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Abstract

Nonparametric statistics, especially the Mann–Whitney–Wilcoxon (MWW) statistic, have gained
widespread acceptance, but are by no means the preferred method for statistical analysis in
all situations. A main obstacle to their even wider applicability is that the price paid for
their distribution-free property is the loss of e5cacy. In fact, the MWW statistic, which is
an estimate of the functional

∫∞
−∞ F(x) dG(x), has an e5cacy which varies with the under-

lying distributions F(x) and G(x). To improve the e5cacy, this dissertation generalizes the
classical MWW statistic to estimates of the functional

∫∞
−∞ u{F(x)} dv{G(x)}, where the

functions u(x) and v(x) are strictly increasing on [0; 1]. Statistical properties of this gener-
alization such as asymptotic normality and admissibility are fully investigated. The optimal
choices of functions u(x) and v(x) are studied via the tail binomial polynomials and the Pit-
man asymptotic e5cacy criterion. In the one-sample problem, a similar generalization, based
upon the functional

∫∞
−∞ u(1 − F(−x)) dv(F(x)), extends the Wilcoxon signed rank statistic.
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1. Introduction

A fundamental problem in nonparametric statistics is deciding whether a new treat-
ment constitutes an improvement over some standard treatment. The problem of com-
paring two treatments is divided into two categories: the one-sample problem and the
two-sample problem. In the two-sample problem, a random sample is drawn for each
of two treatments. In the one-sample case, a random sample of paired comparisons,
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some of which may be positive and some negative, is available. Among the classical
statistics for testing the diCerence of means in these two problems are the Mann–
Whitney–Wilcoxon (MWW) statistic (Wilcoxon, 1945; Mann and Whitney, 1947) and
the Wilcoxon signed rank (WSR) statistic (Wilcoxon, 1945). The establishment of
these statistical procedures marks the beginning of modern nonparametric statistics.

These two statistics have gained widespread acceptance due to the weak assumptions
required for their validity; however, they are by no means the preferred methods in
all situations. For each, we can identify distributions under which the e5cacy of the
corresponding test is inferior to that of the best parametric tests. (Herein, we use Pitman
asymptotic e5cacy (PAE) to evaluate the performance of test statistics.) For example,
if the underlying distribution is normal, the Student t-test is superior to the MWW
statistic in the sense of PAE and the paired t-test outperforms the WSR statistic. Hence,
developing new nonparametric test procedures which improve e5cacy with respect to
speciGc distributions is a desirable goal. In this paper, we generalize both the MWW
statistic and the WSR statistic towards this end.

The MWW statistic is used to detect stochastic ordering of two populations on the
basis of two independent samples. Let X1; : : : ; Xn and Y1; : : : ; Ym be (jointly) independent
random samples from distribution functions F(x) and G(y), respectively. The problem
of interest is to test H0 :F(x) = G(x) for every x versus HA :F(x)¿G(x) for every
x, with strict inequality for at least one x (stochastic ordering). It is important to note
that F(x)¿G(x) is equivalent to u{F(X )}¿u{G(X )} where the real-valued function
u(x) deGned on [0; 1] is continuous and strictly increasing in x. The MWW statistic is
based on the functional

� =
∫ ∞

−∞
F(x) dG(x);

which is equal to 1=2 under H0 and larger than 1=2 under HA. Thus large values of
� mean that HA is true. In fact, the parameter � is but one member of a class of
such parameters; namely, let v be an arbitrary increasing, continuous and real-valued
function on [0; 1] and deGne

�(u;v) =
∫ ∞

−∞
u{F(x)} dv{G(x)}: (1)

Note that under H0; �(u;v) =
∫ 1

0 u(x) dv(x) ≡ �(u;v)
0 , and �(u;v)¿�(u;v)

0 under HA. This
functional �(u;v) provides the framework for a generalization of the MWW statistic.

The WSR statistic is developed to detect the center of a symmetric distribution.
Let X1; X2; : : : ; Xn be independent random variables with continuous c.d.f. F . If the
distribution F is symmetric about a point � such that for each x; F(x+�)+F(−x+�)=1,
then � is referred to as the center of the distribution. This is equivalent to saying that
u{F(x + �)} = u{ JF(−x + �)}, where u is an arbitrary strictly increasing, continuous,
real-valued function on [0; 1] and JF(x)=1−F(x). Consider the problem of testing that
the center of symmetry, �, is 0 against � �= 0. The Wilcoxon signed rank statistic used
for this purpose is a nonparametric estimator of the functional � =

∫∞
−∞ JF(−x) dF(x).
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It is natural to consider a general functional �(u;v) deGned by

�(u;v) =
∫ ∞

−∞
u{ JF(−x)} dv{F(x)}; (2)

where functions v and u on [0; 1] are strictly increasing and continuous. Without loss
of generality, under HA : �¿0,

�(u;v) =
∫ ∞

−∞
u{F(x + 2�)} dv{F(x)}

is larger than under H0, where we have �(u;v)
0 ≡ ∫∞

−∞ u{F(x)} dv{F(x)}=
∫ 1

0 u(x) dv(x).
Thus the associated test rejects for large values of �(u;v). This functional �(u;v) is the
cornerstone for our generalization of the WSR statistic.

The following two lemmas provide the framework for our generalization of the
MWW statistic based upon (1) and (2). (See the appendix for detailed proofs.)

Lemma 1.1. If u(x) is a strictly increasing continuous function on [0; 1]; then there
always exists a positively weighted tail binomial polynomial; i.e.

ur(x) = u(0) + {u(1) − u(0)}
r∑

k=1
wkbk:r(x);

where the polynomial bk:r(x) =
∑r

i=k(
r
i )x

i(1− x)r−i is called tail binomial polynomial
with degree r;

∑r
k=1 wk =1 and wk¿0; k =1; : : : ; r; such that ur(x) converges to u(x)

uniformly on [0; 1] as r → ∞.

Notice that under the null hypothesis, both (1) and (2) are reduced to

J (u;v) =
∫ 1

0
u(x) dv(x):

Lemma 1.1 suggests we consider estimating the functionals

J (ur ; vs) =
∫ 1

0
ur(x) dvs(x);

where ur(x) and vs(x) are the positively weighted tail binomial polynomials for ap-
proximating the functions u(x) and v(x) with maximum degrees r and s, respectively.

One question that arises naturally is whether J (ur ; vs) converges to J (u;v) as r and s
tend to inGnity; namely whether the set of functionals J (ur ; vs) is dense in the set of
functionals J (u;v), where u; ur; v; vs are deGned as above. The following lemma gives
rise to a positive answer.

