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The Effect of Model Misspecification
on Semi-Supervised Classification

Ting Yang and Carey E. Priebe, Senior Member, IEEE

Abstract—Semi-supervised classification—training both on labeled and unlabeled observations—can yield improved performance
compared to the classifier based on only the labeled observations. Unlabeled observations are always beneficial to classification if the
model we assume is correct. However, they may degrade the classifier performance when the model is misspecified. In the classical
classification problem setting, many factors affect the semi-supervised performance, including training data, model specification,
estimation method, and the classifier itself. For concreteness, we consider maximum likelihood estimation in finite mixture models and
the Bayes plug-in classifier, due to their ubiquitousness and tractability. In this specific setting, we examine the effect of model
misspecification on semi-supervised classification performance and shed some light on when and why performance degradation

occurs.

Index Terms—Semi-supervised classification, finite mixture model, Bayes plug-in classifier.

1 INTRODUCTION

1.1 Probabilistic Model

ET (X,Y) ~ Fxy. The feature observation X is an

IR’-valued random variable. The nature of the observa-
tion is called a class label, denoted by Y and taking values
in a finite set {1,2,..., K}. For j = 1,..., K, denote the class
conditional distributions by F; = Fy_;, and assume we are
in the continuous case, so the class conditional densities f;
exist. Let m; = P{Y = j} be class priors, which can also be
referred to as component coefficients.

We assume that the class label Y is not observed, and our
goal is to classify the feature observation X with small
classification error L(g) = P{g(X) # Y}. Suppose we are
interested in learning probabilistic classifiers from semi-
supervised data given by

(Xla}/i): (XQaYvZ)a R (XZaYZ) ~ Fxy (Zld),
X/+17X[+27 s 7Xl+u ~ Fx (Zld)7

where u and ¢ are the numbers of unlabeled and labeled
observations, respectively, and the two types of data are
independent. We will assume a parametric model F
indexed by some parameter 6 for the density f of X. The
set of all parameter points O is called the parameter space
for the model. The true density f; belongs to the model F
with parameter space ©y. 0, € Oy denotes the true para-
meter. If f; is not an element of the assumed model F, then
we say the model is misspecified.
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Let 67, be the limit of the supervised MLE of ¢, and

0,50 the limit of the unsupervised MLE of 0. Both ¢;,, and

0,5y €Xist under mild regularity conditions.
For simplicity, we consider two-class classification
problems throughout this paper. The joint density of

(X,Y), fixy)(z,y), can be written as
mfle | D{y =1} + (1 —m)f(z | 2)1{y = 2}.

1.2 Previous Work

The questions of value and risk of semi-supervised learning
has been investigated by many authors. In this section, we
review four methods that have been used in the past to
analyze the performance of semi-supervised classifiers.

1. J. Ratsaby and S. Venkatesh [1]:

A two-class Gaussian mixture classification pro-
blem is studied in this paper to determine how the
error rate depends on the labeled sample size ¢,
unlabeled sample size u, and the dimensionality d.
Using Chernoff bounds and rate of convergence in a
uniform strong law for bounded functions, the
authors consider the effect of introducing n unlabeled
examples. Their method is to look at the reduction in
the size ¢ of the labeled samples needed to obtain a
given error rate and use that as a rough measure of the
worth of each labeled example in terms of the number
of unlabeled examples that are needed to compensate
for it. They conclude that the introduction of
unlabeled examples has reduced the demands on
the number of labeled examples and a rough measure
is given as a ratio of the unlabeled examples over the
reduction in labeled examples. This ratio also shows
that the efficacy of the unlabeled examples di-
minishes as the dimensionality d increases. Moreover,
the authors show that the semi-supervised classifica-
tion error rate deviates from the Bayes optimal error
rate by O(d® u~'%) + O(e™), indicating that the
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error rate contribution from the labeled examples
decreases exponentially fast in ¢, while the error rate
contribution from the unlabeled examples decreases
only as an inverse polynomial in .

The authors point out that because the answer to
the question is not immediate, even for the archetypal
problem of two d-dimensional Gaussian distributed
pattern classes, for definiteness they focus only on the
case of Gaussian mixtures in this paper, also making
the following assumptions: correct model assump-
tion, equiprobable pattern classes assumption, and
equal unit covariance matrices assumption.

2. Castelli and Cover [2], [3]:

These two papers study the relative value of
labeled and unlabeled observations in a two-class
classification problem. To set up the problem, it is
pointed out that for an identifiable family of
mixtures F, the mixture

fo(z) = m fi(x) + ma fo(x)

can be estimated from unlabeled observations.
Labeled observations are needed to label the classes.
The notation L(¢,u) is used to denote the error rate
of Bayes plug-in classifier resulted from ¢ labeled
observations and u unlabeled observations.

In the first paper, the first theorem is about the
value of labeled observations. Specifically, the error
rate of the Bayes plug-in classifier with one labeled
observation and an infinite number of unlabeled
observation is

L(1,00) = 2L* (1 — L*) < 2L,

where L* is the Bayes error.
The second theorem states that L(¢, c0) converges
to L* as £ — oo in the following way:

- lim%log(L(ﬁ, o0) — L)
~ - tog 2y [ VA ).
The quantity —log( [/ fi(z)f2(z)dz) is the Bhat-

tacharyya distance between the densities f(z) and
f2(x). Hence,

L(t,00) — L*

= exp{zlog <2\/ﬁ/ \/mdx)} + o(f).

