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Abstract— Csiszar introduced the mutual informa-
tion of order « in [1] as a parameterized version
of Shannon’s mutual information. It involves a min-
imization over the probability space, and it cannot
be computed in closed form. An alternating mini-
mization algorithm for its computation is presented
in this paper, along with a proof of its convergence.
Furthermore, it is proved that the algorithm is an
instance of the Csiszar-Tusnady iterative minimization
procedure [2].

I. INTRODUCTION

Csiszar [1] defined the mutual information of
order o between two discrete random variables
X,Y (with joint distribution Pxy) as

1o(X;Y) 2 min 3 Py (y) Da(Pxiy (19)1Q0)),

(1)
where 0 < o # 1, and

1
a—1

D.(P||IQ) £ log Y P (2)Q'"(x), ()

is the Rényi divergence of order o [3] between
distributions P, Q). The limit of (2), as o — 1, is
the well-known Kullback-Leibler information diver-
gence. Furthermore, we adopt the same convention
as in [1]: if @« > 1 and Q(z) = 0 for some z,
then P%(x)Q'~%(x) is equal to 0 or +oco when
P(x) =0 or P(z) > 0, respectively.

It can be proved [1] that I, (X; Y") retains most of
the properties of I(X;Y) (i.e., it is a non-negative,
continuous, and concave function of Px, and, when

a < 1, it is convex with respect to Py|y). Also, as
a—1, I,(X;Y) converges to I(X;Y).

Observe that (2) is computed by exponentiat-
ing the probability measures. If the exponents are
strictly less than unity (i.e., 0 < o < 1), this results
in “smoothed” values, lessening possible extreme
variations in P(xz),Q(z). Smoothing is important
in cases where the distributions are computed from
limited amounts of data; sparsity typically leads to
underestimates of the least likely events, and to
overestimates of the most likely events. Such phe-
nomena are prevalent when the underlying spaces
are very large, compared to the sample size; see,
for instance, [4]-[7] for various treatments of the
sparsity problem in natural language processing.
This fact partly explains the improvement in per-
formance of the text categorization algorithms of
[8], [9], when Shannon’s mutual information was
replaced with (1) as a criterion for clustering sparse
empirical distributions.

There is no analytic form for the minimizer of the
right-hand side of (1). The next section describes an
alternating minimization algorithm which converges
to the desired minimum.

Use of notation: Random variables (r.v.) are de-
noted by capital letters, while their realizations are
denoted by the corresponding lowercase letters. All
random variables are assumed to lie in discrete finite
spaces, denoted by the corresponding calligraphic
letter (e.g., X € X). The probability mass function
(pmf) of a random quantity is denoted using the
appropriate subscript, e.g., Px for r.v. X, or Pxy



for the joint pmf of X,Y. The conditional pmf of
X given Y is denoted by Pxy; letter W is also
used to denote a conditional pmf. Finally, for the
rest of the paper it will be assumed that 0 < o < 1.

II. THE ALGORITHM

The algorithm for the computation of (1) is
described in Figure 1, and it takes as input the joint
distribution Pxy and v > 0 (the latter is typically
a small number, and is used in the termination
condition). The algorithm is based on the following
identity (proved in Section III): for any distributions
P,Q,and 0 < a < 1,

Da(PQ) = —*—D(P*|P) + D(P*[Q). ()
where

o _(PE)(Q)

Pe) = S e @)
Therefore,
LOGY) = a3 re (D CIQ) +

o
= D(P*(- P(-
CDEPCIPCN) ).
which, by virtue of Lemma 2 of Section III, can be
written as

I,(X;Y)

(07

DOV ERIPC) ).

The double minimization of (4) is achieved through
the alternating minimization of the algorithm of
Figure 1, as is proved in Theorem 1 of Section III.

III. CONVERGENCE OF THE ALGORITHM

First, we will prove identity (3). Given distribu-
tions P, ) and a scalar 0 < @ < 1, we define:

L (P(a))* Q)

where C = Y (P(z))*(Q(x))! ™ is just a nor-
malizing constant. Then, we have the following

P(z)

minigin 3 ) ( DOV (1) 1Q) +

“)

Algorithm for computing Csiszar’s mutual
information of order .

Input: Joint distribution Pxy, 0 < o < 1, and
threshold v > 0.

Initialization:
t=20
Qi (z) =2, Py (y)Pxy(zly)
It - —
Loop:
Repeat
t=t+1
Py (zly) = C7 () (Pxpy (2]y)) ™ (Qf_1 ()~
Qi (@) =32, Py (y) P (x]y)
Iy =32, Pr(y) (125 D(P; (1)l Pxpy (1y))

D(P/(|)Q7))
Until ‘It — It71| <7y

Output: ;.

