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ABSTRACT
Integrated Sensing and Processing Decision Trees (ISREErs)
introduced in [1] as a tool for supervised classification ifhh
dimensional data. In this paper, we consider the problemneof
supervised classification, through a recursive construction of 1S-
PDTs, where at each internal node the data (i) are split il c
ters, and (ii) are transformed independently of other ehsstgui-
ded by some optimization objective. We show that the maxamiz
tion of information-theoretic quantities such as mutuédimation
and a-divergences is theoretically justified for growing ISPDTs
assuming that each data point is generated by a finite-merao+y
dom process given the class label. Furthermore, we presarish
tics that perform the maximization in a greedy manner, and we
demonstrate their effectiveness with empirical resutisnfimulti-
spectral imaging.

1. INTRODUCTION

In unsupervised classification, no statistics of the dataljowith
their class-labels are known, so the goal is to group thectsbjeto
clusters based only on their observable features, such that each
cluster contains objects that share some important piiepertn
some cases, there may be a notion of a “true” class-labelaf ea
object that has simply not been provided; it may then be gppro
ate to view the class-label of each object éatent variable, and to
evaluate the performance of a clustering scheme iiyshoc as-
signment of the class-labels to (a subset of) objects in ssslit-
ing cluster. In other cases, there may be no natural notitinue”
class-labels; the efficacy of the clustering scheme is aftea-
sured in such cases by the economyléscription length attained
by a two-step description of the objects by first describhmg dt-
tributes common to the clusters and then describing thereiitial
attributes of each object within the clustet-Means Clustering
and Mixture Modeling using the Expectation Maximizatior(E
Algorithm [2, 3] are examples of techniques used for unstiped
classification. Furthermore, a common approach in claatiic
is to map the “sparse” high-dimensional attributes of oisjgtto a
“dense” low-dimensional space, and carry out the clusgdrirthis
new space. One example of such techniques is Multidimeakion
Scaling, which maps a set of abstract objects, with givenise
“distances,” to points in a Euclidean space in such a wayadhat
pairwise distances are nearly preserved. This allows tkeofis
clustering algorithms which are known to be efficient in Earedn
space, e.g., model-based clustering [3].

In this paper, we investigate the problem of unsupervisas-cl
sification using Integrating Sensing and Processing Dmtibiees
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(ISPDTSs) [1]. ISPDTs (also called Iterative Denoising Begrow
in a greedy manner, successively transforming and spgjittach
node according to some local goodness criterion. They are pr
ably optimal (i.e., they achieve the Bayes-optimal missifasa-
tion rate) in some bandwidth or complexity-constrainedations
[1, 4]. Moreover, they model adaptive sensors by providiiig d
ferent “looks” at a scene, after a number (but not all) of dees
or data has been processed. In short, the following stepseare
formed in an ISPDT:

e Beginning with the whole data collection at the root, eactieno
represents a subset of the data of its parent. The data in each
node are transformed through a projection into a lower dimen
sional space, and partitioned into two clusters, accortbran
optimization criterion (for example, maximization of therm
imum distance between points in different clusters, or maxi
mization of the distance between cluster centroids). Irctse
where labeled (training) data are present, the projectimh a
clustering may be tuned to maximize the separation between
the classes. In our setting, we do not have any labeled data.
The two clusters then end up at the two children of the node.

Under some conditions, a node may not be split further (i.e.,
it becomes a leaf node). All the data points at each leaf are
considered to belong to a single class; that is, classificas
done only at the leaves of the ISPDT.

In the following, we will present two information-theoretriteria

for transforming and clustering data in an ISPDT. These tir0 ¢
teria correspond to optimal decision rules in an asympsgitse
(that is, as the number of dimensions of each data point goes t
infinity).

The paper is organized as follows. We begin by formulating
our problem in Section 2. We show in Section 3 how mutual infor
mation andx-divergences may be used as criteria for unsupervised
classification via ISPDTs, and we present heuristics foreatig
our objective in Section 4. In Section 5 we present expertaien
results on a classification task in hyperspectral imagingalfy,
concluding remarks appear in Section 6.

