Theorem 6: Let X ~ %(a,B). We consider the normal-
X—u

ization == We have
X—p _ o ezotpa)p
IP’[ r SZ] =P[X<zo+u]l=e
— e,e—(z—(a—u)/u)/(ﬂ/a) .

Thus, )% ~ Y(%E, g). Because the sample mean and the
sample variance are consistent estimators, the claim follows
after an application of Slutsky’s theorem. O

Lemma 7: Let ¢u(v;t) = Ya(v;t)—da(v;t) be the

(fused) locality statistics for vertex v at time ¢ not including
the (fused) degree of v, i.e.,

Pavit)= Y. (ATuu).

uweN(v)
u,w#v

(13)

The following statements are conditional on |N(v)|=[. First
of all, we have

K
P(v;t) = ez

k=1

where the (z1,...,zx) are distributed as
(21,22,...,zK)~multin0mial((é),noo).
By the central limit theorem, we have

9205 1) = (5) (% 7o) 4 #(0,1).
(é) (A, M00A)

Let A® be the element-wise square of A. Define Cy and
Poo to be

_ (A7)
COO_ (A,7o0) ’

(14)

We note that pgo €[0,1]. Now let V; = COOBin((é),pOO). Then
ElYy] = (é) (A, moo) and VarlY)] = (é) (A, neA) and again by
the central limit theorem, we have

Y )= (A mo0) g Y= () (4 70)
(i) (A, M00 ) (é) (A, M00 )

Eq. (15) states that the locality statistics for our attributed
random graphs model with ¢ < t* can be approximated by
the locality statistics for an Erdds-Renyi graph with edge
probability pgo. The lemma then follows from Theorem 1.1
in [7]. O

(15)

Lemma 8: For ease of exposition we drop the index
t* from our discussion. Let ¢ (v)=y(v)—d;(v). Let M(v)
be the number of neighbors of v that lies in [m] and W(v)
be the number of neighbors of v that lies in [n]\ [m].
The following statements are conditional on M(v)=1[, and
W(v)=1I:. We have

K
$a0)=>_ 4y +yP+ 1) (16)
k=1
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where (v,...y) 017, yE) Ly are dis-

tributed as

(y@)

.,yl(f))~multinomial((’2*’),ﬂ11)
(y1 ,...,y,(f))~multinomial((125),7r00)
(ylw),...,yr(n“’))~multinomial(l;lg,ﬂm).

Let p and ¢ be defined as

p=(A ( )7‘[11+( Y700 + Lz Lz T10)
¢=(4, ((2‘)7111"'(Z’)Tloo+l:l§7710)7t-)

By the central limit theorem, as Iy — oo and [ — oo

— A4(0,1)

¢A(Vg) p d a7

Let A@ be the element-wise square of A. Define Cyy, Co,
Ci1 and poo, po1, pu1 to be

_ (A¥m0), ()

Coo ="l 3 POO= G 2y (18)
_ (AP, (A1)

Cn="TGm0 Pn= oy (19)
_ @), ({A,m0))?

ClO ~ ) Pio= ()Lu o) (20)

We note that pg, poi;, and p;; are all elements of [0,1].
Now let ¥y ~ CuBin((lzl),pu), Ve~ COOBin((IZ"),pOO) and

Y, ~ CloBln(lxl»,pm) We also set Y =1Y;+ ¥: +Y,. By the
central limit theorem, we have

or(v)—p KN Y—P.

21)

¢ 4
Eq. (21) states that the locality statistics ¢;(v) for
our attributed random graphs model at time ¢t = t*

can be approximated by the locality statistics Y(v) for
an unattributed kidney and egg model. The limiting
distribution for the scan statistics in unattributed kidney-
egg graphs had previously been considered in [7]. We
provided a sketch of the arguments from [7] below, along
with some minor changes to handle the case where the
probability of kidney-kidney and kidney-egg connections
are different.

Let G be an instance of x(n, m, p11, P10, Poo), an unattributed
kidney-egg graph with the probability of egg-egg, egg-
kidney, and kidney-kidney connections being pi1, p1o, and
Poo, respectively. D(v) = M(v)+ W(v) is then the degree
of v in G. We now show two inequalities relating the tail
distribution of A(G) and Y(G)=max,cv(c) Y(v).

limsup P(Y(G)> an,;,m) <HimP(A(G) > Ny),
liminf P(Y(G) > a,,m) = imP(A(G) > Ny).

(22)
(23)

Eqg. (22): Let C* = max{Cii,Ci,Coo} and d,, =

v 2a,m/C*. We first note that

Y(G)= Anm = C*(D(zy)) > Anm = D(v)= dn,m-

Let us define h(v)=E[Y(v)], i.e,,

h(v)= CooPoo (D( ) +(Cupu— Coopoo)( )
+(Crop10 — Coopoo)M(v)W(v).
We then have

P(T(G)Zan,m)zlp( U Y(V)Zan,m)
veV(G)

ZP( U Y(v)> An,m» D(v) > dn,m)
veV(G)
<P+P

where

n 1/2
B = Coo [(2)1700(1 - Poo)] logn
P=P( | J DW)=dpm h(v)=anm—1,)

veV(G)
B=P( | ) D)z dum Y(v)=h(v)21,).
veV(G)
We now show that P is negligible as n — co. To proceed,
let A be the event {M(v)=e, W(v)= f} and let p. s =P(A).
P, can then be bounded as follows

