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Sensor information monotonicity in disambiguation
protocols
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Previous work has considered the problem of swiftly traversing a marked traversal-medium where the marks
represent probabilities that associated local regions are traversable, further supposing that the traverser is
equipped with a dynamic capability to disambiguate these regions en route. In practice, however, the marks are
given by a noisy sensor, and are only estimates of the respective probabilities of traversability. In this paper,
we investigate the performance of disambiguation protocols that utilize such sensor readings. In particular, we
investigate the difference in performance when a disambiguation protocol employs various sensors ranked by
their estimation quality. We demonstrate that a superior sensor can yield superior traversal performance—so
called Sensor Information Monotonicity. In so doing, we provide to the decision-maker the wherewithal to
quantitatively assess the advantage of a superior (and presumably more expensive) sensor in light of the
associated improvement in performance.
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1. Overview

A general disambiguation problem is cast in some traversable
medium (eg a graph or the plane R2) with some possibly
nontraversable local regions (eg edges in the graph or subsets
of R2). A starting location and ending location are specified,
there is a notion of traversal arclength in the medium, and
the overall goal is to find a start-end traversal of minimum
(expected) arclength. It is further assumed that the traverser
begins at the outset with some probabilistic information on the
traversability status of all regions and, when in close proximity
to the respective regions, the traverser can discover the actual
traversability status of the region—at a cost. (Ambiguous
regions are not traversed unless and until disambiguation
reveals them to be traversable).

An informal example, cast in R2, is illustrated in Figure 1.
The five ambiguous discsD1,D2,D3,D4,D5 are traversable
with probabilities 0.9, 0.2, 0.1, 0.6, and 0.3, respectively. Note
that if there is not a disambiguation capability then finding
the shortest s, t traversal (labelled !1 in Figure 1) is simply
a deterministic shortest path problem, easily solvable with
Dijkstra’s algorithm (eg Ahuja et al (1993)) applied either to
a suitable visibility graph (as in Priebe et al (2005)) or to a
graph discretization. However, as mentioned, there is a disam-
biguation capability; how can it best be used? One particular
policy for obtaining an s, t traversal is illustrated in Figure 1;
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it dictates traversing from s to the red icon labelled 1, where
D1 is disambiguated. If D1 is traversable, then the traversal
continues on to the red icon labelled 4, where D5 is disam-
biguated. According asD5 is or is not traversable, the traversal
continues to t through D5 or counterclockwise around D5.
However, if D1 was not traversable, then the traversal would
proceed clockwise aroundD1 to the red icon labelled 2, where
D2 is disambiguated. If D2 is traversable, then the traversal
continues through D2 to the red icon labelled 3, where D4 is
disambiguated. According as D4 is or is not traversable, the
traversal continues to t through D4 or clockwise around D4.
However, if D2 was not traversable, then the traversal would
proceed to t going around D2 clockwise. Thus, in particular,
the s, t traversal would either be !2, !3, !4, !5, or !6 with
respective probabilities (0.9)(0.3), (0.9)(0.7), (0.1)(0.2)(0.6),
(0.1)(0.2)(0.4), and (0.1)(0.8). Now, if the lengths of these
respective traversals were 12, 15, 13, 17, 16, and if the
cost of each disambiguation was 1.1, then the expected
length of the s, t traversal dictated by this policy would be
(0.9)(0.3)[12+ 2.2] + (0.9)(0.7)[15+ 2.2] + (0.1)(0.2)(0.6)
[13+ 3.3]+ (0.1)(0.2)(0.4)[17+ 3.3]+ (0.1)(0.8)[16+ 2.2].
This is just an example of one particular policy, and it is not
necessarily the best one.

Indeed, the problem of finding an optimal traversal policy
in a general disambiguation problem is a stochastic dynamic
programming problem (eg Andreatta and Romeo (1988), Blei
and Kaelbling (1999)), and many special cases have been
studied. Particular special cases of the general disambigua-
tion problem include the stochastic obstacle scene problem
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Figure 1 An example of a general disambiguation problem
(in R2), and a policy for it.

(Papadimitriou and Yannakakis (1991)), the Canadian
travellers problem (Bar-Noy and Schieber (1991),
Papadimitriou and Yannakakis (1991)), and the stochastic
shortest paths with recourse problem (Andreatta and Romeo
(1988)). Unfortunately, even small instances of these prob-
lems can generate very large state spaces in the stochastic
dynamic programming formulation. So, while very special
problem structure may admit efficient algorithms that produce
optimal solutions (Provan (2003)), there are intractability
results for many general cases (Andreatta and Romeo (1988),
Bar-Noy and Schieber (1991), Papadimitriou and Yannakakis
(1991), Provan (2003)). In general these problems are very
difficult to solve exactly. Heuristics for various problems
of these types can be found in Aksakalli et al (2008),
Baglietto et al (2003), Blei and Kaelbling (1999), Fishkind
et al (2007), Polychronopoulos and Tsitsiklis (1996), and
Priebe et al (2005).

