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1. INTRODUCTION

‘Future breakthroughs will stem from the
fusion of knowledge from different fields . . . ’

The above sentiment has been expressed many times by
many people in recent times [1–4]. Signals extracted from
the scientific literature concerning emerging technologies
may be useful in predicting when and where technolog-
ical breakthroughs might be expected [2,3,5–14]. These
two ideas together suggest our main premise: that emerging
relationships between disparate fields may presage potential
scientific breakthrough, and that prediction of such break-
throughs based on analysis of the scientific literature may be
possible. In his 1976 paper ‘Guarding Against Technologi-
cal Surprise’, George Heilmeier wrote that ‘[t]echnological
surprise is not a term that conforms to but one definition’
[15]. For our purposes, ‘Mitigation of Technological Sur-
prise’ (MTS) is defined here as the identification of potential
breakthroughs before they happen [16]. (Note that it is
the surprise we wish to mitigate; not the technology.) In
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this context, ‘Horizon Scanning’ (analogous to early warn-
ing radar) is defined here as the process of systematically
exploring the external environment (in this case, the scien-
tific literature) in an effort to detect emerging trends [17];
‘Quantitative Horizon Scanning’ (QHS) refers to the use of
statistical inference methodologies to this end, as opposed
to having human analysts perusing the literature for signs
of potential breakthrough. This latter approach—relying
solely on human analysts’ perusal of the literature—may
work well when breakthroughs come from within individual
scientific fields for which dedicated subject matter experts
are available; alas, it is no longer the case that we have
available to us human analysts with expertise across the
comprehensive range of scientific endeavor [18]. In math-
ematics alone, Jacques Hadamard (1865–1963) has been
described as ‘one of the last universal mathematicians,’
[19] and modern mathematics, science and technology as
a whole is even less amenable to universalists. Thus, in
this article, we provide a quantitative methodology based
on analysis of the scientific literature for automatically
identifying emerging relationships between disparate fields
that may presage potential scientific breakthrough. In the
grand tradition of statistical prediction, our goal here is to
reduce the search space of potential emerging relationships
between disparate fields.

Unfortunately, ‘the identification of potential break-
throughs before they happen’ is a vague data analysis
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problem and ‘the scientific literature’ is a massive, com-
plex dataset. Hence QHS for MTS might seem to be pro-
totypical of the data miner’s lament: ‘Here’s some data
we have. . . can you find something interesting?’ [20].
Nonetheless, the problem is real and important, and we
attempt in this manuscript to develop an innovative statisti-
cal approach thereto—not a final etched-in-stone approach,
but perhaps the first end-to-end quantitative methodology
explicitly addressing QHS for MTS.

2. QHS FOR MTS: PRINCIPLES, OBJECTIVE
AND INFERENCE TASK

Our QHS for MTS guiding principles are (1) technolog-
ical surprise often involves the (unanticipated) fusion of
ideas from disparate subject areas, and (2) identification
of individuals or small groups working (or privy to work)
in disparate subject areas is a quantitative horizon scan-
ning inference task which can help mitigate technological
surprise. On the basis of these principles, we develop an
inferential approach based on the analysis of scientific lit-
erature which can be used as a predictor of the potential
for technological surprise.

On the basis of the foregoing principles and the formu-
lation we develop in the sequel, we propose a well-defined
QHS for MTS objective: We wish to identify disparate
scientific subjects across which a target author set has dif-
ferential collaborative potential with respect to a baseline
author set.

For illustration, we will present a concrete special case
of QHS for MTS inference; this example fits within a more
general QHS for MTS framework. Let Y1 and Y2 denote
two collections of authors, and let �1 and �2 denote two
technology subject categories. We develop a statistic which
captures information concerning ‘priviness’—the degree
of sharing in secret or private knowledge—of author sets
to technology categories. This statistic allows for a well-
defined QHS for MTS inference task: Large values of the
statistic indicate that author set Y2 is at risk of being
technologically surprised by author set Y1 at the (�1, �2)

technology interface. Ergo, finding such pairs is a QHS
for MTS inference task. Given author sets Y1 and Y2, our
approach suggests that further investigation is warranted
when (1) the statistic is operationally and statistically
significant, and (2) some measure s(�1, �2) of the surprise
factor for technology category pair (�1, �2) is large.

To preview our example presented in Section 5 below,
consider a collection of computer science journal articles.
The author sets Y1 and Y2 correspond to authors identified
with Great Britain and Germany, respectively. The articles
are clustered into technology subject categories �1 · · · �m,
and for each (�i, �j ) pair a log-odds-ratio statistic is used to

assess differential collaborative potential for the two author
sets Y1 and Y2 at the (�1, �2) technology interface.