2. PROBLEM FORMULATION

LetA={X"(1),..., X" (M)} be acollection ofi-dimensional
data objects (sequences) that we wish to classify. Eackctobje
X"(7) has a hidden labéf (), drawn from a finite se¥ (of pos-
sibly known cardinality), andX;(j), Y (5)) are jointly distributed



Fig. 1. An ISPDT partitions the data at each node into two sets,
according to some optimization criterion. The variaBlecorre-
sponds to theé-th level of the tree; the vectd = g(X™) repre-
sents the path from the root to the leaf whéf& is placed.

according toy - px|y. For simplicity, we can assume that

n
pxny (@"ly) = [ [ pxiy (@ily),
i=1

although similar techniques can be applied to other stoicha®-
cesses with memory (e.g., Markov chains).
We now have the following
Problem Formulation: Find a partitionA4,, ..., A,, of A, such
that, with high probability X" (i), X" (j) € A, iff Y (i) = Y (j).
For solving the problem, we will use an ISPDT with two dif-
ferent information-theoretic optimization objectiveseatch node:
(i) maximization of a weighted sum of KL-divergences, o) (ii
maximization of amx-divergence score. Asymptotically, as—
oo, these two objectives turn out to correspond to maximinatio
mutual information and minimization of probability of ckifica-
tion error, respectively.

3. INFORMATION-THEORETIC ASPECTSOF ISPDTS

As we mentioned earlier, ISPDTs are built
through a greedy procedure, such that:

recursively,

e The object features extracted at each nodenatenecessarily
the same as the features extracted at the parent nodes.

e The partitioning at each node is done according to an opsimiz
tion criterion; this criterion depends on the objects irt tiade
only, and not on the splitting of other nodes.

Any denoising tree is associated with a function
g: X" —{0,1}",

which takes as input a data sequence, and returns a bit \thator
describes the unique leaf to which the object is placed. kor e
ample, in Figure 1, all data sequenc&s in leaf A1 satisfy
g(X™) = 110. As can be easily established, there i$ a 1
relationship between a denoising tree and a functidmodulo
differences in branch labels). Classification is perforroaty at
the leaves through a functidn : £ — Y, where£ C {0,1}"
corresponds to the set of leaves. In the following, we wié thee
notationZ = g(X™).!

1Boldface quantities represent vectors; their dimensigni deter-
mined by the context.

We now explore two approaches for building an ISPDT (or,
equivalently, for determining the functiag). They both rely on
information-theoretic quantities: the mutual informatfanctional,
and thex-divergence.

3.1. Greedy Maximization of Mutual Information

Here, our goal is to maximize the mutual informatigy’; g(X™))
with respect tgy(-). Fano’s inequality [5]

I(Y;9(X") > (1= P)H(Y) -1,

suggests that, for any classifier implied hy the probability of
error P, cannot be small iff (Y; g(X™)) is small; this provides
the motivation for maximization of the latter.

Through the chain rule of mutual information [5] we have:

1(Y;2) =

IY;20) + I(Y; 22| Z0) + ... + LY Zon|Z1, Z, .., Do),

wherem is the maximum leaf depth in an ISPDT (we can take
m M, without loss of generality). Each one of the terms
above corresponds to node splits of a particular level;rfstance,
I(Y;Z,) corresponds to the split at the root, while
I(Y;Z;|Z., ..., Z;—1) corresponds to the splits at level Now,

to maximizeI (Y; Z) in a greedy manner, it suffices to maximize
iteratively each of the above terms. l.e.,

e First, find the split at the root which maximizésY'; Z1).

e Given the split at the root, find the splits which maximize
1(Y; Z3|Zy = 0) andI(Y'; Z2|Z, = 1). These two quantities
correspond to the two children of the root; the maximization
of each one is done through appropriate splitting of theecorr
sponding node/child.

e lteratively, given the splits at the tree levdls. .., j — 1, find
the splits at levelj, such thatl (Y; Z;|Z1 = z1,...,Zj—1 =
zj—1) is the maximum possible, for each binary string, . . .,
zj—1). Moreover, a node with patfe1, ..., z;—1) is not split
any further IfI(Y, Zj|Z1 = 21y .., ZJ‘71 = Zj71) =0 (i.e.,
Y can be determined perfectly frofai, ..., z;—1)).

Note that the above procedurerist guaranteed to find the max-
imum of I(Y; g(X™)) with respect tgy; a non-greedy procedure
could possibly yield a higher value.