This proves that labeled samples have an ex-
ponential value in reducing the probability of error.

In the second paper, the authors assume that the
class conditional densities are known, but not
labeled. The mixing coefficient is unknown. Con-
sidering finite ¢ and u, they show that under some
specific limiting conditions, labeled observations are
exponentially more valuable than unlabeled obser-
vations. In both papers, unlabeled observations
benefit the semi-supervised classification, although
not as much as labeled observations. This is due to
the correct model assumption.
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3. Zhang and Oles [4]:

To understand the value of using unlabeled data
under correct parametric model, the authors con-
sider binary classification problems and use Fisher
information matrices to judge the asymptotic value
of unlabeled data. In other words, they judge the
value of unlabeled data by evaluating its impact on
the efficiency of parameter estimation. Since, in a
correct model,

Ilabelcd+urzl[1bcl(ﬁd(9) - Ilabeled(g) + I’unlabeled(g)7

the conclusion is that including unlabeled data
always helps because Fisher information is increased.
4. Cozman and Cohen [5], [6]:

The key theorem in this paper is that the semi-
supervised maximum likelihood estimator (MLE)
converges to a parameter value that maximizes a
convex combination of the supervised and unsuper-
vised expected log-likelihood functions. Hence
under some regularity conditions on the density,
the limit of the semi-supervised maximum like-
lihood estimator can be proven to travel on a
continuous path connecting the two limits: the limit
of the supervised maximum likelihood estimator
and the limit of the unsupervised maximum like-
lihood estimator. The position of the semi-super-
vised limit on the path depends on the ratio of the
numbers of labeled and unlabeled observations. If
the fully supervised limit misclassification rate is no
greater than the fully unsupervised limit misclassi-
fication rate, then adding more unlabeled observa-
tion would improve performance when these two
limits are the same (i.e., when the model is correct)
and may degrade the performance when the two
limits are different (i.e., when the model is incorrect).

The authors write “regardless of the approach
that is used, semi-supervised learning is affected
by modeling assumptions in rather complex
ways.” “Results in this paper can be extended in
several directions. It should be interesting to find
necessary and sufficient conditions for a model to
suffer performance degradation with unlabeled
data” [5], [6].

1.3 Our Work

Unlabeled observations may degrade the classification
performance when the model is misspecified. In this paper,
we establish the relationship between model misspecifica-
tion and performance degradation in semi-supervised
classification for a restricted case. We show that under
some conditions, the probability that semi-supervised
classification results in performance degradation is deter-
mined by the two MLE limits, 6%, and ¢

sup unsup*

2 PRELIMINARIES

We focus our study and present examples in the area of
classification using finite mixture models. The classification
task will be handled by Bayes plug-in classifier with
maximum likelihood estimation.
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2.1 Bayes Plug-in Classifier

Let fo = fy, be the true mixture density. Suppose 71, ...
are estimates of the true component coefficients 1, . .
and fi,..
densities fy1,. ..
given by

77ATK
<y 0K,
.,f x are estimates of the true class conditional
, fox. Then the Bayes plug-in classifier is

gj(z) = argrinax frjfj(x)

There is a best possible classifier, ¢g*, which is defined by

g" = argmin L(g).
9

The minimal probability of error is called the Bayes error
and is denoted by L* = L(g*) = L(gy,), where

g5 (x) = argmax 0;.foj-
J

But since f; is unknown in practice, L* is unavailable.

2.2 MLE for Misspecified Models

When the model is misspecified under mild regularity
conditions, the MLE 6 is a strongly consistent estimator for
6%, the parameter vector which minimizes the Kullback-
Leibler divergence (K L) between the actual density of X
and the postulated parametric family F, where

KL(fo | f) = Ea,[log[fo(X)/ f(X)]].

See [7] for the general conditions for the existence of such
MLE, its consistency, and asymptotic normality (Assump-
tions A1-A6).

2.3 KL Divergence between Two Joint Densities
Let Fjoint ={f(X,Y |0);0 € ©} be a model, with the
discrepancy between the true joint density f;(X,Y) and
each element in the model defined by the Kullback-Leibler
divergence, that is, the discrepancy between any two
densities with parameter values 6 and ¢’ is

Jo(w,y)
Ty ()

KL(fy || fy ) = / log dFy(z,y).

2.4 Gaussian Mixture Models

Gaussian mixture modeling is at the heart of many
classification problems, such as computer vision, brain
image segmentation, speech recognition, etc. Although our
theoretical results are more general, the semi-supervised
classification examples in this paper are based on para-
metric family of finite Gaussian mixture models, i.e.,
families of probability density functions of the form

K
Xi~foeFg = {fa =Y mie(wil6)) w5 >0,
=1

K

2 2
Zﬂj =1,0= (7‘(’1,...,7‘(](,1,/1/1,0'1,...,U,K70'K) € @}7
J=1

where

© =(0,1)" " x (—00,00)% x (0,00)% c R*<!
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and ¢(- | §;) denotes a Gaussian density with parameter
0, = (u(y-,a?) [8].