In all of the work cited above, the primary focus had
been on the development of useful disambiguation policies,
assuming the correctness of the regions’ respective probabili-
ties of traversability that are given to the traverser at the outset.
In practice, however, it is imperfect sensors that provide the
traverser at the outset with marks for respective regions, and
these are just estimates of the probabilities that the respective
regions are traversable. Our focus in this paper is to inves-
tigate, for particular disambiguation protocols, how ‘better’
sensors might yield improved traversals.

In Section 2, we formally describe the disambiguation
problem context in which we will work; we formally define
protocols, sensors, and introduce Sensor Information Mono-
tonicity. We also state and prove several basic theorems. In
Section 3, we provide statistical evidence for the strong mono-
tonicity of a particular protocol (called the Reset Protocol)
in the context of mine countermeasures path planning. In
Section 3.3, we provide further illustration using actual mine-
field data from the Coastal Battlefield Reconnaissance and
Analysis (COBRA) Program for Minefield Detection.

2. Sensor information monotonicity and results

In Section 1, Figure 1 we illustrated an example of a general
disambiguation problem, and assumed the correctness of the
disc’s probability marks. In practice, however, it is imperfect
sensors that provide the traverser at the outset with marks for
respective regions, and these are just estimates of the proba-
bilities that the respective regions are traversable. To system-
atically treat this context, we will step back and consider the
underlying random process that generates these traversable
and untraversable regions; the traverser will not know which
are which, and will just perceive these regions as being
ambiguous. As part of this random process, random marks
are assigned to each region from one of two distributions,
according as the region is traversable or not. The traverser
will see these marks, and may interpret them as approxi-
mations for the probabilities that the respective regions are
traversable, conditioned on what the traverser observes of
the random process at the outset. Thus, the example in
Figure 1 could be an instance of such a random process, as
observed by the traverser (and the marks 0.9, 0.2, 0.1, 0.6,
and 0.3 are given by sensors). If the traverser follows the
policy illustrated in Figure 1 then the associated computa-
tion that we performed would provide the traverser with an
approximation of the expected length of the s, t traversal,
conditioned on what the traverser had observed at the outset.
A disambiguation protocol will be defined in Section 2.1
as an assignment of a policy for each possible realization
of the random process (as observed by the traverser at the
outset). The effectiveness of a protocol can be assessed by
the distribution—relative to the probability distribution of the
random process—of the length of the s, t traversal obtained
by following the policy dictated by the protocol. We will
make all of this more formal next in Section 2.1.

2.1. The formal context

In this paper we will first focus on a discrete context of the
general disambiguation problem. Later, in Section 3, we will
treat a continuous context in mine countermeasures path plan-
ning by discretizing it to this Section 2.1 context.

Let (V, A) be a graph, with each edge a ∈ A designated
as deterministic or probabilistic; the set of probabilistic edges
will be denoted B. (Each edge may be directed or undirected;
if directed then it may only be traversed from tail to head.)
For each a ∈ A, let !a ∈ R!0 be the length of edge a, and
let #! denote the vector with coordinate !a for each a ∈ A.
For each a ∈ B, let ca ∈ R!0 be the disambiguation cost
of edge a, and let #c denote the vector with coordinate ca
for each a ∈ B. Also, for each a ∈ B, let pa ∈ (0, 1) be
the probability that edge a is traversable, and let #p denote
the vector with coordinate pa for each a ∈ B; in particular,
let the random vector #X be defined as having an indepen-
dent Bernoulli(pa)-distributed coordinate for each a ∈ B,
coordinate Xa being 1 or 0 according as a is traversable
or not.
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For any random variable !, let F! denote the cumulative
sdistribution function of!; also, for any two random variables
! and !′, let !! sto!

′ denote stochastic ordering, meaning
that F!(")"F!′(") for all " ∈ R. A sensor (FT , FN ) is an
ordered pair of (cumulative) distribution functions of interval-
(0,1)-valued random variables such that FT ! stoFN . To every
sensor (FT , FN ) is associated its sensor random vector ##FT ,FN ,
which is a random vector whose coordinates ##FT ,FN

a , for all
a ∈ B, are each independent random variables with distri-
bution FT or FN , according as edge a is traversable or not.
The components of ##FT ,FN are understood to be (possibly
biased) estimators for the probabilities that the respective
edges are traversable. If (FT , FN ) and (FT ′ , FN ′) are any two
sensors, we say that sensor (FT , FN ) is at least as sensitive
as sensor (FT ′ , FN ′) if FT ! stoFT ′ and FN ′ ! stoFN . Thus, the
partial ordering of sensors by sensitivity allows for meaningful
comparison of sensors according to their quality of estima-
tion; greater sensitivity reflects a greater ability of the sensor
to discern the traversability of edges. (See the Appendix for
more details.)

Consider a tuple G = (V, A, B, s, t, #!, #c) where (V, A) is
a graph with probabilistic edges B, a specified start vertex
s ∈ V , a specified destination vertex t ∈ V , arc lengths
#!, and disambiguation costs #c. A disambiguation problem
setting (with true traversability probabilities) is a tuple (G, #p)
consisting of a G together with the probabilities #p. A disam-
biguation problem instance (with estimated traversability
probabilities) is a tuple (G, #$) consisting of a G and a realiza-
tion #$ of some sensor random vector ##FT ,FN , based on some
unobserved realization of #X . It will be convenient to always
assume the existence of some (perhaps very long) s, t path in
(V, A\B). If there are any directed edges in A then we further
assume that from each v ∈ V there is a path to t in (V, A\B).