[e3

Fig. 1.  Alternating minimization algorithm for computing
Io(X;Y). Ct(y) is just a normalizing constant, computed for
each conditioning y.

chain of equalities

ZP* log( ( i

D(P[Q)

)

. P(x
= —log@)+a) P e (i)
= —1og(C) + a(D (P*IIQ — D(P*|P))
= (1—0&)DQ(P||Q)
a(D(P*||Q) — D(P*||P)).

By re-arranging terms in (5), we obtain (3).
Now, for fixed distributions Py, Px|y, let us
define the functional

I

[e%

L DVEIPay (b)) ©

which is a function of distribution () and conditional
distribution W. The algorithm of Figure 1 performs
an alternating update of @), W. As is proved in the

W(lyllQ) +

®)



next two lemmas, this alternating update can only
reduce J(W, Q) (alternating minimization). Then,
convergence to the global minimum is guaranteed
by the fact that @, W lie in convex (probability)
spaces, and that J is a convex function of its
arguments @, W.

Lemma 1: For a fixed conditional distribution
W, the functional J(W, Q) is minimized by

-SAw

Proof: Only the first term in the right-hand
side of (6) needs to be minimized. It can be easily
checked that this term is equal to D(Py x W|| Py X
@), and hence the proof follows immediately from
Lemma 13.8.1 of [10]. [ |

W (z|y).

Alternative proof: Let () be any arbitrary pmf on
X, and @Q* as specified in the statement of the
lemma. Then,

S A DOV (1))
_ZPY

—»Zaf(zwmwm
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= ZQ <) >0,

Hence, the first term in the right-hand side of (6) is
minimized by Q*, as required. ]

W(IQ")

W(zly)
Q(x)

Lemma 2: For a fixed distribution @, the func-
tional J(W, Q) is minimized by

W*(aly) = C™H(y)(Pxy (z]y))*(Q(x))'

where C(y) = >, (Pxjy(z[y))*(Q(x))'~* is a
normalizing constant.

Proof: Tt suffices to find the minimizer of the
expression

KW(ly),Q) = DW(IQ)+

!
71_aD(W

Gl Pxpy (1y)),

for any given y. This will imply minimization of
J(W, Q) as well. Notice that K (W (-]y),Q) is a
convex function of W (-|y), for all y, by virtue of
the convexity of the KL-divergence [10]. Hence, it
has a unique minimizer, which can be found using
Lagrange multipliers, by solving the equations

OK (W (]y),Q) + Ay Xy W(a'ly) — 1)) _ 0
oW (zly) ’

(7

for all z,y, under the wusual constraint

> . W(zly) = 1. Note that there are |X| x |)|
equalities implied in Equation (7).
The left-hand-side of (7) is equal to

K'(W,Q) + A,

1+ loczg(W(xly)) — log(Q(x))

(14 log( W(xly))

—log(Px v (zly))) +

= (1 +log(W ot -
—alog(Pxy (wly)) + Ay
(1 log(W(aly)
—log((Px|y (z[9))*(Q(x))' ™) + Ay (8)

By setting (8) equal to zero and solving for W (z|y),
we obtain

(1 —a)log(Q(x))

W (z]y) = exp(—(1-a)A,—1)(Px v (z[y))* (Q(x))' =,

which, together with the constraint > W (z|y) =
1, gives us the required result. ]

Alternative proof: Minimizing K (W, Q) is equiv-
alent to minimizing (1 — «)K(W,Q) = (1 —
a)D(W Q) + aD(W||P) with respect to W, for
fixed @, P. Then,

(1) DOVQ) +aD(W]|P) ©
_ b CW)
= 2 W8 G G
CW (z)

—log C, (10)

— ; W (z)log Q—o(z)Po(z)
(z) and the first

where C = Y Q'"%(z)P*
expression in (10) is the non-negative Kullback-
Leibler distance of the distribution W and the



distribution W*(z) = C~1Q*~%(x) P*(x). Hence
(10) is minimized when W = W*, as required. ®

Theorem 1: The alternating minimization algo-
rithm of Figure 1 converges to I,(X;Y), i.e., it
computes the expression

min min JW,Q),

where J(W, Q) was defined in (6).