3. DATA PROCESSING

Statistical analysis of scenarios comprising multiple
modes of association among a collection of actors over time
is of ever-increasing importance in a wide-ranging array of
applications; for example, communications analysis—who
talks to whom, about what, and when. Random graph mod-
els are commonly used to model association among actors,
and time series of attributed multigraphs, wherein vertex
attributes encode relevant information about the individ-
ual actors and edge attributes encode modes of association
between actors, are a natural extension. Our time series
of attributed multigraphs is derived from (1) a collection
M = {(Ai , ti , xi)} of (participants, time, content) scien-
tific collaboration events (documents) where Ai is a subset
of the collection of all actors A (e.g., Ai denotes the authors
of the document), time ti ∈ R+ (e.g., the publication date
of the document), and xi is the content of the collabora-
tion (e.g., the content of the document), and (2) attribution
functions for vertices and edges.

Let X be a finite set, representing a collection of text doc-
uments from the scientific literature. Consider a collection
of functions on X. For our application, these represent meta-
data extraction functions providing document attributes. In
particular, we have f1 that extracts document authors, f2

that extracts document country affiliations, f3 that extracts
document institution affiliations, f4 that extracts document
subject identifications, f5 that extracts document keywords,
f6 that extracts document abstract, . . ., and fK that extracts
document time stamp. Thus each x ∈ X has associated with
it an author collection f1(x), a country affiliation collection
f2(x), an institution affiliation collection f3(x),. . ., and a
time stamp fK(x). Let A = ∪x f1(x) be the overall collec-
tion of authors active in X. Let C = ∪x f2(x) be the over-
all collection of countries active in X. Let I = ∪x f3(x)

be the overall collection of institutions active in X. From
this, we can associate author attributes with each a ∈ A,
such as country affiliation g2(a) ⊂ C, institution affiliation
g3(a) ⊂ I, etc.

Let G = (A, E) be our social network on A, where E

is the set of edges. For instance, we have available G =
(A, E;X), the coauthorship graph induced by X, where
uv ∈ E ⇐⇒ ∃x ∈ X s.t. {u, v} ⊂ f1(x). (Here we are
ignoring the hyper aspect of edges, for simplicity.) Define
Nk[a] to be the collection of vertices v such that there exists
a path in G of length less than or equal to k connecting a

to v. We can augment G with edges based on institution
affiliation, etc. We can also incorporate information external
to X, such as graduate student/postdoc connections, etc.
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Fig. 1 Notional depiction of subjects of interest derived from
a document cluster tree. Any node in the tree might identify a
subject of interest �, and then all documents (leaves) under that
node are identified with subject �. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

Let i1, . . . , ic identify author attributes and let yi ⊂
∪a∈Agi(a) denote a specified set of target values. Then
Y = {a : gi(a) ⊂ yi ∀ i ∈ {i1, . . . , ic}} is a collection of
authors of interest. In particular, with i = 2 and yi = {y∗}
with y∗ ∈ C, Y represents authors associated with a country
of interest.

Abstractly, we will let any subset � ⊂ X represent a
subject—the subject implicitly defined by the collection of
documents �. For example, if we let H(X) be a clustering
tree of X, then any node in the tree might identify a subject
of interest (see Fig. 1).

Given � ⊂ X, let G� be the social network G = (A, E)

where edges uv ∈ E are �-colored based on coauthored
documents in �. That is, uv ∈ E is �-colored ⇐⇒ ∃x ∈
� s.t. {u, v} ⊂ f1(x). For a ∈ A, let d�(a) denote graph
distance in G� from vertex a to an �-colored edge;

d�(a) = min{k : there is an �-colored edge incident

to a vertex v ∈ Nk[a]}.

For example, if there is an �-colored edge incident to a,
then d�(a) = 0; if d�(a) > 0 and there is an �-colored edge
incident to a vertex v ∈ N1[a], then d�(a) = 1, etc.

4. DETECTION STATISTIC

4.1. Privy Sets

Given b ∈ Z+, author subset Y ⊂ A, and document
subset � ⊂ X, consider

A(b,Y, �) = {a ∈ Y s.t. d�(a) ≤ b}.

DEFINITION: The set A(b,Y, �) represents the collec-
tion of authors in Y who are b-privy to the �-subject (see
Fig. 2).