Given a disambiguation problem instance (G, #$), the
typical operational goal is to find an s, t walk in (V, A) of
traversable edges that is shortest in the sense of minimizing
the sum of the edges’ lengths together with dynamically
incurred disambiguation costs. The disambiguation costs
arise as follows: When located at an endpoint of any a ∈ B
(if a is directed, then only at the tail of a) a dynamic traverser
has the option to learn whether a is traversable or not, for
a cost ca added to the length of the traversal. A protocol "
is a function that, to each possible disambiguation problem
instance where s %= t , assigns an edge a ∈ A such that s
is an endpoint of a (if a is directed then s is the tail of a).
The interpretation is that " is dictating the next action to
take; if a ∈ A\B then " is dictating that a is to be traversed
and the other endpoint of a will become the new s, whereas
if a ∈ B then " is dictating that a is to be disambiguated,
meaning that if a is found to be traversable then a is to be
removed from B, else a is to be removed from A. (Note that
this disambiguation does not dictate that a is to be traversed.)
It is also implicitly understood that this protocol " will be
called again—and again, iteratively, until t is reached—using
the updated disambiguation problem instance.

Thus, to any disambiguation problem instance (G, #$) and
realization of #X , the protocol " specifies one particular s,
t-walk, denote it !G( #X , #$,"). This s, t-walk may be thought
of as random relative to the distribution of #X (dictated
by #p) and the sensor random vector ##FT ,FN (from which #$
is realized); we denote this s, t-walk-valued random vari-
able #G, #p(##FT ,FN ,"), where (G, #p) is the disambiguation
problem setting. Its length !#G, #p(##FT ,FN ,") is a real-valued
random variable.

Let (G, #p) be any disambiguation problem setting. A
protocol " is called strongly monotone for (G, #p) if, for
any two sensors (FT , FN ) and (FT ′ , FN ′) such that sensor
(FT , FN ) is at least as sensitive as sensor (FT ′ , FN ′), it
holds that !#G, #p(##FT ,FN ,")" sto!#G, #p(##FT ′ ,FN ′ ,"). We will
say a protocol " is weakly monotone for (G, #p) if, for any
sensors (FT , FN ) and (FT ′ , FN ′) such that sensor (FT , FN )

is at least as sensitive as sensor (FT ′ , FN ′),it holds that
E!#G, #p(##FT ,FN ,")"E!#G, #p(##FT ′ ,FN ′ ,"). Of course, by the
properties of stochastic order, strong monotonicity of " for
(G, #p) implies weak monotonicity of " for (G, #p). (See the
Appendix for more details.)

2.2. Threshold and penalty protocols

For any % ∈ [0, 1], we define the %-threshold protocol to be
the protocol "% that assigns, to each disambiguation problem
instance (G, #$), the first edge on a deterministic shortest s, t
path in G\{a ∈ B : $a "%}, where ‘shortest’ is relative to
the weights !a + ca for each edge a ∈ A; we will denote
ca := 0 for all a ∈ A\B, even though such edges do not need
disambiguation.

Apenalty function isafunction f :R!0×R!0×(0, 1) → R.
such that f (z1, z2, z3) is nondecreasing in its first argument,
nondecreasing in its second argument, and nonincreasing in
its third argument, with limit ∞ as z3 → 0, and with limit
z1 + z2 as z3 → 1. The f-penalty protocol, denoted " f , is
defined as assigning, to each disambiguation problem instance
(G, #$), the first edge on a deterministic shortest s, t path in
G, where ‘shortest’ is relative to the weights f (!a, ca,$a) for
each edge a ∈ A; we use the convention, for all a ∈ A\B, that
$a := 1 and f (!a, 0, 1) := !a . Of course, for any % ∈ (0, 1),
the %-threshold protocol is the particular f-penalty protocol
with f defined by f (z1, z2, z3) := z1 + z2 + &(z3, %), where
&(z3, %) is defined as ∞ or 0, according as z3"% or not.

One important example of a specific penalty function is
the function f (z1, z2, z3) = z1 + z2

z3
; the associated f-penalty

protocol " f is the Reset Protocol from Aksakalli et al (2008).

2.3. Results

We have proven Sensor Information Monotonicity results for
two simple cases:

Theorem 1 If (G, #p) is any disambiguation problem setting
such that V = {s, t} then, for any % ∈ [0, 1], "% is weakly
monotone for (G, #p).
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Proof Consider all disambiguation problem settings where
V = {s, t}, and let % ∈ [0, 1] be given; we show that "% is
weakly monotone by induction on |A|. If |A|=1 then this sole
edge must be deterministic, and the result is trivially true as
the traversal under "% is deterministic. Now, assume the weak
monotonicity of "% in all cases where |A| is a particular posi-
tive integer, and consider an arbitrary disambiguation problem
setting (G, #p) such that |A| is 1 larger. Suppose a sensor
(FT , FN ) is at least as sensitive as another sensor (FT ′ , FN ′).
In particular, we have FT (%)"FT ′(%)"FN ′(%)"FN (%); we
want to show E!#G, #p(##FT ,FN ,"%)"E!#G, #p(##FT ′ ,FN ′ ,"%).