Lemma 1.2. Suppose that ur(x) and vs(x) as de:ned in Lemma 1:1 are the approxi-
mations of strictly increasing continuous functions u(x) and v(x) on [0; 1]; respectively.
The set of functionals J (ur ; vs) is dense in the set of functionals J (u;v) if the derivative
of v(x) exists and is continuous.
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Remarks: It is sensible to consider an empirical estimate based upon the functional
approximation, i.e.

J (ur ; vs) =
∫ 1

0
ur(x) dvs(x)

or simply

J (�;�) =
∫ 1

0

r∑
k=1

�kbk:r(x) d
{

s∑
l=1

�lbl:s(x)
}

=
∫ 1

0

r∑
k=1

�k

r∑
i=k

(
r
i

)
xi(1 − x)r−id

s∑
k=1

�l

s∑
i=l

(
s
i

)
xi(1 − x)s−i ; (3)

where
∑r

k=1 �k = 1; �k¿0; k = 1; : : : ; r and
∑s

l=1 �l = 1; �l¿0; l = 1; : : : ; s, for
the weight vectors � = (�1; : : : ; �r) and � = (�1; : : : ; �s). In other words, if we con-
sider only the strictly increasing functions u(x) and v(x) such that u(0) = v(0) = 0
and u(1) = v(1) = 1; J (�;�) is a functional of great interest. For simplicity, through
the remainder of this paper, u(x) and v(x) are deGned as above, unless otherwise
stated.

Choosing strictly increasing and continuous functions u and v in both (1) and (2)
reduces to choosing the weight vectors �=(�1; : : : ; �r) and �=(�1; : : : ; �s) in (3) due to

Lemmas 1.1 and 1.2. If we choose �=(

k︷ ︸︸ ︷
0; : : : ; 0; 1; 0; : : : ; 0︸ ︷︷ ︸

r

) and �=(

l︷ ︸︸ ︷
0; : : : ; 0; 1; 0; : : : ; 0︸ ︷︷ ︸

s

) in

(3), i.e. u(x)=bk:r(x) and v(x)=bl:s(x), then the U -statistic empirical estimates of �(u;v)

and �(u;v) are order statistic-based subsample generalizations of the Mann–Whitney–
Wilcoxon statistic and the Wilcoxon signed rank statistic, respectively (Xie and Priebe,
2000). The generalized MWW statistics (GMWW) include the MWW statistic, the
subsample median statistic (Shetty and Govindarajulu, 1988; Kumar, 1997), the sub-
sample maxima statistic (Kochar, 1978; Deshpande and Kochar, 1980; Stephenson and
Ghosh, 1985; Ahmad, 1996; Adams et al., 2000) and the subsample minima statistic
(Priebe and Cowen, 1999). Moreover, the subsample statistics developed by Mathisen
(1943) and Shetty and Bhat (1994) are special cases of the GMWW statistics. On
the other hand, the generalized WSR (GWSR) statistic includes the WSR statistic and
Maesono–Ahmad subsample statistic. In light of (3), the U -statistic empirical estimates
of �(u;v) and �(u;v), where u(x) =

∑r
k=1 �kbk:r(x) and v(x) =

∑s
k=1 �lbl:s(x), are hereby

dubbed the weighted GMWW (WGMWW) and weighted GWSR (WGWSR) statistics,
respectively. Apparently, the GMWW and GWSR statistics are special cases of the
WGMWW and WGWSR statistics. This further development to a weighted version of
GMWW (WGMWW) or GWSR (WGWSR) completes the generalization along the
lines of subsample statistics. Thus, it would be of great interest to investigate the ad-
missibility of the WGMWW (WGWSR) statistic with respect to the GMWW (GWSR)
statistic in terms of PAE.
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There are many nonparametric tests available in the literature for both the one-sample
and two-sample problems in addition to those presented above. For example, there is
a class of locally most powerful linear rank tests (Chapters 9:1 and 10:2 of Randles
and Wolfe (1979)). If the optimal score function !(x; f) for the two-sample case or
!+(x; f) for the one-sample case (f is the density function of the distribution F), i.e.

!(x; f) =
−f′{F−1(x)}
f{F−1(x)}

or

!+(x; f) =
−f′{F−1(x=2 + 1=2)}
f{F−1(x=2 + 1=2)} ;

is a strictly increasing function, then the optimal score functional
∫ 1

0 !(x; f) dx or∫ 1
0 !+(x; f) dx (the functional associated with the two-sample or one-sample optimal

linear rank statistics) is a special case of (1) or (2), indicating that under H0, Lemmas
1.1 and 1.2 are applicable. Especially, when

∫ 1
0 !(x; f) dx or

∫ 1
0 !+(x; f) du is too

complicated to be used to construct the optimal linear rank statistic, the empirical
estimate based upon the functional approximation (3) is a good alternative.

The asymptotic distribution of the WGMWW statistics is derived in Section 2. Sec-
tion 3 is devoted to demonstrating the admissibility of the WGMWW statistic with
respect to the GMWW statistic in the sense of Pitman e5cacy. Precisely, given any
continuous underlying distributions F and G, the PAE-optimal weighted generalization
of the MWW statistic outperforms the conventional nonparametric subsample statistics,
including the MWW statistic itself. An analogous treatment of the WGWSR statistic
is given in Section 4.

2. The weighted GMWW statistic

A new class of statistics is introduced for testing stochastic ordering between two
independent distributions. This class includes as a special case the GMWW statistic
(Xie and Priebe, 2000). This new class is shown to be asymptotically normal under
the null and alternative hypotheses. It is distribution-free.

Suppose that X1; : : : ; Xr (Y1; : : : ; Ys) are r (s) independent copies of X (Y ) and
X1:r ; : : : ; Xr:r (Y1:s; : : : ; Ys:s) are the order statistics obtained arranging the preceding
random sample in increasing order of magnitudes. Suppose that � = (�1; : : : ; �r)
and � = (�1; : : : ; �s) are weight vectors, where

∑r
k=1 �k = 1; �k¿0; k = 1; : : : ; r, and∑s

l=1 �l = 1; �l¿0; l = 1; : : : ; s. DeGne

�(�;�) =
∫ ∞

−∞

r∑
k=1

�kbk:r{F(x)} d
[

s∑
l=1

�lbl:s{G(x)}
]

=
∫ ∞

−∞

r∑
k=1

�kFk:r(x) d
{

s∑
l=1

�lGl:s(x)
}
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=
r∑

k=1

s∑
l=1

�k�l

∫ ∞

−∞
Fk:r(x) dGl:s(x)

=
r∑

k=1

s∑
l=1

�k�l Pr{Xk:r¡Yl:s};

where Fk:r(x)=
∑r

i=k ( r
i )F

i(x){1−F(x)}r−i and Gl:s(x)=
∑s

i=l ( s
i )G

i(x){1−G(x)}s−i.
Under H0,

�(�;�) =
r∑

k=1

s∑
l=1

�k�l

r∑
i=k

(
l + i − 1

i

)(
r + s− i − l

r − i

)
(

r + s
r

) ≡ �(�;�)
0 ;

while �(�;�)¿�(�;�)
0 under HA.