3.2. Greedy Minimization of Probability of Error

Here, we assume that each class label is represented byweuniq
binary sequence that corresponds to a path from the rootdafa |
in an ISPDT. In other words, there exists a 1-1 function) —
{0,1}". Then, asequenckE™ is erroneously classified iff( X™) #
L(Y'), where, as beforéy is the true class label oX™. In other
words, there is an error if (at least) one bitgdfX™) is wrong.

Obviously, in order to minimize the overall error, we have to
transform and split the data at each node such that the teméet
each partition do not contain any common classes. Note lieat t
distribution that generates the data of each set is a mixtudés-
tributions corresponding to the classes in the set.He; be the
two mixtures. Then, the optimum decision rule is the Maximum
Aposteriori Probability (MAP). For large, this can be translated
to a KL-divergence decision rule: classil/" in setAy if

D(Px+||Py) < D(Px||Py),



wherePx~ is the empirical distribution ok ™, andD(-||-) is the
Kullback-Leibler distance between distributions [5]. Tihéhe ex-
ponent of the probability of error (at each node) is given ty t
Chernoff information [5]:

C(Py, Pr) — min log

0<a<l <Z H?(mn)Pla(‘cn))

maxl(l — a) Do (Po]|P1),

0<a<

whereD,, (P||Q) is thea-divergence between distributiof3 Q.
Moreover, the overall probability of errd?. of the ISPDT is upper-
bounded by the sum of the probabilities of error at each node.
Hence, the exponent d?. is the minimum of all the exponents.
Finally, different class label encodings yield differerges (and
hence, differen?.). Therefore, finding the tree that has the maxi-
mum probability of error exponent (minimum probability ofar,

for sufficiently largen) entails computing the following:

T

arg max min max
TreeT' Internalnodej in T «a;,Po(j),P1(4)

(1 = a;)Da; (Po(4)1P1(5)),

where Py(5), P1(j) are the mixture distributions that result from
splitting node;.

In the following, we will see heuristics for building Itenas
Denoising Trees that try to optimize the above quantities.

4. HEURISTICSFOR GROWING ISPDTS

As we mentioned above, the conditional distribution thaiggates
the data sequences (given the hidden labels) is unknownce;len
it is impossible to compute the above information-theargtian-
tities precisely. However, for sufficiently large where the law of
large numbers starts to have an effect, we have the folloyrey
proof appears in [6]).

e The mutual informatiod (Y'; Z) can be approximated by

T No(j) M)

Internal nodej

D(Py(7)I1P(5))
)

where Py (j), P1(j) are the empirical distributions of the data
that follow the left or right branch of nodg P(;) is the overall
empirical distribution of the data in node No(j), N1(j) are
the number of data points that follow the left or right branch
and M is the total number of data points.

D(B(G)IPG)) + =5

e The exponent of the probability of error of the ISPDT is ap-
proximated by
Interlgélllﬁlodej (2)

max (1 — o) D, (pO(J)”I:)l(J))a

)

whereP, (j), P (j) are as above.

Hence, in both cases, we need to estimate the empiricaibdistr
tions Po,Pl at each node. But, in order to overcome the data
sparseness problem due to finite we need to perform dimen-
sionality reduction before we compute the empirical disttions.

In our experiments, the dimensionality reduction is dormeugh
Principal Components Analysis (other projection techege.g.,
Wavelet Packet Decomposition, can be used, too). Thenndepe
ing on the particular optimization objective (mutual infaation

or probability of error) we perform the following heurissiat each
node:

e Mutual Information: We perform a number of linear projec-
tions of the sparse empirical distributions of the data cisje
to a lower-dimensional simplex (e.g., 3-dimensional). &ach
projection, we apply Chou’s algorithm [7] (which is a vartiaf
K-Means) and we partition the data into two clusters. The dis
tributions Py, P, in (1) are the centroids of these clusters, and
the transformation/clustering which is chosen is the oniehvh
maximizes the score (1).