Let a ∈ A be such that ca+!a is minimum (over A). If a /∈ B
then the traversal under "% is deterministic, and monotonicity
of "% is trivial, so we need only consider the case a ∈ B. For
convenience, we will denote ! := E!#G\{a}, #p(##FT ,FN ,"%) and
!′ := E!#G\{a}, #p(##FT ′ ,FN ′ ,"%); by the induction hypothesis
we have !"!′, and it is also clear that !!ca + !a since every
realization of !#G\{a}, #p(##FT ,FN ,"%) is at least cb + !b for the
edge b ∈ A\{a} actually traversed in the realization.

We focus first on the traversal using sensor (FT , FN ).
If $a > % then a will be disambiguated first and—if found
traversable—a would be immediately traversed (since
it would continue to be on the relevant shortest path).
However, if $a "%, then a will never be disambiguated.
The probabilities of the four events (Xa = 1,$a > %),
(Xa = 0,$a > %), (Xa = 1,$a "%), (Xa = 0,$a "%) are,
respectively, pa(1− FT (%)), (1− pa)(1− FN (%)), pa(FT (%)),
(1 − pa)(FN (%)), and the expected traversal length condi-
tioned on these four events are ca + !a, ca + !, !, and !,
respectively. Thus E!#G, #p(##FT ,FN ,"%) is precisely

pa(1 − FT (%))(ca + !a) + (1 − pa)(1 − FN (%))(ca + !)
+ pa(FT (%))! + (1 − pa)(FN (%))!

= pa(ca + !a) + pa(! − ca − !a)FT (%)

+ (1 − pa)ca(1 − FN (%)) + (1 − pa)!.

This is less than or equal to

pa(ca + !a) + pa(!′ − ca − !a)FT ′(%)

+ (1 − pa)ca(1 − FN ′(%)) + (1 − pa)!′

= pa(1 − FT ′(%))(ca + !a) + (1 − pa)(1 − FN ′(%))

× (ca + !′) + pa(FT ′(%))!′ + (1 − pa)(FN ′(%))!′,

which is E!#G, #p(##FT ′ ,FN ′ ,"%), and Theorem 1 is shown. #

Theorem 2 If (G, #p) is any disambiguation problem setting
such that |B| = 1 then, for any penalty function f , " f is
strongly monotone for (G, #p).

Proof We first prove that the threshold protocol "% is
strongly monotone for any % ∈ [0, 1]. Let a ∈ B be the prob-
abilistic edge. Consider a shortest s, t path in G among those
using the edge a; let "1 be the length of this path, denote
by v the first vertex of a encountered on this path, denote
by "̂1 the length of this path from s to v, and denote by "̃1

the length of this path from the other endpoint of a to t. (In
particular, "1 = "̂1 + ca + !a + "̃1.) Let "2 be the length of a
shortest s, t path in G\{a}, and let "3 be ca+ the length of a
shortest s,t path in G\{a} among those using vertex v. Note
that "1""2""3, or else the result is trivial. Suppose sensor
(FT , FN ) is at least as sensitive as sensor (FT ′ , FN ′).

The only values that the random variable !#G, #p(##FT ,FN ,"%)

can assume are "1, "2, and "3 and, with sensor (FT , FN )

and protocol "%, the respective probabilities of these three
values are pa(1 − FT (%)), paFT (%) + (1 − pa)FN (%), and
(1 − pa)(1 − FN (%)). Thus, for all u ∈ R,

F!#G, #p(##FT ,FN ,"%)(u) =






0 if u < "1
pa(1 − FT (%)) if "1"u < "2
pa + (1 − pa)FN (%) if "2"u < "3
1 if "3"u.

Together with the fact that FT (%)"FT ′(%) and FN ′(%)"FN (%),
it is now clear that for all u ∈ R, F!#G, #p(##FT ,FN ,"%)(u)!
F!#G, #p(##FT ′ ,FN ′ ,"%)(u), and strong monotonicity of "% is thus
shown.

If f is any penalty function then a would be disambiguated
by " f—when using sensor (FT , FN )—if and only if "̂1 +
f (!a, ca,$a) + "̃1 < "2. Define %∗ := inf{% ∈ [0, 1] : "̂1 +
f (!a, ca, %) + "̃1 < "2}. Since f is nonincreasing in its third
argument we have that, for $> %∗, " f will have a disam-
biguated and, for $< %∗, " f will not have a disambiguated.
The case $ = %∗ is trivial. Thus " f acts here precisely as the
threshold protocol "%∗ , and so " f is strongly monotone by
the strong monotonicity of threshold protocols. #

Sensor Information Monotonicity for more general disam-
biguation problem settings, and an ability to determine how
much improvement is provided by one sensor over another,
will result in a tool of significant value to the decision-
maker. Although penalty protocols (which are a more general
class) are harder to analyse than threshold protocols (which
are special cases of penalty protocols), we have examples of
disambiguation problem settings for which a penalty protocol
is strictly superior to all threshold protocols. In particular,
the Reset protocol introduced in Aksakalli et al (2008) is
shown there to be an optimal policy in a general disambigua-
tion problem setting for graphs where V = {s, t} and the true
marks p are available, yet the Reset protocol is not in general
a threshold protocol in that context.

