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Motivation [Theoretical Results:
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Inference using the estimates of the true low-dimensional representations
Fine-tuning, prompt augmentation have increased the number converges to inference using the true low-dimensional representations. y_{i} = toxicity // bias \in R
of effective “models” being deployed 2. If h_{n} is consistent using true low-dimensional representations then
h_{n} is consistent when using estimated low-dimensional representations
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