

Statistical inference on black-box generative models in the data kernel perspective space

Hayden Helm, Aranyak Acharyya, Younger Park, Brandon Duderstadt, Carey Priebe

Nomic AI x Helivan x Johns Hopkins University

Motivation

Fine-tuning, prompt augmentation have increased the number of effective "models" being deployed

it is imperative to develop statistical tools to study populations of models.

This work extends recent theoretical results on low-dimensional representations of black-box generative models to inference on the models.

The low-dimensional representations – or perspectives – of the models can be used to predict properties of fine-tuning mixtures // other model-level covariates such as sensitivity, toxicity, etc.

Inference in the low-dimensional space can offer greatly improved evaluation efficiency.

Methods

Consider models $\{f_i\}, i \in [n]$.

Consider queries $\{q_i\}, j \in [m]$.

Consider replicates $\{f_i(q_i)_k\}, k \in [r].$

Let g be an embedding function that maps model responses $f_i(q_i)_k$ to \mathbb{R}^p

Let $\bar{X}_i \in \mathbb{R}^{m \times p}$ denote the matrix whose j-th row is $\bar{x}_{ij} = \frac{1}{r} \sum_{k} g(f_i(q_i)_k)$

Let $y_i \in \mathbb{R}$ be a model-level covariate $(y_i = s(f_i) \in \mathbb{R}^p)$

With $D_{ii'} = \frac{1}{m} ||\bar{X}_i - \bar{X}_{i'}||_F$ and $\widehat{\psi} := \text{MDS}(D) \in \mathbb{R}^{n \times d}$ and decision function $h: \mathbb{R}^d \to \mathbb{R}^p$ then ...

Theoretical Results:

- Inference using the estimates of the true low-dimensional representations converges to inference using the true low-dimensional representations.
- 2. If h_{n} is consistent using true low-dimensional representations then h {n} is consistent when using estimated low-dimensional representations

Theorem 2. Under technical assumptions de-

scribed in Appendix A, if $(h(\cdot; T_1), \dots, h(\cdot; T_n))$

is consistent for Pyly with respect to H, then

 $(h(\cdot; \widehat{T}_1), \dots, h(\cdot; \widehat{T}_n))$ is consistent for $P_{\psi V}$

Theorem 1. Under technical assumptions described in Appendix A.

 $\mathcal{R}_{\ell}(P_{thY}, h(\cdot; \widehat{T}_n)) \rightarrow \mathcal{R}_{\ell}(P_{thY}, h(\cdot; T_n))$

as $m, r \to \infty$, for every n.

Predicting presence of data type in training mixture

y {i} = "Was data type X in fine-tuning mixture" \in {0,1} n=50 (25 where $y_{i} = 0$, 25 where $y_{i} = 1$); queries either relevant to X or orthogonal h = 1-NN

Predicting sensitivity / toxicity

y {i} = toxicity // bias \in R n=59 (model graph around AlphaMonarch-7B) queries from toxicity // bias benchmarks h = 1-NN