Fig. 2 Notional depiction of the privy property. The three
inner-most vertices are 0-privy to the topic associated with the
two edges in the inner-most white region, the vertices in the
annulus are 1-privy, and the outer vertices are 2-privy. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Given b ∈ Z+, author subset Y ⊂ A, and document
subsets �1, �2,X ′ ⊂ X with �1 ∪ �2 ⊂ X ′, consider

pY = |A(b,Y, �1) ∩ A(b,Y, �2)|/|A(b,Y,X ′)|.

(Note that pY depends on b, �1, �2,X ′ as well as Y; we
suppress this dependence for notational convenience.)

DEFINITION: The quantity pY/(1 − pY) represents the
odds (with respect to subcorpora X ′) that Y-authors are
b-privy to the (�1, �2)-interface.

Let b ∈ Z+, Y1,Y2 ⊂ A, and �1,�2,X ′ ⊂ X with �1 ∪
�2 ⊂ X ′.

DEFINITION: The statistic

L̂(b,Y1,Y2, �1, �2,X ′) = ln

(
pY1/(1 − pY1)

pY2/(1 − pY2)

)

is the log-odds-ratio for differential b-collaborative poten-
tial at the (�1, �2)-interface for Y1 with respect to Y2. (Any
of the various smoothing approaches can be employed to
address the case of 0s in the 2 × 2 tables.)

Let �i and �j be leaves in H(X). Let s(�i, �j ) be
some distance (e.g., graph distance in H(X), or embedding
distance, or an a priori distance provided by expert
knowledge) between �i and �j ; the larger the value of
s(�i, �j ), the more ‘surprising’ is a collaboration which
spans �i and �j .

Based on the foregoing formulation, we reiterate our
QHS for MTS objective: We wish to identify disparate
subjects across which a target author set has differential
collaborative potential with respect to a baseline author set.

Statistically significant large values of L̂(b,Y1,Y2, �i, �j ,

X) for which s(�i, �j ) is large indicate that Y2 is at risk
of being technologically surprised by Y1 at the (�i, �j )-
interface. (Note that p-values are available for H0 : L ≤
0 vs. HA : L > 0 for appropriate sampling distributions
on the attributed graphs.) Ergo, finding such pairs is a
QHS inference task for MTS. Given one-sided p-values
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Fig. 3 Notional depiction of L̂ij vs. sij . Each dot represents
a subject pair, with statistical significance (p ≤ τ ) indicated
in red. The large red dot is the first choice for further
investigation—the subject pair maximizing some user-specified
function f (L̂, s, 1/p) which is monotonically increasing in all
three arguments. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

pij for L̂(b,Y1,Y2, �i, �j ,X) for the collection of pairs
(�i, �j ) under consideration, our approach suggests that
pairs (�i, �j ) for which pij is small and L̂ij and sij are
large warrant further investigation. See Figure 3. Values in
a user-defined region of the upper-right corner of this plot
are candidates. (A correction for multiple comparisons can
be employed; however, since the p-values are used here
simply for selection of pairs of interest, such a correction
may be unnecessary in many applications.)

4.2. Incorporating Time

Let I ⊂ R+ be a time interval, and consider XI = {x ∈
X s.t. fK(x) ∈ I } to be the documents with time stamp
in I . Given � ⊂ X, let �I = � ∩ XI , and let d�I

(a) denote
graph distance in G�I

. Then the time-dependent b-privy sets
are defined by

A(b,Y, �I ) = {a ∈ Y s.t. d�I (a) ≤ b}.

That is, A(b,Y, �I ) denotes all authors in Y who were
b-privy to subject � during time interval I . Given
time intervals I1, I2 ⊂ R+, and altering our log-odds-
ratio statistic to consider just a single author set but two
time intervals, L̂I1,I2(b,Y, �1, �2,X) provides a statistic
for detecting differential b-collaborative potential at the
(�1, �2)-interface for Y over time.

The Privy Prediction Conjecture: Let QI(b,Y) be
the collection of {�1, �2} pairs such that |A(b,Y, �1I

) ∩
A(b,Y, �2I

)| > 0. Let b′ > b. Consider the conditional
probability conjecture that

P [{�1, �2} ∈ QI2(b,Y) | {�1, �2} �∈ QI1(b,Y) &

{�1, �2} ∈ QI1(b
′,Y)] >

P [{�1, �2} ∈ QI2(b,Y) | {�1, �2} �∈ QI1(b,Y)].