3. Computational investigation

In this section we present simulation and experimental
results from applying a particular penalty protocol to disam-
biguation problems in minefield scenarios (see for example
Washburn (1999) for more discussion on these kinds of
minefield scenarios). In particular, we are looking here for
evidence of strong and weak monotonicity. This particular
penalty protocol, called the Reset Protocol, was introduced
in Aksakalli et al (2008) as a useful and practical heuristic
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Figure 2 A realization ofDN andDT , generated by the process
of Section 3.1. Disks of DN are depicted with solid lines, disks
of DT with dashed lines.

for general disambiguation problems. It was also shown
in Aksakalli et al (2008) that the Reset protocol provides
an optimal policy in a general disambiguation problem
setting for graphs where V = {s, t} and the true marks p are
available.

3.1. Simulation setting

We model a minefield as a set D of (possibly intersecting)
open disks in [0, 100] × [0, 100] ⊆ R2. Each disk is either
a true detection (representing a nontraversable hazard) or
false detection (which can be traversed); the set of true and
false detections are respectively denoted DN and DT . The
graph (V, A) is a directed graph with vertex set V := Z2 ∩
([0, 100] × [0, 100]) (ie, a subset of the two-dimensional
integer lattice) and edge set A defined by the eight-adjacency
relation; that is, for all v, w ∈ V distinct, we have that vw is
(a directed edge) in A precisely when, in both plane coordi-
nates, v differs from w by 1, −1, or 0. (Of course, if vw ∈ A
then wv ∈ A.) We use s = (0, 0), t = (100, 100).

In each experiment, we use |D| = 100; the number of
members of D that are chosen to be true detections is a real-
ization of a Binomial(100, 0.6) random variable, the centre
of each disk is independently and uniform-randomly selected
from [10, 90] × [10, 90], and the disks’ radii are all 4.5. A
realization of this process is shown in Figure 2. Each detection
D ∈ D, according as it is a true or false detection, receives
a mark $D realized from the distribution Beta(3.5− ', 3.5+
') or Beta(3.5 + ', 3.5 − '), respectively, for a parameter
' ∈ [0, 3.5] that we preselect; $D is to be interpreted as an
estimate of the probability that D is traversable. Note that, in

particular, if ' = 0 then the marks contain no information on
whether their corresponding disks are true or false detections
and, at the other extreme, if ' = 3.5 then the marks provide
such information perfectly. In particular, for any '> '′, the
sensor based on ' is at least as sensitive as the sensor based
on '′.

For each edge vw ∈ A, the length !vw is defined to be the
Euclidean length of vw, which here is always 1 or

√
2. Note

that edges (are directed and) are considered probabilistic only
if they enter an ambiguous disk, since edges that exit from or
are internal to an ambiguous disk could not anyway be used
until the disk was entered, and at the time of entry the disk
would be disambiguated and traversable. For each edge vw ∈
A, and each D ∈ D, we define $vw,D to be $D if v is not in D
but vw intersects D, and we define $vw,D to be 1 otherwise.
Then, for each edge vw ∈ A, we define $uv := ∏

D∈D$vw,D;
indeed, vw is a probabilistic edge if and only if $vw < 1, and
the assignment of $vw to each probabilistic edge vw plays the
role of a realization of the sensor random vector, since it is an
estimate of the probability that the edge is traversable (based
on the $D for the relevant D). For each edge vw ∈ A, we use
the disambiguation cost cvw := (2.25) · |{D : $vw, D< 1}|,
since disambiguating an edge will consist of disambiguating
all disks the edge enters, at a fixed cost per disk.

We use the specific penalty function f (z1, z2, z3)= z1+ z2
z3
;

thus the shortest path problem implicit in " f is relative to
the weights !vw + cvw

$vw
for each edge vw ∈ A. This protocol

is precisely the Reset Protocol from Aksakalli et al (2008).
The one modification to the utilization of this protocol " f

is as follows: If this protocol " f returns probabilistic edge
vw, then the disambiguation performed is of each detection
D such that $vw,D < 1; for each such D, if D is now identified
as a false detection then $a,D is set to 1 for all a ∈ A, and if
D is now identified as a true detection then all edges a such
that previously $a,D < 1 are removed from A.