Theorem 2.1. An empirical estimate of �(�;�) is given by

�(�;�)
n;m =

{(
n
r

)(
m
s

)}−1 ∑
C

r∑
k=1

s∑
l=1

�k�lI{Xk:r(Xi1 ; : : : ; Xir )¡Yl:s(Yj1 ; : : : ; Yjs)}

=

∑r
k=1

∑s
l=1

∑n−r+k
i=k

∑m−s+l
j=l �k�l

(
i − 1
k − 1

)(
n− i
r − k

)(
j − 1
l− 1

)(
m− j
s− l

)
I(Xi:n¡Yj:m)(

n
r

)(
m
s

)

where
∑

C extends over all indices 16 i1¡ · · ·¡ir6n; 16j1¡ · · ·¡js6m, r and s
are :xed; r�n; s�m and where X1:n; : : : ; Xn:n (Y1:m; : : : ; Ym:m) denote the order statis-
tics of the random sample X1; : : : ; Xn (Y1; : : : ; Ym) to distinguish these order statistics
from the subsample order statistics Xk:r(Yl:s).

The proof of Theorem 2.1 follows immediately from Theorem 1 of Xie and Priebe
(2000).

In this section, we shall study the asymptotic behavior of the weighted GMWW
statistic �(�;�)

n;m . For ease of notation, we deGne Fk:r(x) = 1 or 0 as k = 0 or k¿r and
Gl:s(y) = 1 or 0 as l = 0 or l¿s.

Theorem 2.2. Let n → ∞ and m → ∞ such that (n=(n + m)) → ' ∈ (0; 1). Then√
m + n(�(�;�)

n;m −�(�;�)) is asymptotically normal with mean 0 and variance (2
�;�; where

(2
�;� =

r2

'
var

{∫ X1

−∞

r∑
k=1

s∑
l=1

�k�l(Fk:r−1 − Fk−1:r−1)(x) dGl:s(x)
}

+
s2

(1 − ')
var

{∫ Y1

−∞

r∑
k=1

s∑
l=1

�k�l(Gl:s−1 − Gl−1:s−1)(x) dFk:r(x)
}

:
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Under H0; the variance (2
�;� reduces to )=('(1 − ')); where

) = r2
r∑

k=1

s∑
l=1

r∑
i=1

s∑
j=1

�k�i�l�j

(
k + l− 2
l− 1

)(
r + s− k − l

r − k

)
(

r + s− 1
s

)

×

(
i + j − 2
i − 1

)(
r + s− i − j

r − i

)
(

r + s− 1
s

) r+s−1∑
p=k+l−1

r+s−1∑
q=i+j−1

(
r + s− 1

p

)(
r + s− 1

q

)

× (p + q)!(2r + 2s− p− q− 2)!
(2r + 2s− 1)!

−



∑r

k=1

∑s
l=1 �k�l

(
k + l− 2
k − 1

)(
r + s− k − l + 1

r − k

)
(r − l + 1)(

r + s
s

)



2

:

For the detailed proof of Theorem 2.2, see the appendix.
Remarks:

1. The GMWW statistic (Xie and Priebe, 2000) is simply �(�;�)
n;m with � =

(

k︷ ︸︸ ︷
0; : : : ; 0; 1; 0; : : : ; 0︸ ︷︷ ︸

r

) and � = (

l︷ ︸︸ ︷
0; : : : ; 0; 1; 0; : : : ; 0︸ ︷︷ ︸

s

), deGned as GMWW(k:r; l:s)
n;m . One

noteworthy fact is that �(�′ ;�′) with the uniform weights �′ = (

r︷ ︸︸ ︷
1=r; : : : ; 1=r) and �′ =

(

s︷ ︸︸ ︷
1=s; : : : ; 1=s) is identical to the MWW statistic.

2. Theorems 2.1 and 2.2 provide a feasible way to compute �(�;�)
n;m and (2

�;� using
modern statistical software. It is easy to calculate the weighted GMWW statistic
and its p-value, provided that sample sizes (n; m) and subsample sizes (r; s) are not
impractically large.

3. Pitman asymptotic e�cacy

In this section the focus is primarily on showing the admissibility of the weighted
GMWW statistic relative to the GMWW statistic through theory and examples, both of
which shed light onto the relationship between these two classes of statistics. Pitman
asymptotic e5cacy (PAE) is used for the purpose of comparing two test procedures.
The inclusion of the class of the GMWW statistics within the class of the weighted
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GMWW statistics as stated in Theorem 3.1 implies that the Grst class is at most as
good as the second in the sense of the maximum PAE possible within each class.
The e5cacy analysis result presented in this investigation indicates nontrivial gain in
e5cacy using the optimal WGMWW statistics in the sense of PAE when the underlying
densities are far from unimodal.

Pitman asymptotic e5cacy (PAE) is deGned in our case as

PAE (�(�;�)) =

[{
d
d�

�(�;�)
�

}2
∣∣∣∣∣
�→�0

]/
(2
�;�;

where F = F�0 and G = F�, with � = �0 + c=n1=2 and where (2
�;� is the null variance

given in Theorem 2.2. Applying this deGnition we see that for the location problem
G(x) = F(x − �), under the assumption the density of F exists and is equal to f,

d
d�

�(�;�)
�

∣∣∣∣
�→0

=
r∑

k=1

s∑
l=1

�k�lr!s!
(k − 1)!(r − k)!(l− 1)!(s− l)!

×
∫ ∞

−∞
Fk+l−2(1 − F)r+s−k−lf2(x) dx:

Apparently, the explicit expressions for the PAE are not easy to derive in general
due to the complexity of distribution functions. Hence we study the PAEs for various
canonical types of distributions and therefore indicate the strengths and weaknesses of
the WGMWW statistics. For simplicity, PAEs presented here are scaled by the constant
'(1 − ').

Twenty typical densities have been carefully chosen to investigate the overall perfor-
mance of the WGMWW statistics in terms of PAE. Standard distributions considered
here are the Uniform, Exponential, Logistic, Double Exponential and Cauchy distribu-
tions. In addition, a test suite of 15 normal mixture densities (Marron and Wand, 1992)
are included to represent a wide range of density shape. (Any density can be approxi-
mated arbitrarily closely in various senses by a normal mixture.) Density numbers 1–10
represent unimodal densities. The rest of the densities are multimodal. Density numbers
1–6 are symmetric and unimodal, ranging from the heavy tail to the light tail while
the skewness of the unimodal densities are increasing from number 7 to number 10.
On the other hand, the density numbers 11–15 are mildly multimodal. The remaining
densities are strongly multimodal. We believe these densities eCectively model many
real data situations.