It is important to consider identifiability here in order for
estimation procedures to be well defined. Borrowing
notation from [9], given an arbitrary g, we define the index
of the economical representation of g as

m(g) = min{m : g € F,}.

This means we always use the most parsimonious Gaussian
mixture model representation for a finite mixture of
Gaussians g. It also has the benefit of estimating fewer
parameters. For example, even though a mixture of two
Gaussians can be represented as an element in F3, we
would prefer to use F; as the model for estimation.

The likelihood under this model is unbounded. The MLE
of @ as a global maximizer of the likelihood function does
not exist. Singularities occur at certain points on the
boundary of the parameter space. In our examples, we
carefully design our experiments and pick initial values that
would in most cases keep us away from these singularities
and obtain a sensible local likelihood maximum with
desirable asymptotic properties. Full theoretical results
and regularity conditions are available in [10].

3 BIAS AND VARIANCE TRADEOFF

The performance of the Bayes plug-in classifier relies on
how good the estimates for the true parameters are. The
overall error rate comes from model bias (approximation
error) and estimation error. In this section, we conceptually
study semi-supervised misclassification rate from the point
of view of bias and variance tradeoff.

Let f, denote the best estimator of f, in F, in the
sense that

95, = argmin L(gy).
feF ’

Let the parameter associated with gy, , be 0,,:. Let feFhbe
the learned estimator with parameter 4. The dashed circle
(we are unclear about its real shape) is the collection of all
Bayes plug-in rules based on the model F and is denoted by
gr. Each element in gr represents a Bayes plug-in
classification rule. We demonstrate the various errors
associated with classifiers in Fig. 1, a modified version of
[11, Fig. 12.1]. The model bias is measured by L(gy,,) — L*
and the estimation error L(g;) — L(gy,,)-

3.1 Correct Parametric Model

If fo € F, then the model bias is 0, i.e., L(gy,,) — L* = 0. The
estimation error is the only thing that contributes to the
classification error rate. In the parametric setting, suppose
we use mean squared error on the parameter space to
measure the estimation error, then we have

MSE(®) = E[(6 — 0,)°] = (E[f)

The term (E[f] —6,,)° is a form of bias. In a correct
parametric model case, both supervised MLE and semi-
supervised MLE converge to the same parameter value 6.
We have (E[f] — 0,,)° = (E[0] — 6y)° since 6,,; = 6y. MLE is
consistent (asymptotically unbiased and variance is reduced

—Op)? + Var(d). (1)
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Fig. 1. Various errors in empirical classifier selection.

by adding more observations) under mild regularity condi-
tions. The classification rate will be reduced as the sample
size increases. In this case, semi-supervised Bayes plug-in
classifier is consistent. That is, Ly, — L* in probability as
u — 00.

3.2 Incorrect Parametric Model

If fo & F, then L(gys,,) — L* > 0. The change in the training
set, however, only results in the change in estimation error.
We again have (1). Adding unlabeled observations still
reduces the estimation variance. However, since the model
is misspecified, the supervised MLE and the semi-super-
vised MLE may converge to different parameter values.
Given a fixed labeled training set, more unlabeled observa-
tions may cause a larger estimation bias, that is,

(E[éé‘FU} - aopt)Q > (E[éd - eopt)Za

where ég and ég+u are the supervised and semi-supervised
estimates. In the case where the increase in the estimation
bias is more significant than the decrease in the estimation
variance in terms of classification error, semi-supervised
learning degrades the classification performance. Whether
degradation or improvement occurs is determined by the
bias and variance trade-off.

3.3 Semi-Parametric Model

In parametric models, degradation of performance is directly
related to incorrect modeling assumptions. We conjecture
that if we increase the model dimensionality (slowly) as a
function of the unlabeled sample size u (with labeled sample
size ¢ held constant) by using semi-parametric models, we
will in some cases avoid this problem. Moreover, in semi-
parametric models, by allowing the nuisance parameter
space to be infinite-dimensional, we are placing fewer
restrictions on the probability model from which the data
were generated as compared to a parametric model. There-
fore, estimators of parameters of interest in semi-parametric
models may have greater applicability and greater robust-
ness. However, along with a larger model which gives
smaller model bias, we face the possibility of larger
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estimation error. The influence of the model change on
classifier performance needs to be studied.

It is our hope that conceptually understanding where the
change in semi-supervised classification error rate comes
from will show the way to improvement of the design of
semi-supervised algorithms in practical settings. In any
case, it would be ideal to establish a quantitative relation-
ship between model misspecification and performance
degradation in semi-supervised classification. That is what
we will present next.