3.2. Simulation results

In Section 3.1, we described a problem setting, a partic-
ular class of sensors parameterized by ', and a particular
penalty disambiguation protocol called the Reset protocol.
Applying the Reset Protocol to a random instance of the
Section 3.1 setting yields a random s, t walk denoted by #(')

with (random) length !#('). When we condition on a partic-
ular DN and DT occurring, the random s, t walk will be
denoted #DN ,DT

(').
Our goal in this section is to provide statistical evidence

that for all ', '′ such that '< '′ it holds that !#(')! sto!#('′);
this is a statement of strong monotonicity, that is, that
the Reset Protocol is strongly monotone in the scenario
of Section 3.1, restricted to the particular class of sensors
described in Section 3.1. We also provide statistical evidence
that in general, when conditioning on particular DN and DT

occurring, it holds that !#DN ,DT
(')! sto!#DN ,DT

('′) when-
ever '< '′, which is strong monotonicity when conditioning
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cdfs F̂!#(' j ) for each ' j , and in the right panel we present the respective sample means and 95% confidence intervals for E!#(' j )

plotted against ' j .
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Figure 4 For the particularDN andDT visualized in Figure 2, we obtained 400 realizations of !#DN ,DT (' j ) for each of j=1, 2, . . . , 8;
in the left panel we present the respective empirical cdfs F̂!#DN ,DT (' j ) for each ' j , and in the right panel we present the respective
sample means and 95% confidence intervals for E!#DN ,DT (' j ) plotted against ' j .

on DN and DT . Note that if strong monotonicity holds
whenever conditioning on any particular DN and DT then,
indeed, strong monotonicity holds unconditionally. Finally,
even though strong monotonicity implies weak monotonicity,
we separately provide statistical evidence of weak mono-
tonicity as the magnitude of the weak monotonicity is of
interest.

This monotonicity is illustrated via Monte Carlo simula-
tions. For each of the values of ' from among '1:=0.01,
'2:=0.5, '3:=1.0, '4:=1.5, '5:=2.0, '6:=2.5, '7:=3.0,
'8:=3.49 we obtained 2500 realizations of !#(' j ). For each
of these ' j , the respective empirical cumulative distribution
function based on the 2500 realizations of !#(' j ) is shown
in Figure 3; these empirical cdfs will be denoted F̂!#(' j ).

By inspection it is seen that, for all j, F̂!#(' j ) " F̂!#(' j+1),
which indicates that !#(' j )! sto!#(' j+1). To quantify
this, we performed the Kolmogorov–Smirnoff test for

H0 : !#(' j )=sto!#(' j+1) versus Ha : !#[(' j )>sto!#(' j+1)

for each of j = 1, 2, . . . , 7; the respective p-values are
on the order of 10−5—except for j = 6, 7, for which the
p-values were 0.0002 and 0.0383—which convincingly
suggests strong monotonicity here. In Figure 3, we also plot,
for j = 1, 2, . . . , 8, the respective sample means (for each
sample of 2500 realizations)—including 95% confidence
intervals for E!#(' j )—against ' j ; weak monotonicity is
clearly suggested.

Now, conditioning on the particularDN andDT visualized
in Figure 2, we realized 400 values of !#DN ,DT

(' j ) for each
of j = 1, 2, . . . , 8; the respective empirical cdfs F̂!#DN ,DT

(' j )

are depicted in Figure 4. The Kolmogorov—Smirnoff test
for H0 : !#DN ,DT

(' j )=sto!#DN ,DT
(' j+1) versus the alter-

native Ha : !#DN ,DT
(' j )>sto!#DN ,DT

(' j+1), for each of
j = 1, 2, . . . , 7, yields a p-value on the order of 10−10,
which convincingly suggests strong monotonicity when
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Table 1 We randomly (in the sense of Section 3.1) selected (D1
N ,D1

T ), (D2
N ,D2

T ), . . . , (D50
N ,D50

T ), and for each we realized
100 values of !#Di

N ,Di
T
(' j ) for each of j = 3, 6. We used the empirical cdfs to perform the Kolmogorov–Smirnoff test for

H0 : !#Di
N ,Di

T
('3)=sto!#Di

N ,Di
T
('6) versus left-, right-, and two-tailed alternatives; the p-values are listed in the left side of this

table. We also performed the t-test for H0 : E!#Di
N ,Di

T
('3) = E!#Di

N ,Di
T
('6) versus left-, right-, and two-tailed alternatives; the

p-values are listed in the right side of this table

KS-test for H0 : !#Di
N ,Di

T
('3)=sto!#Di

N ,Di
T
('6) vs t-test for H0 : E!#Di

N ,Di
T
('3) = E!#Di

N ,Di
T
('6) vs

i of (Di
N ,Di

T ) Ha : %=sto Ha : >sto Ha : <sto Ha :%= Ha : > Ha : <

1 0 0 1 0 0 1
2 0 0 1 1.54E−05 7.70E−06 1
3 0.9921 0.688 1 0.0991 0.0495 0.9505
4 2.85E−06 1.42E−06 1 1.15E−07 5.73E−08 1
5 3.70E−09 1.85E−09 1 7.41E−10 3.70E−10 1
6 1 0.9897 1 0.3197 0.1599 0.8401
7 0.0205 0.0102 1 0.0528 0.0264 0.9736
8 0 0 0.9593 0 0 1
9 1 0.9593 1 0.1583 0.0792 0.9208