For example, with b = 0 and b′ = 1, we are interested in
the conditional probability that Y is now 0-privy given that
Y was not previously 0-privy. To the extent that Y having
previously been 1-privy increases the probability that Y is
now 0-privy, identifying 1-priviness (gaining potential) can
predict 0-priviness (having potential).

The Privy Prediction Conjecture suggests that privy
analysis can hope to predict future breakthroughs stemming
from the fusion of knowledge from disparate fields.

5. EXAMPLE FROM THE SCIENTIFIC
LITERATURE

We present an example of privy analysis of scientific
literature using the Scopus database.

‘Scopus is a database of abstracts and citations for
scholarly journal articles. It covers nearly 18,000 titles
from more than 5,000 international publishers, including
coverage of 16,500 peer-reviewed journals in the scientific,
technical, medical, and social sciences (including arts and
humanities) fields. It is owned by Elsevier. . .’ [21].

We consider a total of |X| = 230931 Computer Science
documents from time intervals I1 = 1995–1998 and I2 =
1999–2000. We consider author subsets from all of Scopus
identified with Great Britain (gb) and Germany (de); the
number of authors is roughly the same for each country and
each time interval: ngb,1995−1998 = 218848; nde,1995−1998 =
229139; ngb,1999−2000 = 179247; nde,1999−2000 = 185161.

The abstracts are clustered into 256 clusters via CLUTO,
a freely available software toolkit for clustering [22].
Figure 4 presents an MDS embedding [23] consisting
of 48 super-clusters. This clustering and super-clustering
will be used to identify disparate subjects—two clusters
which fall into different super-clusters will be judged suf-
ficiently disparate. (NB: this restricted definition of sur-
prise—as opposed to the purely distance-based definition
s(�i, �j ) provided above—is suggested by the requirement
for inference on disparate fields across which no single
human analyst has sufficient expertise. Indeed, if docu-
ments are clustered explicitly by available subject matter
expertise, providing super-clusters as in Figure 4, then this
restricted definition of surprise corresponds directly with
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Fig. 4 MDS embedding of 48 super-clusters of 230931 Computer Science abstracts from 1995 to 2000. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

the ‘disparate subject areas’ requirement of our QHS for
MTS exploitation task.)

Figure 5 presents results from our privy analysis, with
one dot for each of the

(256
2

)
cluster pairs. The left plot

is for b = 1 at I1: red denotes 1-privy, not 0-privy, and
statistically significant (here we consider the two-sided test)
at I1; black denotes 1-privy, not 0-privy, and not statistically
significant at I1; and green denotes also 0-privy at I1. Thus
the red and black together provide the candidate cluster
pairs for moving to 0-priviness (having potential), and the
red provide the candidate cluster pairs which are already
1-privy (gaining potential). The right plot is for b = 0 at
I2; color is inherited from I1. There are 29 big filled dots
denoting statistically significant cluster pairs for b = 0 at
I2: 7 green, 6 black, and 16 red. From the Privy Prediction
Conjecture, we define the Qf actor to be the ratio

Qf actor =
P [{�1, �2} ∈ QI2(b,Y) | {�1, �2} �∈ QI1(b,Y)

&{�1, �2} ∈ QI1(b
′,Y)]

P [{�1, �2} ∈ QI2(b,Y) | {�1, �2} �∈ QI1(b,Y)]
.

If this ratio is greater than one, then identifying 1-priviness
(gaining potential) can predict 0-priviness (having poten-
tial). For this data, we obtain Qfactor ≈ 2.5. The maximum
surprise statistically significant red dot in the right-hand plot
(arg maxtopicpair(i,j) f (|L̂ij |, sij , 1/pij )) denotes two clusters
which are in distinct super-clusters. Therefore, privy analy-
sis can hope to predict future breakthroughs stemming from
the fusion of knowledge from disparate fields. (Human ret-
rospective analysis is necessary to determine which, if any,
of the indicated fusion candidates are of actual practical
concern.)

6. EXAMPLE MATHEMATICAL MODEL

‘That’s all well & good in practice, but how
does it work in theory?’

We present here a sketch outline for a mathematical
model relevant to our privy analysis framework and to the
example from the scientific literature presented above. The
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Fig. 5 Results from privy analysis of Computer Science data set.
See text for description. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

purpose of this section is to provide hints as to useful the-
oretical constructs in this context.