4 SEMI-SUPERVISED DEGRADATION THEOREM

4.1 On ldealization

Any theory necessarily involves idealization. Let L( f) be
the error rate of Bayes plug-in classifier based on maximum
likelihood estimate f, and KL(fy:, | f ) be the Kullback-
Leibler divergence between the superv1sed limit density
and the estimated density f. Our first idealization concerns
the relationship between L(f) and KL( o, |l f). To for-
mulate the theory, consider error rate as a function of the
joint distribution of (X,Y), ie., L:Fjun — [0,1], with
Kullback-Leibler divergence featuring as a measure of
divergence and Fisher information taking the role of
curvature on Fjy,.. Assume identifiability (one-to-one
parameterization), then the discussion can be carried out
on the model Fj,,, as well as on the parameter space.
Among all of the parameter values we can possibly obtain
by using maximum likelihood estimation, we have a good
reason to believe that in terms of accuracy, in some cases,
the supervised MLE limit 6; , is the best parameter value in
a small neighborhood of parameter space of the assumed
model (in some cases we even have ¢, = 0,,:). Note we do
not deny the possibility that it is not. As a matter of fact, it is
very possible that there are other parameter values that give
a lower or the same error rate as ¢;,,. However, in the
scenario of performing maximum likelihood estimation
under some smoothness conditions, these values are
unlikely to be reached; and even if they are reached by
chance, they are relatively less significant in the sense that
in our discussion of the asymptotic behavior of semi-
supervised maximum likelihood estimator, as long as there
are only finite number of such values, they are not what the
estimator will ultimately converge to and hence will not
affect the asymptotic theory significantly. Therefore, treat-
ing 07, as the best parameter value either in a small
neighborhood or in the whole the parameter space (if that’s
the case) still stands a chance of giving us a good
approximation of the truth. Furthermore, we argue that
since the performance of Bayes plug-in classifier depends
on how good the parameter estimates are, given that 07, is
the best parameter value in a small neighborhood of the
parameter space in the assumed model, with the Bayes
plug-in error rate being a continuous function in 6,
parameter values closer to ¢;,, in that small neighborhood
should lead to better classification performance. With this
idealization, we have a hope of dealing with the problem at
hand and simplifying the discussion from a functional
space to the parameter space. For the completeness of the
theory, we will discuss under what assumptions it is true
and how robust it is in practice when the assumptions are
violated.
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4.2 Intuition
Define a KL ball to be

Brr(0%,¢) ={0 € © : KL(fo- || fo) <€}
Let

sup L(Bkr(0",€)) = sup{L(gs) | 0 € Brr(0",¢)},
inL(BKL(e*,G)) = 1nf{L(gg) | 0 e BKL(G*,G)}.

If L(gy, ) < L(gs,. ) then as ¢ — oo, and ¢/u — 0, there
should exist € > 0 and € > 0 such that

sup L(Bgr (6%

sup?

)) < lnfL(BKL(eunsuw ))

That is, if L(gy,. ) < L(gy, ), then intuitively there should
exist small nelghborhoods around the two MLE limit
densities such that in terms of error rate, the worst density
in the neighborhood around f() is still better than the best
density in the neighborhood around fe,,..,- This suggests
that semi-supervised learning eventually degrades the
performance in this case. And the occurrence of degrada-
tion can be closely predicted by the discrepancy between
the estimated densities and supervised limit density. This
intuition gives rise to our theorem in the next section.

4.3 Lemma and Theorem
For the lemma, theorem, and corollaries, we assume that
05, and 0, exist under the current model F as limits of

MLE. All the results are stated only under the theoretical
setting of the paper.

Lemma. For any fixed finite { or £ — oo, as £/u — 0, the limit of
the maxima of semi-supervised likelihood function is the fully
unsupervised MLE limit 0, . That is, let é<1+u> be the semi-
supervised MILE when the sample size is £ for labeled data and
u for unlabeled data, then as ¢/u — 0,

{é(lJru)} OZILSUP Ve.

Proof. Suppose in semi-supervised learning the samples
are realizations of labeled samples (X,Y) with prob-
ability A and of unlabeled samples X with probability
1 — X. Then the theorem in [6] states that the limiting
value 6* of MLE is

argmax
9

( )\Ef(X.Y) [log f(X,Y | 0)] + (1 — )‘)Ef(X‘,Y) [log f(X | 0)] ),

a convex combination of the supervised and unsuper-
vised expected log-likelihood functions. For an arbitrary
finite value of ¢, as ¢/u — 0, A = ¢{/u — 0, indicating in
the limit, §* maximizes Ejx y)logp(X | 6)], thereby by
definition is ¢}, . By a similar argument, as ¢ — oo, and

¢/u— 0, the limit of the maxima of semi-supervised
learning likelihood function is 6; ]

unsup*

Semi-supervised Degradation Theorem. If L(fp )<
(fgmw), then for £,u >0, as £ — oo and {/u — 0,

2097

W{L(f;,) < L(f;,,,)}
- W{KL(f,, | f,) < KL(fo,

i )b =

sup

And we have

/‘};1}}/1?14}0 P{L(féz) < L(fé(“ u) )}
- 5131;) P{KL(fG:up ) < KL( sup H ‘fe‘”’”“’ }

Proof. As ¢ — oo, the supervised estimator converges to
0%, We also have, by lemma, as ¢ — oo, and ¢/u — 0,

sup*

the semi-supervised estimator converges to 6 As

un. 971[)

¢ — o0, and ¢/u— 0, by the continuous mapping
theorem, we have

W{L(f;) < L(fy,. )} == W{L(fa,) <

and

L(fy,.,)}>

W{KL(fs,
W{KL(fo,

| f5,) < KL(fa,, | f3.)} —
I fo,,) < KL(fa;, Il for,..,)}-

Since
{L(fe,,) < L(fs,,)} =1,
and
W{KL(fe,, || fo:,,) < KL(fo:,,

by the Slutsky’s theorem, we have
W{L(J;) < L(J;, )}

~ WKL(fa,, || f;,) < KL(fa,, | f3.,)} = 0.