10 0.0994 0.0497 1 0.0255 0.0128 0.9872
11 0 0 1 0 0 1
12 0 0 1 0 0 1
13 0 0 1 8.78E−09 4.39E−09 1
14 0 0 1 0 0 1
15 0 0 1 0 0 1
16 0 0 1 0 0 1
17 0 0 1 0 0 1
18 0 0 1 0 0 1
19 0 0 1 0 0 1
20 0 0 1 0 0 1
21 0 0 1 0 0 1
22 0.9921 0.688 1 0.0136 0.0068 0.9932
23 0.003 0.0015 1 2.26E−07 1.13E−07 1
24 0 0 1 0 0 1
25 0.8938 0.5144 1 0.0042 0.0021 0.998
26 0 0 1 0 0 1
27 1.47E−09 7.33E−10 0.9897 1.36E−10 0 1
28 0 0 1 0 0 1
29 1 0.8469 1 0.0459 0.023 0.977
30 0 0 1 0 0 1
31 5.22E−08 2.61E−08 1 1.95E−07 9.77E−08 1
32 0 0 1 0 0 1
33 0 0 1 0 0 1
34 0 0 1 0 0 1
35 0 0 1 0 0 1
36 0 0 1 0 0 1
37 0 0 1 0 0 1
38 0.4431 0.2241 1 0.0004 0.0002 0.9998
39 0 0 1 0 0 1
40 0 0 1 3.29E−09 1.65E−09 1
41 0.4431 0.2241 1 0.0127 0.0063 0.9937
42 9.12E−09 4.56E−09 1 7.18E−08 3.59E−08 1
43 0 0 1 0 0 1
44 9.12E−09 4.56E−09 1 4.54E−08 2.27E−08 1
45 0 0 1 0 0 1
46 0 0 1 0 0 1
47 0.14 0.07 1 0.0002 7.69E−05 0.9999
48 0 0 1 0 0 1
49 0.0314 0.0157 1 2.76E−05 1.38E−05 1
50 0 0 1 0 0 1
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Table 2 Coordinates and marks for the 39 COBRA detections. The 12 true mines are in bold

1st 2nd $ 1st 2nd $ 1st 2nd $
coordinates coordinates coordinates coordinates coordinates coordinates

321.17 158.27 0.40983 54.23 201.12 0.45822 158.17 516.48 0.56475
215.13 428.31 0.38110 −145.67 703.06 0.38286 −151.01 572.15 0.43924
221.12 557.31 0.35953 −166.36 299.42 0.50827 296.16 163.31 0.88351
163.31 186.14 0.34364 28.31 205.03 0.84731 −79.26 709.99 0.43915
100.40 376.47 0.48513 −105.75 262.20 0.74252 185.31 182.18 0.34734
116.39 110.84 0.55876 −128.60 274.12 0.37999 −61.19 345.12 0.82817

−91.27 664.45 0.83325 −82.87 248.29 0.41692 105.47 509.80 0.14853
−19.93 568.04 0.40063 −310.23 402.92 0.34572 −320.73 532.23 0.66908
−35.11 242.61 0.89670 −169.99 438.90 0.35837 95.39 248.12 0.81132
−78.75 396.14 0.92690 −245.28 372.05 0.47846 −166.45 180.33 0.38918

−134.53 769.27 0.80614 −258.45 641.03 0.34330 111.60 640.10 0.43471
−219.32 313.68 0.42551 −455.72 742.57 0.36013 −157.10 441.96 0.35556
−242.22 321.51 0.34345 −237.86 546.19 0.86207 −269.98 379.65 0.47198

conditioning on this DN and DT . We also plotted in
Figure 4, for j = 1, 2, . . . , 8, the respective sample means
(for each sample of 400 realizations)—including 95% confi-
dence intervals for E!#DN ,DT

(' j )—plotted against ' j ;
weak monotonicity is clearly suggested here. But, is this
typical of general DN and DT that arise from the process of
Section 3.1? To address this, we randomly selected (D1

N ,D1
T ),

(D2
N ,D2

T ), . . . , (D50
N ,D50

T ) in the manner described in
Section 3.1. For each i = 1, 2, . . . , 50 we realized 100
values of !#Di

N ,Di
T
(' j ) for each of j = 3, 6. We used the

empirical cdfs to conduct the Kolmogorov–Smirnoff test for
H0 : !#Di

N ,Di
T
('3)=sto!#Di

N ,Di
T
('6) versus left-, right-, and

two-tailed alternatives; the p-values are in Table 1. We also
performed t-tests for H0 : E!#Di

N ,Di
T
('3) = E!#Di

N ,Di
T
('6)

versus left-, right-, and two-tailed alternatives; the p-values
are also in Table 1. Indeed, these results suggest that weak
and strong monotonicity hold when conditioning on general
(DN ,DT ).