Lee and Priebe [24] present a latent process model
for time series of attributed graphs. For each v ∈ V , let
Av be a continuous-time, (K + 1)-state stochastic process.
For each k ∈ {0} ∪ [K], let Xv,k(t) = ∫ t

t−1 1{k}(Av(s))ds;
Xv,k(t) is the amount of time that the process Av occupies
state k during interval (t − 1, t], so that

∑K
k=0 Xv,k(t) =

1. Let puv,k(t) = Xu,k(t)Xv,k(t). At time t ∈ N, for
each {u, v} ∈ (

V

2

)
, attributed edge uv(t) is discrete ran-

dom variable on {0, 1, . . . , K} with probability vector
[1 − ∑K

k=1 puv,k(t), puv,1(t), . . . , puv,K(t)]T , thus defining
graph G(t). Now consider ‘augmentation from the past’:
�X′

v(t) = ( �Xv(t) + cv(t)�θv(t))/(1 + cv(t)||�θv(t)||1)
where cv(t) ∈ [0,∞), �θv(t) = [0, θv,1(t), . . . , θv,K(t)]T ,
and θv,k(t) = ∑

e:d(v,e;G(t−1))=1 I {a(e) = k}/|{e : d(v, e;
G(t − 1)) = 1}|. Our time series of graphs is produced as
above, with bias introduced into the dot product probabil-
ity computation based on the graph at time t − 1, using
puv,k(t) = X′

u,k(t)X
′
v,k(t).

Figure 6 presents simulation results from this model,
analogous to the experimental results presented above,
indicating privy prediction capabilities. The left plot is for
b = 1 at I1: red denotes 1-privy, not 0-privy, and large
at I1; black denotes 1-privy, not 0-privy, and not large at
I1; and green denotes also 0-privy at I1. The right plot
is for b = 0 at I2; color is inherited from I1. The plot
indicates behavior relevant to privy prediction which holds
by model construction: red are stochastically larger than
black.
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Fig. 6 Simulation results indicating privy prediction capabilities.
See text for description. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

THEOREM: Let cv(t) > 0. Then the Privy Prediction
Conjecture holds. Sketch:

P [v ∈ A(0,Y, �t )|v �∈ A(0,Y, �t−1)]

= wP [v ∈ A(0,Y, �t )|v �∈ A(0,Y, �t−1) and

v ∈ A(1,Y, �t−1)] + (1 − w)P [v ∈ A(0,Y, �t )|v
�∈ A(0,Y, �t−1) and v �∈ A(1,Y, �t−1)]

< P [v ∈ A(0,Y, �t )|v �∈ A(0,Y, �t−1) and

v ∈ A(1,Y, �t−1)]

by construction.
Now pass from author sets A to subject pair sets Q.

7. CONCLUSIONS

We have produced theory and methods for Quantitative
Horizon Scanning (QHS) for Mitigation of Technological
Surprise (MTS), approaching the task from the standpoint
of mathematical statistics—with explicit guiding principles
and well-defined inferential goals. The illustrative example
presented above provides a concrete special case within a
more general QHS for MTS framework which we have
elucidated. The result is perhaps the first true inferential
theory for QHS for MTS.

In summary, we have presented motivation, a quantitative
problem formulation, and a statistical inference method-
ology for QHS for MTS. Our guiding principles are (i)

Statistical Analysis and Data Mining DOI:10.1002/sam
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Technological surprise often involves the (unanticipated)
fusion of ideas from disparate subject areas, and (ii) Iden-
tification of individuals or small groups working (or privy
to work) in disparate subject areas is a quantitative horizon
scanning inference task which can help mitigate technolog-
ical surprise. Our objective is to identify disparate subjects
across which a target author set has differential collabo-
rative potential with respect to a baseline author set. Our
inference task is to find document subset pairs for which
|L̂(b,Y1,Y2, �i, �j ,X)| is statistically significantly large.

Our solution formulation has admittedly given short shrift
to numerous important practical issues, and sticky wickets
abound. We discuss here a few of the most pressing.

(i) Text document processing and clustering is a rich and
active field with many and various competing methodolo-
gies (see, e.g., [25,26] and the myriad references provided
therein); the methodologies we have employed are sim-
ple, off-the-shelf, for illustrative purposes. Investigation of
the robustness of privy analysis to these choices is ongo-
ing. (We conjecture that privy analysis is more sensitive to
graph construction details and author ambiguities than to
text document processing and clustering methodologies.)

(ii) Author disambiguation (see [27] for a recent
review) is an important aspect of the type of analysis
we have outlined; our approach will suffer significantly if
this disambiguation is poorly done. (In particular, while
SCOPUS has unique author identifications which in theory
provide a solution to the author disambiguation problem,
Science Citation Index has no such built-in solution.)
We recommend theoretical, simulation, and experimental
investigation of the effect of author ambiguity in the context
of our privy analysis.