Taking expectations on both sides, the rest of the

I fo,.,)} =

theorem follows. m|

Corollary 1. If L(fy., ) < L(fs,,,, ), then for a given misspecified
model, 3¢, s.t.

Yim PALCS;) < LS., )} >0

That is, semi-supervised classification yields degradation with
positive probability as u — oo.
Proof. Given ¢, Je; s.t. @ € Bgr(6%

sup?
sup L(BKL(G:UP, 61)) < iIlfL(BKL(QZ”sup, 62)).

Therefore, we have lim P{L(f;) < L(féam)} >0 for
such 4. ' O

€1). As u — 00, Jeg s.t.

In the finite case, we do not claim that either of the
following is true under general conditions.

1{L(fy,) < L(f;,,,)}
= W{KL(fa,, || f5,) < KL(fo,,, | f3,.)}>
PLL(f;,) < L(f;,,,)}
= P{KL(fy,, Il f,) < KL(fo,

| for,.,) 1}

u]
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They are true in the limit, that is, as { — oo, and ¢/u — 0, or
when error rate L as a function of the joint density fy is
convex, uniquely minimized at ¢;,,. The convexity implies

KL(fo., |l £3,) < KL(fo:,, |l £3,) = L(f3,) < L(f3,)

-
and it suffices to show that the above two equations hold by
a simple argument under this condition.

Corollary 2. If error rate L as a function of the joint density fy is
convex, uniquely minimized at 0%, , then for a given model, if
by < by, then we have

sup’

lim P{L(f0

U—00

< L(f3,,,,)}
< lim P{L(f;,) < L(f;, )}

Proof. For ¢, < {5, we have

P{|‘é/1 eupH < Heunwp 9111)”}
< P{Heb supH < Heunsup sup”}
Where Héﬁ 97[1)“ = (06 9:717)) (Qtllp)(eé Qup) Geome-
trically, {6 : ( Gjup) (qup)(ﬁp 0%, <1} is the

ellipsoid around Hbup whose axis points in the direction

of the eigenvectors and whose axis lengths are given

by the square roots of the inverse eigenvalues of

1(0;,,)- Therefore, by the approximation of the KL ball

by a rescaled L2-norm neighborhood [12], we have
P{KL(fy:

o I fa,) < KL(far,, | S0}
< P{EL(fy, Il £5,) < KL(fo,,, Il fo;,.,,)}-

(We will discuss the approximation of the KL ball by a
rescaled L2-norm neighborhood in more detail in
Section 5.3.) This implies

Tim P{L(f, ) < L(f3, )}

< lim P{L(f; ) < L(fy, )}

a

Corollary 2 implies that as u increases, compared to a
smaller labeled data samples size ¢;, the larger labeled data
sample size ¢, situation has a greater probability of semi-
supervised degradation.

5 SIMULATION STUDY

In this and the next section, we consider a semi-supervised
classification example where the true density f, is essen-
tially a mixture of three Gaussians considered as a two-
component mixture density. The number of simulations is
1,000 for all examples. Note that the error rates denoted by
L are in fact estimates LA[M under 1,000 simulations. The
simulations were carried out using the R statistical
programming environment [13].

Suppose the model F for estimation is the collection of
mixtures of two Gaussians, giving us a semi-supervised
classification problem with a misspecified model when

K2 # p3-
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Fig. 2. The truth, supervised classifying, and unsupervised classifying
processes.
fol@) =26(@ [0,1) +3 | 26(a | 3,1) +26(z | 7,1)
o\r) = D) x ) 219 x ) 2 x B )
F = {fe =mo(z | m,o7) + (1 —m)p(z | pa,03),
0= (7T17/'l’1a0-%7/1'270—§) € 9}7
where
0 =1[0,1] x (—00,00) x (0,00) x (—00,00) x (0,00) C IR.
5.1 Assumption Verification

There are three Gaussian densities. With supervised
information, we can correctly categorize the second and
third Gaussian density as class 2. Since the misspecified
model allows only mixtures of two Gaussians, the learning
algorithm will combine the last two Gaussians to be one
Gaussian. In unsupervised learning, we conjecture that
without supervised information, the learning algorithm is
likely to combine the first two Gaussians as one Gaussian
and categorize it as class 1, while leaving the third Gaussian
to be class 2. The mistake unsupervised learning algorithm
makes is caused by the fact that the first two Gaussians are
closer compared to the last two Gaussians. This would not
have happened if the mean of the third Gaussian p3 is
smaller, say 4. Fig. 2 shows our conjecture as to what will
happen in these two learning processes.

From observing Fig. 2, the supervised result gives an
error rate very close to L* for the intersection point of the
two Gaussian curves is very close to the true intersection
point. It is obvious from Fig. 2 that the more we go from
supervised classification to unsupervised classification, the
more the intersection point will move to the right, causing
larger error rates. That is, L(fy: ) < L(fe:,, )-

To explicitly verify the condition L(fy., ) < L(fs,, ), the
key is to determine 67, and ¢, . The calculation of 0%y 18
straightforward.
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9*

_ *2
sup ( 1911[)7 :ul sup? Ul sup? M?s’up’ 0-29111))

= (0.5,0,1,5,5).