3.3. COBRA data

Table 2 contains the two-dimensional Euclidean coordi-
nates of an actual pattern of potential-mine detections
from the Coastal Battlefield Reconnaissance and Analysis
(COBRA) Program for Minefield Detection (Witherspoon
et al (1995)); this data set appears and is analysed in Smith
(1995), Aksakalli et al (2008), Fishkind et al (2007), Olson
et al (2002), Priebe et al (1997), and Priebe et al (2005). The
column of Table 2 with the $’s gives the marks as rendered by
the classification rule in Olson et al (2002), (see also Priebe
et al (1999), Piatko et al (2001), Priebe et al (2001), Piatko
et al (2002)); they are estimates of the probabilities that the
respective detections are not mines, that is, are traversable.
We know which of these are actual mines and which are false
detections—see Table 2—but the protocol does not make use
of this ‘truth’ information in this experiment. We create a
disk of radius 50 for each detection (centred at the respec-
tive two-dimensional coordinates in Table 2); denote the
disks D1, D2, . . . , D39 (they are illustrated in Figure 5), and

denote their respective marks $1,$2, . . . , $39. We still use
the integer lattice Z2 as our underlying graph in the manner
described in Section 3.2, and we use s = (−300, 250) for the
start vertex and t = (300, 600) for the destination vertex. The
cost of disambiguating a detection is taken as c = 50.

For each ' such that 0"'"1 and for each i=1, 2, . . . , 39,
we define $i,' to be ' ·1+ (1−') ·$i if Di is traversable, and
' ·0+ (1−') ·$i if Di is not traversable. Of course, as ' goes
from 0 to 1 the marks $i,', for all i = 1, 2, . . . , 39, better
reflect actual respective traversabilities; when ' = 0 these
marks are as given in Table 2, and when '=1 the marks defini-
tively indicate respective traversabilities. In the last box of
Figure 5 we plot—against the respective values for the sensor
improvement parameter ' of 0.0, 0.1, 0.2, . . . , 1.0—the
length of the path taken under the Reset protocol based on
the marks $i,'; the other three boxes in Figure 5 illustrate the
actual traversals taken under each of ' = 0.0, 0.4, 0.5. Note
the improvement in traversal length as the sensor param-
eter ' goes from 0 to 1, and indeed the improvement is
monotone—up to the limit of the resolution used here.

4. Discussion

We consider the problem of swiftly traversing a marked
traversal-medium where the marks represent sensor esti-
mates of the probabilities that associated local regions are
traversable, further supposing that the traverser is equipped
with a dynamic capability to disambiguate these regions en
route. In this disambiguation problem setting, a superior
sensor ought to yield superior traversal performance; any
protocol that does not have this Sensor Information Mono-
tonicity property is suspect. Furthermore, for any given
protocol, the degree of superiority in traversal performance
obtained through the use of one sensor versus another is
an essential quantity in any cost/benefit analyses consid-
ering whether the superior (and presumably more expensive)
sensor is worth the additional cost.
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Figure 5 The first three boxes show the COBRA data (actual mines in solid line, false detections in dashed line); these boxes contain
traversals for different values of the sensor parameter '. The last box plots the length of the traversals against sensor improvement
parameter values ' = 0.0, 0.1, 0.2, . . . , 1.0.

We have demonstrated Sensor Information Monotonicity
properties for some classes of protocols through theory, simu-
lation, and experiment. These results lay the groundwork for
the theory and practice of quantitatively comparing multiple
sensors in disambiguation problems.

Finally, while making the argument rigorous is a chal-
lenging open problem, we go beyond the results presented
here and conjecture that strong Sensor Information Mono-
tonicity in the general graph context holds for the Reset
Protocol investigated herein and in Aksakalli et al (2008).
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Appendix

Stochastic order and the ordering of sensors by sensitivity

For any random variable !, let F! denote the cumulative
distribution function, and let F−1

! denote the quantile function;
of course, if F! is injective then F−1

! is the inverse function
of F!, otherwise, for all u ∈ (0, 1), recall that F−1

! (u) :=
inf{w ∈ R : F!(w)!u}. (So, for example, F−1(0.25),

F−1(0.5), and F−1(0.75) are the first quartile, median, and
third quartile of the distribution, that is, the probability of
being less than or equal to these numbers is 0.25, 0.5, and
0.75, respectively.) The random variable !1 is said to be
stochastically greater than or equal to the random variable
!2, denoted !1! sto!2, if F!1

(w)"F!2
(w) for all w ∈ R;

straightforward computation confirms that this condition is
equivalent to the condition that F−1

!1
(u)!F−1

!2
(u) for all u ∈

(0, 1).
Thus, in the notation from this paper, when we say that

sensor (FT , FN ) is at least as sensitive as sensor (FT ′ , FN ′)

precisely when FT ! stoFT ′ and FN ′ ! stoFN , what is meant is
that, conditioning on an edge being traversable, each quan-
tile for the marks generated by the at-least-as-sensitive-sensor
(random vector ##FT ,FN ) is greater than or equal to that same
quantile for the marks generated by the other sensor and,
conditioning on an edge not being traversable, each quantile
for the marks generated by the at-least-as-sensitive-sensor is
less than or equal to that same quantile for the marks gener-
ated by the other sensor. So, very informally, if an edge is
actually traversable then a more sensitive sensor can be more
optimistic about the edge’s traversability than the less sensi-
tive sensor, and if an edge is actually nontraversable then
the more sensitive sensor can be more pessimistic about the
edge’s traversability than the less sensitive sensor.

Also note that !1! sto!2 if and only if it holds that, for all
nondecreasing real functions g, E[g(!1)]!E[g(!2)]. Thus,
in the notation of this paper, if a protocol is strongly mono-
tone then it is weakly monotone, but the converse does not
necessarily hold.
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