Let us denote by Cr;s the class of two-sample GMWW statistics with subsample sizes
r and s and denote by WCr;s the class of two-sample weighted GMWW statistics with
subsample sizes r and s. Clearly the fact that Cr;s ⊂ WCr;s leads to the conclusion
that the maximum PAE of the GMWW statistic in Cr;s is not greater than that in
WCr;s. To prove the admissibility of the weighted GMWW statistic with respect to
the GMWW statistic, we need to show that Cr;s ⊂ WCr′ ; s′ , whenever r6r′ and s6s′

and hence the maximum PAE of the WGMWW statistic in WCr′ ; s′ is not less than
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that in WCr;s. Moreover, at least one member in WCr′ ; s′ has strictly larger PAE than
does any member in WCr;s:

Theorem 3.1. The class of the two-sample GMWW statistics with subsample sizes r1

and s1; i.e. Cr1 ; s1 ; belongs to the class of the two-sample weighted GMWW statistics
with subsample sizes r2 and s2; i.e. WCr2 ; s2 ; whenever r16r2 and s16s2; that is;
Cr1 ; s1 ⊂ WCr2 ; s2 . Furthermore; WCr1 ; s1 ⊂ WCr2 ; s2 .

The proof of Theorem 3.1 is provided in the appendix.
Remarks:

1. This theorem implies that the maximum PAE for the class WCr;s is monotone in
terms of r and s.

2. One interesting identity worth mentioning is the following:

(
r + 1
k

)
Fk:r =

(
r
k

)
Fk:r+1 +

(
r

k − 1

)
Fk+1:r+1: (4)

(The proof of identity (4) is given in the appendix.) This key identity allows us
to conclude

(
r + 1
k

)
�(k:r; l:s) =

(
r
k

)
�(k:r+1; l:s) +

(
r

k − 1

)
�(k+1:r+1; l:s)

and

(
s + 1
l

)
�(k:r; l:s) =

(
s
l

)
�(k:r; l:s+1) +

(
s

l− 1

)
�(k:r; l+1:s+1):

Similarly, the analog of Theorem 3.1 is valid for the functionals of the GMWW
and WGMWW statistics.

The question arising naturally now is how to determine the optimal weighted GMWW
statistic in WCr;s in terms of PAE. The PAE-optimal weighted GMWW statistic in
WCr;s is deGned as the weighted GMWW statistic in WCr;s with the maximum PAE.
Thus it is clear that the problem of Gnding the optimal weighted GMWW statistic
reduces to that of choosing the weights �i; �j; i = 1; : : : ; r; j = 1; : : : ; s; to maximize the
PAE in WCr;s. The following theorem details this approach, which plays a key role in
Gnding a PAE-optimal WGMWW statistic.

Theorem 3.2. The PAE-optimal weighted GMWW statistic in WCr;s is a weighted
GMWW statistic with the weight vectors � and �; which are a solution of the
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nonlinear programming problem with linear constraints as follows:

max
’2(r; s; �; �)
)(r; s; �; �)

s:t:




∑r
i=1 �i = 1;∑s
j=1 �j = 1;

�i¿0; i = 1; : : : r;

�j¿0; j = 1; : : : s;

(5)

where )(r; s; �; �) is the null variance given in Theorem 3:1 and

’(r; s; �; �) =
r∑

k=1

s∑
l=1

r!s!�k�l
∫∞
−∞ Fk+l−2(1 − F)r+s−k−lf2(x) dx

(k − 1)!(r − k)!(l− 1)!(s− l)!
:

If F(x) is a cumulative distribution with :nite Fisher information; then there exists
a solution to (5).

Remarks:

1. The proof follows easily from the fact that given the distribution function F , the
PAE or the objective function in (5) is bounded by the Fisher information of F .

2. There are many nonlinear programming software packages containing rich maxi-
mization procedures which can be easily applied to choose the weights � and �.

3. Given that the density function f and distribution function F are unknown, an
adaptive procedure may be necessary. If large samples are available, a nonparametric
estimate for f and an empirical distribution for F may be applicable. This yields
an adaptive procedure (Hogg et al., 1975). In fact, one of the major advantages of
the weighted GMWW statistic is to take advantage of relatively large samples in
order to increase the PAE. Thus it is highly preferable in this scenario. However,
application of an adaptive procedure in practice will not be addressed herein.

When the population distributions are assumed to diCer only in location, the MWW
test is directly comparable with the Student t-test which is known to be optimal with
PAE of 1 under the assumption of normality. It is well known that if the population
distributions are normal, the PAE of MWW is quite high at 0.955 (see Table 4 of
Xie and Priebe, 2000). In fact, the overall PAE-optimal GMWW statistic is indeed
the MWW statistic. It is no wonder that many statisticians thus far have considered
the MWW test to be an appropriate nonparametric test for the two-sample location
problem in the case of F normal. In the following example, we Gnd that the WGMWW
dominates the MWW for this case.

Example I. Assume F(x) to be the normal distribution function (our density # 4).
Applying Theorem 3.2 and using the computer code in Appendix A of Xie (1999) for
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solving (5) with r = s = 2, we obtain the solution

�1 = 0:5; �2 = 0:5; �1 = 0:5; �2 = 0:5;

which is in fact the classical MWW statistic. Notice that

0:5F1:2(x) + 0:5F2:2(x) = F(x)

and hence that

�(0:5;0:5;0:5;0:5) =
∫ ∞

−∞
{0:5F1:2(x) + 0:5F2:2(x)} d{0:5G1:2(x) + 0:5G2:2(x)}

=
∫ ∞

−∞
F(x) dG(x)

= �(1;1):

This is an illustrative example of Theorem 3.1, in which C1;1 ⊂ WC2;2. Furthermore,
it appears that the maximum PAE of WC2;2 is equal to the maximum PAE of C1;1,
0.955. On the other hand, the solution of (5) with r = s = 3 is

�1 = 0:5; �2 = 0; �3 = 0:5; �1 = 0:5; �2 = 0; �3 = 0:5

and thus the functional associated with this weighted GMWW statistic is

�(0:5;0;0:5;0:5;0;0:5) =
∫ ∞

−∞
{0:5F1:3(x) + 0:5F3:3(x)} d{0:5G1:3(x) + 0:5G3:3(x)};

which yields the PAE of 0.9891. Clearly the maximum PAE of the WGMWW statistic
in WC3;3 is greater than that in WC2;2. It is also greater than the maximum PAE in C3;3

as shown in Table 1. Moreover, the maximum PAE for WCr;s; r=s=4; 5; 6 are 0.9932,
0.9936, 0.9958, respectively. Experimentally, the maximum PAE for WCr;s increases
as r and s grow. This observation not only conforms to Theorem 3.1 as expected, but
also demonstrates the admissibility of WCr;s relative to Cr;s in terms of PAE.