The calculation of 6}, ., needs to be done numerically and is

rather difficult, but there are several ways to approximate it.

o The heuristic argument above suggests that 6

unsup
could be close to the following value
% *2 *2
eu'rz sup (ﬂ-lunwp’ Mlunwp’ Ulun sup? p’?unwp’ UZuneup)

= (0.75,1.5,3.25,7,1).

This calculation is done based on the third
subfigure in Fig. 2. Note that holding all other
parameters constant, whether this is exactly how the
unsupervised classifying result turns out depends
on po3. The larger the value of p3, the closer the
unsupervised classifying result is to what happens
in the third subfigure in Fig. 2.

e If we estimate it using one simulated training set,
then the EM algorithm gives approximation

éo+50,000 ~ (0.75,1,3,7,1.1).

Our calculation shows that

KL(fO ” f075153257] ) > KL(fO H f075‘1,3,7,1 ]))

Based on the fact that 0., minimizes the KL divergence
between the truth f and the model F, we can conclude that
(0.75,1,3,7,1.1) is a closer approximation for 6., This
indicates that in the case of u3 =7, the semi-supervised
estimation process is not as extreme as that suggested by
Fig. 2 (it is imaginable that the process will be as extreme if,
say, pos = 10 or even larger).

Better estimates can certainly be reached with better
optimization algorithms. However, for the purpose of
verifying the condition of the theorem, what we really need
to be sure of is not the exact value of ¢,  , but whether

L(fy,) < L(fy,. ). Knowing that L'~ 0.046, L(fy )=~
0.048 L(f([) 75.1,3‘71.1)) ~ 0.248, and that (075, 1, 3, 7, 11) is a
close approximation of ¢; ., we feel safe to conclude that

L(fs,,) < L(fy,.,) and that the main condition of the

theorem is satisfied.

5.2 Asymptotic Result

Let AL = H{L(fg) < L(fOI )} and AI&L = H{KL(fgw H
fo,) < KL(fo, Il f5,.)}- Accordmg to the theorem, as ¢ —
oo and {/u = 0, AL — Ak, converges to 0 in probability.
This is demonstrated in the top two plots in Fig. 3. The two
blue curves represent kernel density estimates of A;, — Agy.
As { increases from 15 to 25 (from the left column to the
right column) and at the same time the ratio £ decreases
from 0.3 to 0.0125, corresponding to the limit conditions
¢ — oo and {/u — 0, the estimated density function of A; —
Ak, is concentrated at 0 for the first case, suggesting Aj, —
Ak, = 0 with high probability, and becomes even more so
in the second case.

5.3 Normal Approximation

The reason we have been using Kullback-Leibler divergence
as a measure of discrepancy is its connection with
maximum likelihood estimation. But Kullback-Leibler

2099
¢ _ 15 __  _
u 5 =03 1172000700125
o o
ge 2
g
‘S ©
[72]
Luko ©
>
Z
A <«
=}
4 VAN .
o o
10 -05 00 05 10 10 05 00 05 10
AL —Agr A —Agp,
o o
ge 2
Ew ©
172}
m@ ©
>
=
'5? <
z
8(\‘ N
o N~
10 -05 00 05 10 10 -05 00 05 10
Ap — Agist A — Agist

Fig. 3. Empirical asymptotic distributions of A, — Ax, and A — Agig-

divergence is not the only option. In fact, from the theorem,
it is quite clear that what is important is the “closeness” to
fg;up, whether the “closeness” is measured by Kullback-
Leibler divergence on a functional space or something else
on another space is not strictly fixed. Since the calculation of
probabilities involving KL is particularly difficult, here we
simplify the discussion from a functional space to the
parameter space by approximating the Kullback-Leibler
divergence by a rescaled L2-norm.
We have defined a Kullback-Leibler divergence ball as

Bri(0",6) = {0 € ©: KL(fy || fo) < ¢}

“For sufficiently regular models, in a small enough region
around the ’true’ distribution fy, the Kullback-Leibler
divergence as a function of 6 behaves like ‘rescaled’
Euclidean distance with the particular rescaling depending
on §*” [12]. That is, a KL ball can be well approximated by a
ball defined by a rescaled L2-norm neighborhood

1(6°)(0" — 0) < e},

where I(6*) is the Fisher information matrix evaluated at ¢*.
With this in mind, now we derive a formula to approximate
the probability of degradation for large samples. Even
though this formula is for our specific example, it can be
easily generalized to be used for problems of any mixtures
of exponential family densities. Assume L(fy;, ) < L(fs,, ., ),
then with ¢ > 1, we have,

B#",e)={0cO: (0 —0)"

é%}]iglwop[f;(éz) < L(0r1)]
= P{KL(fs,, || f5,) < KL(fo.,, Il for,.,)}

/ WKLo, || £) < KLU, | fo )} £, (8) dt

~ / {(t — 03,) " 1(07,)(t = 05,,)
<Oy — 020 (07,0

unsup sup sup un. QUP

O} - Jo, (1) dt
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Let N and MVN denote the normal distribution and
multivariate normal distribution respectively. For our
example, the large sample approximation distribution of
00 = (%, fu, 63, [, 63) is given by