Probability of error: As above, we perform a number of low-
dimensional projections, and for each projection we perfar
number of random splits of the data (e.g., using Chou’s algo-
rithm with random starting points). We use the resultingselu
ters as “seeds” for a maximume-likelihood approach, ingping
Yarowsky’s decision lists [8], to further improve the ptdn:
from the seeds, we compute the empirical distributié’ﬁlsﬁl
corresponding to each cluster. Then, for each data point, we
compute the log-likelihood ratio with respectio, P;, and we
sort the points. This sorted list of log-likelihood ratioghgive

us an indication of which data points can be discriminatecemo
easily than others. By choosing a proportion of those object
with the highest (or, lowest negative) log-likelihood ceti we
create two new clusters and we re-estimate the empiricai-dis
butions; we then re-compute the log-likelihood ratios, ared
repeat the whole procedure until convergence. This praeedu
tries to approximate an optimum decision rule, where thescla
probabilities are computed “on-the-fly”. The resultify, P

are then fed into (2), and the “maximizing’is then computed
by an exhaustive search through a discretization of theviate
(0,1). Finally, among all the resultant clusterings (per projec-
tion and initial random splits), we choose the one which gjive
the highest value in (2).

For deciding when tatop growing the tree, we perform the
following: (i) For the mutual information case, we split thede
which yields the highestcreasein total score (1), until a specified
number of leaves has been reached, or the increase in total sc
is below a threshold-. (ii) For the probability of error case, we
split the node that yields the smalledgcrease in score (2), until
a specified number of leaves has been reached, or the scase (2)
below a threshold.

5. EMPIRICAL RESULTSFROM MULTISPECTRAL
IMAGING

To demonstrate the usefulness of the iterative denoisioggpiure
with information-theoretic optimization criteria, we p@med ex-
periments with aerial image data. Each data point corretsptm

a multidimensional pixel—each dimension represents aqodat
frequency band. Furthermore, the spectrum of each pixet-is a
tually adistribution of energy over frequencies. Hence, with the
appropriate normalization, the spectrum of a data poxelgilays
the role of its “empirical distribution”.

The class labels of the pixels correspond to different types
of vegetation: runway, pine, scrub and swamp. Raftery’'s EM-
based clustering softwaraclust [3], applied on the original high-
dimensional data, yields a 24% misclassification rate.

Using mutual information as the objective optimizationreco
and setting the target number of leaves to 4, the ISPDT fitiés sp
the root into two sets, one of which is pure, contains 100% of
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Fig. 2. The ISPDT, when the objective is maximization of mutuabmfation. Depiction of labels is as follows: runway corresgs
to circles, pine to triangles, scrub to crosses and swampsto &kach node is transformed differently (the correspogdinprincipal
components are shown). Cluster boundaries are depictadiasgthed lines.

the runway pixels and becomes a leaf. The other node is furthe sum of KL-divergences, or the maximization of ardivergence.
split into two sets: one becomes a leaf and contains 96.2%eof t These criteria correspond, as the data dimensionality goas
swamp pixels (and less than 5% of the other classes), andftée o finity, to: (i) the maximization of mutual information betew the
is again divided into: 71.2% of pine and 92.5% of scrub. Thalto  class label and the path from the root to the leaf in the ISPDT,

misclassification rate is 11.5%. Figure 2 shows the itesatie-
noising tree; each node shows the data points under thecpooje
that maximizes the mutual information objective. Finallsinga-
divergences as the objective optimization score, the ISR&XTthe
same structure as above, but slightly different leaf coritioos:
100% of runway, 96% of scrub (but with 20% of pine), 87% of
swamp, and 76% of scrub, respectively. The total misclassifi
tion rate is 11%.

In all cases, each node of the ISPDTs transforms thediata
ferently from the other nodes, driven by a local optimization crite-
rion. This transformation corresponds to feature extoagtiliffer-
ent features are suppressed (or amplified) by each transfiom
(corpus-dependent-feature-extraction property [4]).

We have also performed experiments with other types of data;
in particular, we obtained interesting results in text gatezation,
where the task is to cluster together documents that have sigm
nificant association (they are on the same topic, genre, Brer
liminary results [6] have shown the ISPDTSs are very succtasf
this task, since different transformations amplify thengfigance
of different words in the documents, thus permitting reasde
discrimination.

6. CONCLUSIONS

In this paper, we presented two criteria for transforming sjpilit-
ting nodes in an ISPDT for unsupervised classification. Thie-s
ting criterion at each node is either a maximization of a g

and (i) the minimization of the probability of misclass#iion, re-
spectively. We demonstrated the effectiveness of theémipees
using real multispectral imaging data.
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