(iii) The social network construction is of paramount
importance to our privy analysis. In fact, we suggest
that our approach will be robust to document processing
and clustering vagaries but sensitive to small changes in
the graph structure. Elaborate Knowledge Base-induced
social structures [11,28–31] might be relevant, and various
methodological alterations to our approach—e.g. expected
commute time or diffusion distance as opposed to shortest
path distance—suggest themselves. We are considering
the cardinality of author sets only, but not all vertices
are created equally—some authors are more influential
than others and should carry more weight in our privy
analysis. Similarly, not all edges are created equally—some
papers are more important than others, and perhaps a
maturity index such as the Technology Readiness Level
[32] could be usefully employed. We have considered
priviness as a binary property. Yet someone who has written
multiple articles on a topic may be considered to be more
knowledgeable than someone who has written just one,
suggesting that a weighted privy analysis is appropriate.
Also, we have considered shortest-path priviness. As

mentioned above, some measure of diffusion or expected
commute time could be used instead. This would utilize the
number of paths to a topic rather than simply the shortest,
and could incorporate weights according to the number
of publications and other measures of importance of the
papers and the authors. Furthermore, priviness need not
be defined solely through co-authorship. For example, it
is clear that if a paper cites another paper on a topic, this
is evidence that the authors are privy to that topic. The
citation graph can be used as a second graph (either on
the same vertices (authors) as the co-authorship graph, or
on the edges (papers)). Utilizing both types of information
should produce superior inference. There are folk theorems
that state that everyone is no more than six steps away from
everyone else (seemingly no matter how the social network
is defined). Without delving into the details of such claims,
we note that there is some sense in which larger values of
b become less and less meaningful in our privy analysis. A
diffusion approach would down-weight longer paths, and
perhaps there is a natural cut-off (b = 2?) beyond which
topic information is unlikely to flow. Such ideas can be
incorporated in the kernel of the diffusion operator or as
simply a hard threshold on calculations.

(iv) Time introduces several important considerations.
The first is the question of how to quantify memory/
currency: should time affect how strongly one is b-privy
today, given that the last time one was b-privy was t

years ago? The issues of memory (is it likely that one still
remembers one’s older work) and currency (is the work still
relevant to the topic today) need to be addressed. This is
related to a second issue: topics change in time. This is more
than the fact that science progresses and hence the work of
the past becomes less current than the work of the present,
but also the fundamental science of a topic can change.
For example, molecular chemistry has wrought fundamental
changes in biology, and the language used has changed
enough that the distance between the topics ‘biology’ in
1970 and ‘biology’ in 2010 may be as large as that between
‘biology’ and ‘physics’ in 1970. In addition, new topics
appear and old topics disappear as science progresses, and
this is an important consideration in QHS.

(v) Regarding the inference itself—the odds-ratio
p-value—we note that our odds-ratio is formally the same
as that for which inference is available, but sampling
details are relevant. There is also the issue of multiple
comparisons affecting any omnibus inference, which we
have ignored for the nonce. (For the exploitation task
considered herein—individual topic-pair inferences for the
purpose of identifying and ranking candidates—we need
not grapple with the multiple comparison issues.)

(vi) Finally, we note the need for, and difficulty of,
human retrospective analysis for evaluating methodologies
for QHS for MTS. This issue seems to us to be of
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critical importance, and we recommend a large-scale effort
toward this end. Evaluation of the detection performance,
sensitivity, and specificity of a method for QHS for MTS
is a difficult problem. One can do retrospective studies,
but even here it is difficult to decide on objective criteria
for ‘surprise’ and ‘breakthrough’, beyond the basic ones
we have articulated here. At a minimum, one would want
to look at the future papers by the authors in question
and determine if they are indeed ‘at the interface.’ One
could also measure whether the two topics are moving
closer together, indicating a fusing of the two topic areas,
or if a new topic is forming that incorporates information
from both topics. One could bring in other data, such as
patents, news reports, or other sources of information about
the purported breakthrough. It is a challenging problem to
design such experiments so that unbiased evaluations are
possible.

Despite these myriad issues, we have demonstrated,
through theory, simulation, and experiment, that identifying
1-priviness (gaining potential) predicts 0-priviness (having
potential)—Qfactor � 1. Thus we have shown that privy
analysis can hope to predict future breakthroughs stemming
from the fusion of knowledge from disparate fields.
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