Proof: Tt is easy to establish that J(W, Q) is a
convex function of the pair (Q, W), as it is a linear
combination of KL-divergences having @, W as
their arguments. Also, () and W belong to convex
probability sets. Thus, the sufficient condition of
[11] is satisfied, which implies that the alternating
minimization algorithm of Figure 1 converges to the
(unique) global minimum of J(W, Q). [ |

IV. CONNECTION TO THE CSISZAR-TUSNADY
ALTERNATING MINIMIZATION ALGORITHM

In their paper [2], Csiszar and Tusnady show that
an iterative algorithm that successively computes
projections between two convex sets eventually con-
verges, under certain conditions, to the minimum
“distance” between the two sets. In this section, we
prove that these conditions are satisfied for func-
tional J of (6), thus establishing that the alternating
minimization algorithm of Section II is an instance
of the algorithm of [2]. This provides an alternative
(albeit more complicated) proof of the convergence
of the algorithm.

Let P,Q represent two abstract convex and
closed sets, and let d : P x Q@ — RU {400} be an
extended real-valued function. The “projection” of
a member of one set to the other set is defined as
follows:

1 . .
PLQ* iff d(P,Q")= mind(P,
- @ iff d(PQY) = mind(P,Q)
2 . .
pP* iff d(P* = d(P,
Q= iff d(P*,Q) = mind(P,Q)
where P € P and Q € Q. The alternating

minimization algorithm of [2] computes a sequence
of members of P and Q satisfying Qo 2, Py N

Qi...

For a given function §, we have the following
definitions (from [2]):

Definition 1: The three points property holds for
PePif

Q=P = d(P,Qo) = (P, Py) +d(Pi, Q).
Definition 2: The four points property holds for
PePif
VQeQ, PS5 Q1 =
d(P,Q) + 6(P, P1) > d(P, Q1)
The following theorem of [2] establishes conver-

gence of the iterative minimization procedure to the
minimum between the two sets:

Theorem 2: If the three points property and the
four points property hold for all P € P, then

lim d(P,, Q) = Pe%liql)legd(P, Q)£ d(P, Q).

We will now show that the sequence of updates

Qo 2 Wy 4 Q1 ---, as expressed in the algorithm
of Figure 1, leads to convergence to the minimum of
J(W, Q). Note that W € P and Q € Px, where
P is the set of measures on X. Furthermore, ¢ is
the KL-divergence function.

Theorem 3: J satisfies the four points property
for all W € PY and all Q € Pe.

Proof: We have

J(Wv Ql) - J(Wv Q)
= > Pr@)DW(y)llQ1) - DW(]y)[Q))

yey
Q(z)
= 1
g{(PyW)(.’L‘) og 01 () (11)
= D(P»W[Q:1) - D(PyW|[Q)
= D(PyW|PyWy) — D(PyW|Q) (12)
< O(PyW, PyWh), (13)

where, in (11), Py W is the X marginal of the joint
distribution W x Py, and in (12), QJ; was replaced
by Py W; by virtue of Lemma 1. ]

Theorem 4: J satisfies the three points property
for all W € 773(}.



Proof: Let € [0,1] and W) = W 4 (1 —
w)Wi. It suffices to show that
JWW, Qo) — J(W1, Qo) = D(PyWW|| Py Wr)
(14)
for all u € [0,1] (and, hence, for u = 1).

First, note that, when p = 0, the left-hand side
and the right-hand side of (14) are both equal to
zero. Hence, it suffices to prove that

DI (W Qo) - OD(Py W || Py W)

o - o ’
We have

Vop

OD(Py W || Py W)
o

=3 (PyW(x) — PyWi(x))log
reX

1
:E(D(PYW(“) | Py W1) + D(Py W1|| Py W)

15)

(P W) (x)
(Py W1)(x)

where g is assumed non-zero in (15). Note that
OD(W W Py ||PyW1)/0u = 0 when p = 0 (the
same is true for 9.J(W ) Qq)/0pu, as can be seen
below).

Next, we have the following

0J(WH, Qo)
T
=Y " Pr(y) Y (W(zly) — Wi(zly)) x

yeyY reX
(W(u)(zm)l/(ka)
O,
& Qo(@)(Px v (xly))*/ (-

:ﬁ ST Pe(y) S (W (aly) — Wi(aly)) x

yeY TEX
W (aly)
Wi (z[y)
> Pr(y) (DWW () |[W(-]y))
yey

+D(Wi ()W (|y)))

1
Z;(D(wa(“) | Py W1) 4+ D(Py Wy || Py W),

a7

1

log (16)

o
Sl —a)

where the update equation of Lemma 2 was used in
(16) and i > 0 was assumed in (17). By combining
(15) and (17) we obtain the required result. [ |

Finally, Theorems 3 and 4 establish that the
iterative algorithm of Figure 1 results in the mini-
mization of J, as required.
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