P
nz< Z P(Y(v)— h(v) =9, |A)pes

e+f>dum

_ Y(v)—h(v)
- Z P(Var[Y(v)]l/z = Var[Y(v N2
e+f>dnm

)pef

D (1+0(1)PZ = O(logn))pe,

e+f>dum
=o(n7h).
We now consider P;. We note that P, < R; + R, where
Rl ZP( U D(V) 2 dn,mr h(”) 2 an,m _ﬁn)r
ve[m]
RZZP( U D(V)zdn,mrh(y)zan,m_ﬂn)-
ve[n]\[m]
Let us define g(v)= h(v)— Coopoo (D;”)). R; is then bounded
as follows

Ri<P( | h)zann—1,)

ve[m]

<p(|J pw)=

ve[m]

(24)
z(an,m717n7g(y)))
CooPoo '

We now consider the term a,,, — g(v). We have

— 8(v)= Coopoo (Aé“)
+(Cupn = Coopoo)((*y) — (Méu)))
+(Crop10 — Coopoo)(epr — M(v)W(v)).
Let & and § be sets of vertices defined by
(25)
(26)

E={v:|M(v)—ug|<oglogm}
S={v:IW(v)—ur|<orlog(n—m)}.
Then we have, for ve&nNg
anm— 8(W)=Coopoo('y) +0(m*?logm)

27
+0O(mvn—m) @D
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When m =Q(4/ nlogn), Eq. (27) gives

—g(v):N}f(%+O(n_l/2_“ logn)). (28)

for some a > 0. The set {v € [m]} can be partition into
frem]ln(E€nF)} and {v € [m]\(ENF)}. We can show that
P{v € [m]\(¢nF)} =o(1) by using a concentration inequality,
e.g., Hoeffding’s bound. We thus have

U pw)= N,

ve[m]
ve¢ng

=IP>( U D(v)ENK+O(n1/2’“logn))+0(n’1) 29)

ve[m]
=P(AZ ppir+Opir(zn+0(22) +o(n™)
—P(A > Ny).

R 51@( 1+O(%)) +o(n™")

The same argument can be applied to R, to show that

R, < IP’( U bw=zna +o(1))) =o(1).

ve[n]\[m]

Eq. (22) is therefore established. O

(30)

Eq. (23):

PO 2 anm)=P( | Y)Z ann)

ve(n)

>P( |J Y02 anm D)= Ny)

ve(m]

>p( |J pw)=ny)

ve(m]

—IP’( U < an,m,D(u)zNK).

ve(m]

We start by noting that

We now show that P(Uyepm Y(v) < @p,m, D(v) > Ni) — 0 as
n — oo. Let v € [m] be arbitrary. It is then sufficient to
show that mP(Y(v) < an,m,D(v) > Ni)=o0(1). We note that
P(Y(v) < anm,D(v) > Ni) can be rewritten as

D PY(W) < apm | M(v)=e, W(v)=f)pe .

e+f>Ny

BD

We now split the indices set e+ f > N; in Eq. (31) into three
parts S;, Sz and S3, namely

Si={e>up+oglogm} (32)
So={e<up+oglogm,e+ f <N+ p(n)} (33)
Ss={e<pup+oglogm,e+f > Ni+¢(n} (34)

where ¢(n)=0(n!/2-2) for some a >0. We can then show
that mP(M(v)=-e, W(v) = f,{e, f} €S1) = 0(1) by applying
a concentration inequality. Similarly, e+ f > N, and e <
ug+oglogm implies that

fzur+(zm—o(1))or

and once again, by a concentration inequality, we can show
that mP(M(v) = e, W(v) = f,{e, f} € S2) = o(1). As for Ss,
from the fact that e+ f > N, + ¢(n), we have the bound

(35)

—h(v)< (Cllpll — ClOplO)[WlO'E logm + (logm)]

(36)
— CoopooNx@(n).

As Var[Y(v)] = O(Ny) for {M(v), W(v)} €S3, we have

p53: Z P(Y(U)<an,m)pe,f

{e,f1€Ss
Y(v)—h(v)) anm—h(v)
= Z ]P(Var[Y(v)]‘/z = Varix( v)]l/Z)pef (37)
{e,f1eSs
ms/2
< Z [Z< O(ﬂ go(n))] Pe,f-
fe,f}eSs
We now set a = 2(k+1 Then for m = O(n*/+1)) and ¢(n)=
O(n1/2-2) we have
% @(n)=—0(nk/2k+D)) 38)
which then implies
mps, <m Z IF’[Z < —O(nk/z(k“)] pes=o(l). (39
{e,f1€S;
Thus P(Y(v) < an,m,D(v)> N,)— 0 as desired. O
From Eq. (22) and Eq. (23), we have
HmP(Y(G) > an,;,m)=lmP(A(G) > Ny). (40)

OE+F

+/2logm :
(A, TToo) (N;y) +{(A, 11— ﬂoo)(uzﬁ) + (A, 10— Too)UEUE-

Let Nyy =N, +y We now define a, ,,, as

The above expression is equal to

A + (A 00}y +0(1). @1

2
OE+F OgiF
—  (Ne+y—=E
\/210gm( 24/2logm

We thus have

Anmy = Anm +(y +0(1)bp,m.
We therefore have
(T(G;—an’m Zy)
n,m
=limP(A(G) > Ny,y)
A(G)— N,
—timp(HO M Y )

= /2logm”

Because A(G) converges weakly to a Gumbel distribution

EmP(Y(G)> @y my)=limP

OE+F

in the limit ([3], [7]), we have
T(G)_ An,m —e-V
Pl ———————<y|—-e°". 42
(5, =) e 2
OJ
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