Example II. Let us consider the Bimodal distribution F(x) (our density # 11). By
solving (5) with r = s = 2; 3; 4; 5; 6, we obtain the weight vectors as follows:

�1 = �1 = �r = �r = 0:5 and �i = �i = 0; i = 2; : : : ; r − 1:

Hence the associated functional is

�(�;�) =
∫ ∞

−∞
{0:5F1:r(x) + 0:5Fr:r(x)} d{0:5F1:r(x) + 0:5Fr:r(x)}:

As displayed in Table 1, the maximum PAE for WCr;s is constantly increasing with
subsample sizes r and s. Most importantly, the gain in e5cacy using the PAE-optimal
weighted GMWW statistic is substantial.

The PAE-optimal weighted GMWW statistic outperforms the PAE-optimal GMWW
statistic, as shown from Table 1. Regardless of the underlying distribution, the
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Table 1
Comparison of the WGMWW and GMWW statisticsa

ARE(WGMWW, GMWW)
# r = s = 1 r = s = 2 r = s = 3 r = s = 4 r = s = 5 r = s = 6 Optimal(r; s)

#1 1 1 1 1 1 1 1
#2 1 1 1 1 1 1 1
#3 1 1.012 1.028 1.044 1.057 1.074 1
#4 1 1.054 1.133 1.168 1.215 1.216 1.042
#5 1 1 1 1 1 1 1
#6 1 1 1.006 1.021 1.036 1.048 1.007
#7 1 1 1 1 1 1 1
#8 1 1 1 1 1 1 1
#9 1 1.016 1.045 1.075 1.081 1.1 1.027

#10 1 1 1 1 1 1 1
#11 1 1.050 1.248 1.476 1.6 1.667 1.615
#12 1 1.007 1.193 1.440 1.585 1.664 1.635
#13 1 1 1 1 1.121 1.145 1.136
#14 1 1.024 1.217 1.451 1.588 1.667 1.657
#15 1 1.079 1.283 1.5 1.554 1.516 1.516
#16 1 1.049 1.249 1.439 1.594 1.674 1.626
#17 1 1.008 1.147 1.310 1.413 1.481 1.481
#18 1 1 1.107 1.297 1.418 1.449 1.425
#19 1 1 1.131 1.263 1.123 1.299 1.299
#20 1 1 1.163 1.389 1.497 1.532 1.532

aARE(WGMWW;GMWW) = max PAE(WGMWW∈WCr; s)
max PAE(GMWW∈Cr; s)

.

PAE-optimal WGMWW statistic always has a nondecreasing PAE in terms of subsam-
ple sizes r and s. In contrast, this is not generally true for the PAE-optimal GMWW
statistic. As far as the unimodal densities number 1 to number 10 are concerned, it
is clear that under the Gaussian, Outlier, Logistic and Skewed unimodal distributions,
the PAE-optimal weighted GMWW statistic gains higher e5cacy than its counterpart
in the class of the GMWW statistics, i.e. the corresponding PAE-optimal GMWW
statistic (Fig. 1). This indicates the admissibility of the WGMWW statistic relative
to the GMWW statistic. In fact, the former dominates the latter; we observe that the
PAE-optimal weighted GMWW statistic is at least as good as the PAE-optimal GMWW
statistic for the remaining unimodal densities. As for PAE analyses of the multimodal
densities displayed in Table 1 (density numbers 11–20), the PAE-optimal weighted
GMWW statistic shows substantial improvement over the PAE-optimal GMWW statis-
tic (Fig. 2). For example, for r = s = 6, the PAE-optimal weighted GMWW statistic
gives rise to almost 65:7% increase in e5cacy over the PAE-optimal GMWW statistic
for the density # 14. Overall, the superiority of the former over the latter therefore
becomes apparent as anticipated from Theorem 3.1. It is highly recommended that the
PAE-optimal WGMWW statistic be used, especially when the underlying distribution
is multimodal, as opposed to the PAE-optimal GMWW statistic.
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Fig. 1. Testing densities.
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Fig. 2. Testing densities.
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4. One-sample analog: a weighted generalization of the Wilcoxon signed rank
statistic

Analogous to the two-sample case, a class of weighted generalizations of the Wilcoxon
signed rank (WSR) statistics is introduced for testing the center of a symmetric dis-
tribution, including as special cases the Wilcoxon Signed Rank, the Maesono–Ahmad
(Maesono, 1987; Ahmad, 1996) and the GWSR (Xie and Priebe, 2000) statistics.

As in the two-sample case, Lemmas 1.1 and 1.2 motivate us to estimate the functional
�(�;�) deGned as

�(�;�) =
∫ ∞

−∞

r∑
k=1

�kbk:r{1 − F(−x)} d
[

s∑
l=1

�lbl:s{F(x)}
]

=
∫ ∞

−∞

r∑
k=1

�k JFr−k+1:r(−x) d
{

s∑
l=1�lFl:s(x)

}

=
r∑

k=1

s∑
l=1

�k�l

∫ ∞

−∞
JFr−k+1:r(−x) dFl:s(x)

=
r∑

k=1

s∑
l=1

�k�lPr{Xk:r(X1; : : : ; Xr) + Xl:s(Xr+1; : : : ; Xr+s)¿0};

where JFr−k+1:r(−x) =
∑r

v=r−k+1( r
v ) JF

v
(−x)(1 − JF(−x))r−v and � = (�1; : : : ; �r) and

� = (�1; : : : ; �s) are the weight vectors and where X1; : : : ; Xr are r independent copies
of X and X1:r ; : : : ; Xr:r are the order statistics obtained by arranging the preceding
random sample in increasing order of magnitude. Notice that under H0, �(�;�) =

∑r
k=1∑s

l=1 �k�l
∑r

i=r−k+1 ( l+i−1
i )( s+r−i−l

r−i )=( r+s
r ).

An empirical estimate of �(�;�) is given by

�(�;�)
n =

{(
n

r + s

)(
r + s
s

)}−1 ∑
C

r∑
k=1

s∑
l=1

�k�lI{Xk:r(Xi1 ; : : : ; Xir ) + Xl:s(Xir+1 ; : : : ; Xir+s)¿0}

=

∑r
k=1

∑s
l=1

∑n−r+k
i=k

∑n−s+l
j=l �k�lwijI(Xi:n + Xj:n¿0)(

n
r + s

)(
r + s
r

) ;

where
∑

c stands for summation over all permutations (i1; : : : ; ir+s) of r + s integers
such that 16 i1¡ · · ·¡ir6n, 16 ir+1¡ · · ·¡ir+s6n, and ie �= if if e �= f, 16e6r
and 16f6s, and where

wij =


∑l−1
v=0

(
i − 1
k − 1

)(
i − k
v

)(
j − i − 1
l− v− 1

)(
n− j
s− l

)(
n + v− i − s

r − k

)
i¡j;

0 i = j;∑s−l
v=0

(
j − 1
l− 1

)(
i − j − l

v

)(
n− i − r + k

s− l− v

)(
n− i
r − k

)(
i − l− v− 1

k − l

)
i¿j:
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The GWSR statistic (Xie and Priebe, 2000), including the WSR and Maesono–Ahmad

statistics, is simply �(�;�)
n with � = (

k︷ ︸︸ ︷
0; : : : ; 0; 1; 0; : : : ; 0︸ ︷︷ ︸

r

) and � = (

l︷ ︸︸ ︷
0; : : : ; 0; 1; 0; : : : ; 0︸ ︷︷ ︸

s

).