T~ N<7T1,77T1(1 —7T1)>7
b
2
Q Iz} % 0
Sl [ )
o1 71 0 204
b

~ * * 2
{’ﬂ NJ\/[VN( [“22}70(“2’02 )>7
0y 0'2* ZQ

where
1 B
2% 3k
* s« 02 202
C(/LQ,O% ) = ﬁl (62 _ 1) )
203* 40%*

and §; and [, are the skewness and kurtosis, respectively.
For X following a finite mixture of Gaussian distribution
fo= Z?:l m; f(x|6;), the skewness and kurtosis are given by

1 K
Br= > il — ) - 307 + (s — w)?].
=

1 & ,
Ba = gzﬂj [3Uj +6(u; — )0 + (1 — u)4] :
=1

where p and o are the overall mean and overall standard
deviation. Putting everything together, the large sample
approximation distribution of 0, = (#, fi1, 62, fi2, 63) is

given by

™ Uy

fi1 25
&% ~ MV N a? DI I
fiz, 2

&3 a3’

where

s = 5% (p2 + p3),

o :\/.5*(03 +02) + .25 % 2 + .25 % 2 — 5% iy * pig,

and
(1 i
ml-m) o 4 0
4
2
g
0 Lo 0 0
4
. 204
5= 0 0 2L 0
4
1
0 0 0 4
03 202
0 0 0 B (a—1)
L 20%* 40%* ]
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TABLE 1
Approximation of the Probability of Semi-Supervised
Degradation
L_ps [ 31 4[5 ] 6 [ 7138729
Ap/10° 0.19 [ 0.18 [ 022 ] 0.30 [ 0.99 | 1.00 | 1.00
Afr/10% ]/ 0.00 | 0.00 | 0.00 | 0.01 | 0.97 | 1.00 | 1.00
Agis:/10% || 0.01 | 0.01 | 0.01 | 0.04 | 0.98 | 1.00 | 1.00

Here, (6, — QZHP)TI (Gjup)(ég — 0,,) is considered as a good
local estimate of K L(fy:, | f;) as well as a scaled variance-
covariance matrix. A A

Let Adisﬁ = ]1{(05 - atup)TI(etup)(G/ - ezup) < (0(+u -
Gjup)TI (0%)(Or+u — 07,,)}. The bottom two plots in Fig. 3
show the result of normal approximation. The two purple
curves represent kernel density estimates of Ay — Agg.
Again, as ¢ increases from 15 to 25 (from the left column to
the right column), and at the same time the ratio % decreases
from 0.3 to 0.0125, corresponding to the limit conditions
¢ — oo and ¢/u — 0, the estimated density function of Ay, —
Agist is concentrated at 0 for the first case, suggesting Ay, —
Agist = 0 with high probability, and becomes even more so
in the second case. Ay gives a pretty good estimate for
Agr, and it too captures the degradation behavior of Bayes

plug-in classifier in the semi-supervised learning setting.

5.4 Probability of Semi-Supervised Degradation
The Semi-Supervised Degradation Theorem, together with
the normal approximation, provides two different ways to
approximate the probability of semi-supervised degrada-
tion, the Kullback-Leibler divergence method and the
rescaled L2-norm method.

With the same example, we consider p3 € [3,9]. Accord-
ing to the theorem, a large ¢ and a small ¢/u ratio is required
to achieve a good approximation. Table 1 shows the
approximation result from 1,000 simulations with ¢ = 25
and u = 2,000.

The approximation result shows that the Kullback-
Leibler divergence method and the rescaled L2-norm
method approximate the probability of semi-supervised
degradation well for large p3. The poor approximation for
other cases is due to the fact that when 67, and ¢, are
close to each other, a good approximation can only be
reached by using a significantly larger ¢ and a significantly
smaller //u ratio (in order to shrink the By (0, €1) and
Brr(8},,5,» €2) to be extremely small relative to the distance
between 65, and 0;,,,,)-

Note that when 67, and 6 are close to each other,
degradation occurs with only a small probability. Therefore
in this experiment, even though it seems that the approx-
imation can be bad for some cases, it is accurate for the
cases that really matter, i.e., when semi-supervised classi-
fication degrades the performance, which are exactly the
cases we need to detect. The values of ¢ and ¢/u needed for
a good approximation depend on the problem at hand.

6 DiscussioN ON FINITE SAMPLE CASES

The conditions of the theorem involve taking limits. In this
section, we discuss what happens with finite samples, as we
see in practice.
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6.1 Finite Sample Semi-Supervised Classification

Consider the example from Section 5 with a slight modifica-
tion: Instead of fixing p3 as 7, let it take the values 4, 7, and 10.
We investigate the semi-supervised error rates for these
three cases. Different ¢ values are 15, 50, 100, 300, and « is
increased from 0 to 2,000 in increments of 50;

folw) = 500 |0,1) 43 | 30w |3,1)+ 6z | s, )|

By the theorem, if L(fy: ) < L(fs;, ), semi-supervised
classification will degrade the performance for sure as
¢ — oo, and ¢/u — 0. However, in the case where the limit
conditions are not satisfied, we expect to see that for any
fixed /, increasing the number of unlabeled samples will
either improve or degrade the classifier performance,
depending on the bias and variance trade-off. For the case
where p3 =4, the phenomenon that semi-supervised
classification mistakenly combines the first and second
Gaussian densities and categorizes them as class 1 will not
happen. The reason is obvious; p2 =3 is much closer to
13 = 4 than to u; = 0, whereas for the other two cases where
uz =7 and ps = 10, semi-supervised classification makes
that mistake and it is more true for u3 = 10 than for p3 = 7.
Therefore, when pu3 = 4, unlabeled observations are more
likely to help the classification since, given a fixed model
bias, the classifier benefits from the reduced estimation
variance brought by a larger sample size more than it gets
hurt by a slight estimation bias. In the other two cases, u3 =
7 and ps =10, unlabeled observations have a larger
probability of degrading the classification performance
since, compared to the estimation bias caused by unlabeled
data, the reduced estimation variance is less significant. All
this is demonstrated by plots in Fig. 4.