Likewise, �(�′ ;�′) with the uniform weight vectors �′ = (

r︷ ︸︸ ︷
1=r; : : : ; 1=r) and �′=

(

s︷ ︸︸ ︷
1=s; : : : ; 1=s) is the WSR statistic because 1

r

∑r
k=1

JFk:r(−x)= JF(−x) and 1
s

∑s
l=1 Fl:s(x)=

F(x).
In this section, we shall study the asymptotic behavior of the statistic �(�;�)

n . For ease
of illustration, we deGne Fk:r(x) = 1 or 0 as k = 0 or k¿r.

Theorem 4.1. Let n → ∞. Then
√
n{�(�;�)

n − �(�;�)} is asymptotically normal with
mean 0 and variance 02

�;�; where

02
�;� = var

[
r∑

k=1

s∑
l=1

�k�l

{
r
∫ ∞

−X1

JFr−k:r−1(−x) dFl:s(x)

+ r
∫ −X1

−∞
JFr−k+1:r−1(−x) dFl:s(x)

+ s
∫ X1

−∞
Fl−1:s−1(x) d JFr−k+1:r(−x)

− s
∫ X1

−∞
Fl:s−1(x) d JFr−k+1:r(−x)

}]

for 16k6r, 16l6s. Under H0; the variance 02
�;� reduces to

r∑
k=1

s∑
l=1

r∑
i=1

s∑
j=1

�k�l�i�j
r!s!(r + l− k − 1)!(s + k − l− 1)!

(k − 1)!(r + s− 1)!(r − k)!(l− 1)!(s− l)!

× r!s!(r + j − i − 1)!(s + i − j − 1)!
(i − 1)!(r + s− 1)!(r − i)!(j − 1)!(s− j)!

×


1 − (s + r − 1)!

(s− l + k − 1)!(r + l− k − 1)!

s+r−1∑
i=r+j−i

(
s + r − 1

i

)
(2r + 2s− 1)!

×{(2i + 2l− 2k − 2s + 1)(r + l + i − k − 1)!(2s + r + k − l− i − 2)!

+ (2i + 2k − 2r − 2l + 1)(s− l + k + i − 1)!(s + 2r + l− i − k − 2)!}

− (s + r − 1)!
(s− j + i − 1)!(r + j − i − 1)!

s+r−1∑
n=r+l−k

(
s + r − 1

n

)
(2r + 2s− 1)!
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×{(2n + 2j − 2i − 2s + 1)(r + j + n− i − 1)!(2s + r + i − j − n− 2)!

+ (2n + 2i − 2r − 2j + 1)(s− j + i + n− 1)!(s + 2r + j − n− i − 2)!}


 :

Thus the proof of Theorem 4.1 is similar to that of Theorem 3.1.
Let us denote by Vr;s the class of the one-sample GWSR statistics with subsample

sizes r and s and denote by WVr;s the class of the one-sample weighted GWSR statistics
with subsample sizes r and s. Apparently, Vr;s ⊂ WVr;s. As in the two-sample case,
we have the following theorem characterizing the relationship between the classes V
and WV .

Theorem 4.2. The class of the one-sample GWSR statistics with subsample sizes
r1 and s1; i.e. Vr1 ; s1 ; is included in the class of the one-sample weighted GWSR
statistics with subsample sizes r2 and s2; i.e. WVr2 ; s2 ; whenever r16r2 and s16s2;
that is; Vr1 ; s1 ⊂ WVr2 ; s2 : Furthermore; WVr1 ; s1 ⊂ WVr2 ; s2 .

The PAE-optimal weighted GWSR statistic in WVr;s is deGned as the weighted
GWSR statistic with the maximum e5cacy in WVr;s. The problem of Gnding the optimal
weighted GWSR statistic reduces to that of choosing the weights �i; �j; i=1; : : : ; r; j=
1; : : : ; s to maximize the PAE of the WGWSR statistic in WVr;s.

Theorem 4.3. Suppose that the cumulative distribution F(x) is known. A PAE-optimal
weighted GWSR statistic in WVr;s is the weighted GWSR statistic with weight vec-
tors � and �; which are a solution of the nonlinear programming problem with linear
constraints as follows:

max
!2(r; s; �; �)
 (r; s; �; �)

s:t:




∑r
i=1 �i = 1;∑s
j=1 �j = 1;

�i¿0; i = 1; : : : r;

�j¿0; j = 1; : : : s;

(6)

where  (r; s; �; �) is the null variance given by Theorem 4:1 and

!(r; s; �; �) =
r∑

k=1

s∑
l=1

2r!s!�k�l
∫∞
−∞ Fr−k+l−1(1 − F)s+k−l−1f2(x) dx

(k − 1)!(r − k)!(l− 1)!(s− l)!
:

If the Fisher information of F(·) is bounded; then there exists a solution to (6:15):

Proof. The proof follows from the similar argument in the proof of Theorem 3.2.
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Example I. Suppose that F(x) is the normal distribution function. Applying Theorem
4.3 and using the computer code in Appendix B of Xie (1999) for solving (6), we
obtain the maximum PAEs for WVr;s; r = s = 2; 3; 4; 5; 6; which are 0.9760, 0.9896,
0.9932, 0.9937 and 0.9959, respectively. As subsample sizes r; s get large, the optimal
PAE increases. This agrees with Theorem 4.2. Notice that for the normal distribution,
the maximum achievable PAE is 1. Since the one-sample t-test with PAE=1 is optimal
for the normal distribution, the PAE-optimal WGWSR with r = s = 6 is a strong
nonparametric competitor.

Appendix

Proof of Lemma 1.1. It is su5cient to consider the case in which u(0)=0 and u(1)=1.
Suppose that u(x) is a strictly increasing continuous function on [0; 1] and that u(0)=0
and u(1) = 1. In light of the Weierstrass approximation theorem (Theorem 1:1:1 of
Lorentz (1986)), this implies that the Bernstein polynomials ur(x) of the function u(x)
converges to u(x) uniformly on [0; 1]: Moreover, ur(x) can be expressed in terms of
the tail binomial polynomials bk:r(x); k = 1; : : : ; r. To see this, let us take a closer look
at ur(x).

ur(x) =
r∑

k=0
u
(
k
r

)( r
k

)
xk(1 − x)r−k

= u(1)br:r(x) +
r−1∑
k=0

u
(
k
r

)
{bk:r(x) − bk+1:r(x)}

= u(0)b0:r(x) +
r∑

k=1

{
u
(
k
r

)
− u

(
k − 1

r

)}
bk:r(x)

=
r∑

k=1

{
u
(
k
r

)
− u

(
k − 1

r

)}
bk:r(x)

=
r∑

k=1
wkbk:r(x);

where wk = u(k=r) − u((k − 1)=r)¿0; k = 1; : : : ; r and
∑r

k=1 wk = 1. The proof is
completed as desired.

Proof of Lemma 1.2. It is su5cient to show that∫ 1

0
ur(x) dvs(x) →

∫ 1

0
u(x) dv(x) as r; s → ∞ and r=s → ' ∈ (0; 1):

Without loss of generality, we are assuming that u(0)=0, and hence 0¡u(1)¡∞: The
continuity of v′, taken together with the Weierstrass approximation theorem, implies
that the Bernstein polynomials of v′(x), i.e. v′s(x), converge to v′(x) uniformly on [0; 1].
Thus, for any 3¿0, and all x ∈ [0; 1], there exists M ′ such that |v′s(x)−v′(x)|¡3=2u(1),
whenever s¿M ′. Once again, it follows from the Weierstrass approximation theorem
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that ur(x) and vs(x) converge to u(x) and v(x) uniformly on [0; 1], respectively. This
implies that for any 0¡3¡1 and all x ∈ [0; 1], there exist N1 and M1 such that
|ur(x)−u(x)|¡3=2(2+|v(1)−v(0)|) and |vs(x)−v(x)|¡3; whenever r¿N1 and s¿M1.
All in all, for any 3¿0, there exists M = max{N1; M1; M ′} such that∣∣∣∣∣

∫ 1

0
ur(x) dvs(x) −

∫ 1

0
u(x) dv(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0
{ur(x) − u(x)} dvs(x) +

∫ 1

0
u(x) d{vs(x) − v(x)}

∣∣∣∣∣
6

∣∣∣∣∣
∫ 1

0
{ur(x) − u(x)} dvs(x)

∣∣∣∣∣ +

∣∣∣∣∣
∫ 1

0
u(x) d{vr(x) − v(x)}

∣∣∣∣∣
6

∫ 1

0
|ur(x) − u(x)| dvs(x) +

∫ 1

0
|u(x){v′s(x) − v′(x)}| dx

6
|vs(1) − vs(0)|3

2(2 + |v(1) − v(0)|) + |u(1)|
∫ 1

0
|v′s(x) − v′(x)| dx:

Hence the lemma follows as desired.

Proof of Theorem 2.2. Using Theorem 3:4:13 of Randles and Wolfe (1979), we need
only to establish the variance. Let

’(�;�)(X1; : : : ; Xr;Y1; : : : ; Ys) =
r∑

k=1

s∑
l=1

�k�lI{Xk:r(X1; : : : ; Xr)¡Yl:s(Y1; : : : ; Ys)}:

Thus

’(�;�)
10 (X1) = E[’(�;�)(X1; : : : ; Xr;Y1; : : : ; Ys)|X1]

=
r∑

k=1

s∑
l=1

�k�l Pr{Xk:r(X1; : : : ; Xr)6Yl:s(Y1; : : : ; Ys)|X1}

=
r∑

k=1

s∑
l=1

�k�lPr{Xk:r6Yl:s|X1}

=
r∑

k=1

s∑
l=1

�k�l’
(k:r; l:s)
10 (X1):

Similarly, we have

’(�;�)
01 (Y1) = E{’(�;�)(X1; : : : ; Xr;Y1; : : : ; Ys)|Y1}

=
r∑

k=1

s∑
l=1

�k�l Pr{Xk:r6Yl:s|Y1}

=
r∑

k=1

s∑
l=1

�k�l’
(k:r; l:s)
01 (Y1):
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Under H0;

E’(�;�)
10 (X1) = E’(�;�)

01 (Y1)

=
r∑

k=1

s∑
l=1

�k�lE’
(k:r; l:s)
01 (Y1)

= �(�;�)

=
(

r + s
r

)−1 r∑
k=1

s∑
l=1

�k�l

r∑
i=k

(
l + i − 1

i

)(
r + s− i − l

r − i

)
:

)1;0 = var{’(�;�)
10 (X1)}

= var
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fk:r−1 − Fk−1:r−1)(x) dFl:s(x)

}

= E
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fk:r−1 − Fk−1:r−1)(x) dFl:s(x)

}2

−E2
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fk:r−1 − Fk−1:r−1)(x) dFl:s(x)

}

= A− B2;

where

B = E
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fk:r−1 − Fk−1:r−1)(x) dFl:s(x)

}

=
r∑

k=1

s∑
l=1

�k�lE
{∫ X1

−∞
(Fk:r−1 − Fk−1:r−1)(x) dFl:s(x)

}

=

∑r
k=1

∑s
l=1 �k�l

(
k + l− 2
k − 1

)(
r + s− k − l + 1

r − k

)
(r − l + 1)

r
(

r + s
s

)

and

A = E
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fk:r−1 − Fk−1:r−1)(x) dFl:s(x)

}2

=
r∑

k=1

s∑
l=1

r∑
i=1

s∑
j=1

�k�i�l�jE
{∫ X1

−∞
(Fk:r−1 − Fk−1:r−1)(x) dFl:s(x)

×
∫ X1

−∞
(Fi:r−1 − Fi−1:r−1)(x) dFj:s(x)

}
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=
r∑

k=1

s∑
l=1

r∑
i=1

s∑
j=1

�k�i�l�j

(
k + l− 2
l− 1

)(
r + s− k − l

r − k

)
(

r + s− 1
s

)

×

(
i + j − 2
i − 1

)(
r + s− i − j

r − i

)
(

r + s− 1
s

)

×
r+s−1∑

p=k+l−1

r+s−1∑
q=i+j−1

(
r + s− 1

p

)(
r + s− 1

q

)
E{Fp+q(1 − F)2r+2s−p−q−2}

=
r∑

k=1

s∑
l=1

r∑
i=1

s∑
j=1

�k�i�l�j

(
k + l− 2
l− 1

)(
r + s− k − l

r − k

)
(

r + s− 1
s

)

×

(
i + j − 2
i − 1

)(
r + s− i − j

r − i

)
(

r + s− 1
s

)

×
r+s−1∑

p=k+l−1

r+s−1∑
q=i+j−1

(
r+s−1

p

)(
r+s−1

q

)
(p + q)!(2r+2s−p−q−2)!