6.2 Semi-Supervised Degradation Point

From the previous experiment, we see that as we keep the
same model F and vary the truth from being “not so
wrongly approximated by F” to “very wrongly approxi-
mated by F,” semi-supervised classification breaks down.
Clearly there is a p3 value at which semi-supervised
classification reaches the degradation point.

Consider p3 € [3,10]. Since the estimation is based on the
mixtures of the two Gaussian model, the model is correct
for u3 =3, but incorrect for the rest of the us values.
Suppose the labeled training set is fixed to be of size 15, a
series of Bayes plug-in classifiers are learned with samples
(labeled and unlabeled) distributed according to f; with ps
varying from 3 to 10.

In Fig. 5 we plot the following three curves: The curve at
the bottom (brown) is the supervised limit error rate, i.e.,
L(fs:,), the curve in the middle and the one at the top
(purple) are the supervised error rate with ¢ =15, ie,
L(f,), and the semi-supervised error rate with £ =15 and
u = 2,000, i.e., L( féwm). For the sake of a more meaningful
comparison, we plot the difference between these error
rates and the Bayes error L* (the purpose is to capture the
pattern in error rates with the change in the true density
filtered out).

This investigation empirically reveals a critical value fi3
for which, when p3 < fi3, semi-supervised learning
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Fig. 4. Semi-supervised misclassification rate.

improves the classifier performance regardless of the model
assumption incorrectness, while semi-supervised learning
degrades the classifier performance when p3 > fis.
Intuitively, p3 = 6 makes py = 3 equally close to p; =0
and p3 = 6, which suggests that degradation will start to
happen for some value slightly bigger than s =6, and
when exactly the semi-supervised classification breaks
down should also depend on ¢. We will call pu3 =6 the
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semi-supervised degradation point for this example. Fig. 5
confirms this intuition: Degradation starts to happen at
3 = 6.8.

In this experiment, L(fy, ) < L(fy,, ), and in fact,
L(fs;,,) is close to L*. Under the same model 7, the more
wrong the model is to approximate the truth, the further
away the two MLE limits are, and from one point on, semi-
supervised degradation happens with high probability. If
the Kullback-Leibler divergence between the truth f, and
supervised limit density fy; (approximately optimal in the
model) is used to measure the degree of model mismatch,
then we have

KL(f9m || f9
= || 6

) < KL(ft%z || fesu,zz)

QZneupl H < H esupQ QZnsupZ H .

supl
supl

The further away the two limits are, the higher the semi-
supervised probability of degradation is (given fixed ¢
and w).

In general, we believe that for every situation, there exists
a semi-supervised degradation point and a corresponding
degree of model mismatch. For example, at u3 =6, the
degree of model mismatch at which semi-supervised
classification reaches the degradation point is given by

KL(fo, || fo,,,) =

We can use the degree of model mismatch to determine
“when” degradation will happen, but for every different
situation, the exact value of KL(fy, || fo;,) at the semi-

supervised degradation point should be different since it
depends on the complexity of the distributions in discussion.

0.026.

7 CONCLUSION

In this paper, the performance of semi-supervised classi-
fication is investigated for the classical method: generative
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models, independent observations, Bayes plug-in classi-
fier, and maximum likelihood classification. Under the
framework introduced in this paper, in the limit ({ — co
and ¢/u — 0), a necessary and sufficient condition for a
model to suffer performance degradation with unlabeled
data is L(fp: ) < L(fp ). With ¢ large enough, and ¢/u

sup unsup

small enough at the same time, the probability of
degradation P{L(f) < L( fg )} can be well approxi-
mated by P{KL(fe I f;,) < KL(fem, | £3,.)} provided
the two MLE limits, 6 and differ 51gr1iﬁcant1y.

sup unsup’
It is obvious that when the true density f; is unknown,

none of the quantities in the theorem is calculable; therefore,
the theorem cannot be directly used in practice. The
philosophy we are trying to convey here is that by taking
one step back from practice, it is possible to learn the
behavior of a particular classifier in a particular model in
the semi-supervised learning setting through the theorem
and simulated examples, in which we know the truth f;.
Having this clear understanding of the model and classifier
used before applying them to real data semi-supervised
analysis is only a solid first step towards using them well.

Because of the restricted framework used in the paper,
the necessary and sufficient condition does not necessarily
generalize to other approaches. However, due to the
complexity of the problem, our realistic goal has been to
provide some analytical tool or even simply some theore-
tical perspective that sheds some light on when and why
semi-supervised learning degrades the performance in
misspecified models. A similar approach/perspective may
be applied to other frameworks, with the modifications
conforming to the specific framework at hand.
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