(2r+2s−1)!
:

Similarly

)0;1 = var{’(�;�)
0;1 (Y1)}

= var
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fl:s−1 − Fl−1:s−1)(x) dFk:r(x)

}

= E
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fl:s−1 − Fl−1:s−1)(x) dFk:r(x)

}2

−E2


 r∑

k=1

s∑
l=1

�k�l

X1∫
−∞

(Fl:s−1 − Fl−1:s−1) dFk:r(x)




= C − D2;



462 J. Xie, C.E. Priebe / Journal of Statistical Planning and Inference 102 (2002) 441–466

where

D = E
{

r∑
k=1

s∑
l=1

�k�l

∫ X1

−∞
(Fl:s−1 − Fl−1:s−1) dFk:r(x)

}

=
r∑

k=1

s∑
l=1

�k�lE
{∫ X1

−∞
(Fl:s−1 − Fl−1:s−1) dFk:r(x)

}

=

∑r
k=1

∑s
l=1�k�l

(
k + l− 2
l− 1

)(
r + s− k − l + 1

s− l

)
(s− k + 1)

s
(

r + s
r

)
and

C =
r∑

k=1

s∑
l=1

r∑
i=1

s∑
j=1

�k�i�l�j

(
k + l− 2
k − 1

)(
r + s− k − l

s− l

)
(

r + s− 1
r

)

×

(
i + j − 2
j − 1

)(
r + s− i − j

s− j

)
(

r + s− 1
r

)

×
r+s−1∑

p=k+l−1

r+s−1∑
q=i+j−1

(
r+s−1

p

)(
r+s−1

q

)
(p + q)!(2r+2s−p−q−2)!

(2r+2s−1)!
:

Thus r2)1;0=' + s2)0;1=(1 − ') is identical to the variance under H0, i.e. )=('(1 − ')).

Proof of Theorem 3.1. Firstly, we claim that(
r + 1
k

)
GMWW(k:r; l:s)

n;m =
(

r
k

)
GMWW(k:r+1; l:s)

n;m

+
(

r
k − 1

)
GMWW(k+1:r+1; l:s)

n;m : (7)

Since (
r + 1
k

)
GMWW(k:r; l:s)

n:m

=

(
r + 1
k

)∑n
i=1

∑m
j=1

(
i − 1
k − 1

)(
n− i
r − k

)(
j − 1
l− 1

)(
m− j
s− l

)
I(Xi:n¡Yj:m)(

n
r

)(
m
s

) ;
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(
r
k

)
GMWW(k:r+1; l:s)

n;m

=

(
r
k

)∑n
i=1

∑m
j=1

(
i − 1
k − 1

)(
n− i

r − k + 1

)(
j − 1
l− 1

)(
m− j
s− l

)
I(Xi:n¡Yj:m)(

n
r + 1

)(
m
s

)

and

(
r

k − 1

)
GMWW(k+1:r+1; l:s)

n;m

=

(
r

k − 1

)∑n
i=1

∑m
j=1

(
i − 1
k

)(
n− i
r − k

)(
j − 1
l− 1

)(
m− j
s− l

)
I(Xi:n¡Yj:m)(

n
r + 1

)(
m
s

) ;

it is su5cient to show that

(
r + 1
k

)(
i − 1
k − 1

)(
n− i
r − k

)
(

n
r

) =

(
r

k − 1

)(
i − 1
k

)(
n− i
r − k

)
(

n
r + 1

)

+

(
r
k

)(
i − 1
k − 1

)(
n− i

r − k + 1

)
(

n
r + 1

) :

By expanding and simplifying both sides, this identity follows immediately. Likewise,
we obtain

(
s + 1
l

)
GMWW(k:r; l:s)

n;m =
(

s
l

)
GMWW(k:r; l:s+1)

n:m +
(

s
l− 1

)
GMWW(k:r; l+1:s+1)

n;m :

(8)

Secondly, combining (7) and (8) yields

GMWW(k:r; l:s)
n;m
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=

(
r
k

){(
s
l

)
GMWW(k:r+1; l:s+1)

n;m +
(

s
l− 1

)
GMWW(k:r+1; l+1:s+1)

n;m

}
(

r + 1
k

)(
s + 1
l

)

+

(
r

k − 1

){(
s
l

)
GMWW(k+1:r+1; l:s+1)

n;m +
(

s
l− 1

)
GMWW(k+1:r+1; l+1:s+1)

n;m

}
(

r + 1
k

)(
s + 1
l

) :

Hence (7) implies that

Cr;s ⊂ WCr+1; s ⇒ WCr;s ⊂ WCr+1; s

and (8) implies that

Cr;s ⊂ WCr;s+1 ⇒ WCr;s ⊂ WCr+1; s+1:

Finally, using the above recursive relations yields

Cr1 ; s1 ⊂ WCr1 ; s1 ⊂ WCr2 ; s2 ;

whenever r16r2 and s16s2.
The proof of theorem is completed as desired.

Proof of Identity (4).

Fk:r =
r∑

i=k

(
r
i

)
Fi(1 − F)r−i

=
r∑

i=k

(
r
i

)
{Fi(1 − F)r−i+1 + Fi+1(1 − F)r−i}

=
r∑

i=k

(
r
i

)
Fi:r+1 − Fi+1:r+1(

r + 1
i

) +
Fi+1:r+1 − Fi+2:r+1(

r + 1
i + 1

)



=
r∑

i=k




(
r
i

)
(

r + 1
i

)Fi:r+1 +

((
r + 1

i

)
−
(

r + 1
i + 1

))(
r
i

)
(

r + 1
i

)(
r + 1
i + 1

) Fi+1:r+1

−

(
r
i

)
(

r + 1
i + 1

)Fi+2:r+1



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=

(
r
k

)
(

r + 1
k

)Fk:r+1

+

{(
r + 1
k

)
−
(

r + 1
k + 1

)}(
r
k

)
+
(

r + 1
k

)(
r

k + 1

)
(

r + 1
k

)(
r + 1
k + 1

) Fk+1:r+1

+
r−2∑
i=k


−

(
r
i

)
(

r + 1
i + 1

) +

{(
r + 1
i + 1

)
−
(

r + 1
i + 2

)}(
r

i + 1

)
(

r + 1
i + 1

)(
r + 1
i + 2

)

+

(
r

i + 2

)
(

r + 1
i + 2

)

Fi+2:r+1

+



{(

r + 1
r

)
−
(

r + 1
r + 1

)}(
r
r

)
(

r + 1
r

)(
r + 1
r + 1

) −

(
r

r − 1

)
(

r + 1
r

)

Fr+1:r+1

=

(
r
k

)
(

r + 1
k

)Fk:r+1 +

(
r

k − 1

)
(

r + 1
k

)Fk+1:r+1:

The proof is completed as desired.
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