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Abstract

We present a generalization of the classical Mann-Whitney-Wilcoxon
(MWW) statistic for testing stochastic ordering between two distribu-
tions. Our class of statistics includes as special cases the generalizations
of the MWW statistic by Kochar (1978), Deshpande and Kochar (1980),
Stephenson and Ghosh (1985), Ahmad (1996) and Priebe and Cowen
(1998). We establish the asymptotic normality and prove the admis-
sibility of the generalization in the sense of Pitman’s asymptotic effi-
cacy. Corresponding distribution-free confidence intervals and Hodges-
Lehmann estimators are derived and a generalization of the Wilcoxon
signed rank statistic for testing the center of a symmetric, univariate,
continuous distribution is obtained.
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1 Introduction

The pioneering papers of Wilcoxon (1945) and Mann and Whitney (1947)
mark the beginning of modern nonparametric statistics. Wilcoxon (1945) pro-
vided a test statistic, the Wilcoxon rank sum statistic, which stimulated the de-
velopment of rank-based nonparametric methods. Mann and Whitney (1947)
introduced an equivalent statistic in the form of what has become known as a
U-statistic, a class of unbiased estimators of characteristics (parameters) of a
population (or populations). The study of U-statistics has attracted a great
deal of attention ever since (see, for instance, Serfling 1980, Behnen 1989).
This article presents a generalization of the classical Mann-Whitney-Wilcoxon
(MWW) statistic arising from the Mann and Whitney U-statistic representa-
tion.

Let Xy, ---,X, and Yj,---,Y,, be (jointly) independent random samples
from distribution functions F(z) and G(y), respectively. Consider fixed r < n
and s < m and subsamples Xy,---, X, and Y;,---,Y; (without loss of gener-
ality), and denote by X1, < X5, - +» < X,y and Yis < Yoi -+ - < Yy the order
statistics obtained from these subsamples. The problem of interest is to test
H, : F(x) = G(z) for every x versus H, : F(z) > G(x) for every z, with strict
inequality for at least one z; that is, X is stochastically smaller than Y.

The MWW statistic, —— 327, >it1 Iix,<v;y in Mann and Whitney’s formu-



lation, is an unbiased estimator of the probability parameter P(X.; < Yi.)
and is one of the most frequently used distribution-free statistics for testing
stochastic ordering. Kochar (1978), Deshpande and Kochar (1980), Stephen-
son and Ghosh (1985) and Ahmad (1996) generalized the classical MWW
statistic to an unbiased estimator of the probability parameter P(X,.. < Y;;)
and this generalization achieves higher efficacy for some continuous distri-
butions. The generalization of Priebe and Cowen (1998), an estimator of
P(Xi., < Yis), also achieves higher efficacy than MWW for some continu-
ous distributions. These findings motivate our further generalization of the
classical MWW statistic to estimators of the class of probability parameters
P(Xg, <Y foreach 1 <k <rand1<I[<s.

This paper investigates some statistical properties of our generalized MWW
(GMWW) statistic such as asymptotic normality, admissibility and confidence
intervals. A similar generalization is provided, in the one-sample case, for the

Wilcoxon signed rank statistic.

2 Rational

The development that follows is fundamental to our generalization of the
MWW statistic. Let X and Y be two independent random variables and

consider testing Hy : F(z) = G(z) for all z versus H, : F(z) > G(z) for all =



st
with strict inequality for at least one z; that is, X <Y. The MWW statistic

is based on the functional

v = P(X11 <Yia) = [ F(2)dG(v)

which is equal to % under H, and is strictly larger than % under H;. Thus
large values of v imply that H; is true.

Note that X Sgt Y is equivalent to u(F(z)) > u(G(x)) where the real-
valued function u(z) defined on [0, 1] is bounded and strictly increasing in z.
The MWW probability parameter v is but one in a general class of proba-
bility parameters that can be used to perform our test of stochastic ordering.

Namely, let v(z) be another real-valued, increasing, and continuous function

defined on [0, 1] and define

) = /_0:0 u(F(z))dv(G(z)). (1)

Under Hy, 7y = [Lu(z)dv(z) = 43", while under Hy, v > (") (The
functions v and v must be chosen so that |y(“")| < 00).

We now consider generalizing the conventional MWW functional vy to the
class where v and v can be defined in terms of distribution functions of the
order statistics. Suppose that X --- X, (Y] ---Y}) are r(s) independent copies
of X(V) and Xy, --- X,..(Y1.s- -+ Yss) are the order statistics obtained by ar-

ranging the preceding random sample in increasing order of magnitude. Define



the GMWW probability parameter of interest
,}/(k:r,l:s) — P(Xk:r < Yi:s) - ffooo Fk:r(x)dGl:s(x)

where Fi,(x) = X7, () Fi@)(1 = F(2))"™, Giy(z) = £i, () Gi)(1 -
G(x))*~%, and where k,r,l and s are four nonnegative integers. For ease of
notation, it is assumed that Fjy..(z) = 0 whenever £ > r and G4(z) = 0

whenever [ > s, and that Fy,.(z) = 1 whenever r > 0 and Gys(x) = 1 when-

(kerlis) > E::k (z+(§+1))(r+551)

ever s > 0. As before, notice that v with equality

if and if Hy holds.

k:rl:s)

The empirical estimate of is given by

ZC I(Xk:r(Xiu te 7Xir) < Yl:s(yjla Ty Yjs))
ICION
Srmet om0 () (D) (5 i <vi
) .

where k,[,r, and s are fixed and £k < r < n, | < s < m. The summation

GMWW k) =

notation )~ extends over all indices 1 <4 < --- <4, <n, 1 <5 <.+ <
gs <m. Xy, -, Xy (Yay, - -+, Yim)) denote the order statistics of the random
sample Xy, -, X, (Y7, -+, Y,,) to distinguish these order statistics from the
subsample order statistics X, (V.s).

Remarks:

1. The classical MWW statistic is simply GMWW{LLED | the Kochar-

Ahmad statistic is GMWWT(L’:;,’;’S:S), and the Priebe & Cowen statistic



is GMW W Lnls),

. The representation (2) makes the calculation of GMW W 7% feasible
since it dramatically reduces the computational task compared to the

U-statistic representation.

. Fyr(z) and Gj.4(x) are increasing bounded functions in F(x) and G(z),

k:r,l:s)

respectively. Therefore, the functional A associated with

GMWWTE{“;,:’Z:S) is a special case of functional (“?). The further gen-

eralization to functional (1) would be of interest as well.

. The admissibility of GMWWT(L%’“) for the test of stochastic ordering is

investigated in the sense of Pitman’s asymptotic efficacy.

. The asymptotic behavior of the statistic GMWWTE{“;,:’Z:S) is summarized

in the following theorem.

Theorem 1 Let n — oo and m — oo such that (=) — A € (0,1). Fiz

n+m

1<k<randl <1<s. Then (n+m)/2(GMWW/Ents) — okrls)) g

asymptotically normal with mean 0 and variance given by

r? X1
Orgs = 50ar([ (Frrt = Fer) (@)dGia(a)) +
2

(1 = A)W(/_Z(Gl:“ = v 1) (2)dFkr ()
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Under Hy, 0., ., reduces to

P v | e
A1 — )\){[ ("+§*1) ]
2r? (H'k 2) (’"+ f l) (l’; 1)31 rs—1

(Hs 1)( Di(s =)t i=k2+:l—1
r+s—1\(+i+k—-—1)2r+2s—i—1—k—1)!
( ) (2r +2s — 1)!

[(k;rllZ) (r+s;ic;l+1) (S Sy 1) ,

()

1.

i

The proof of Theorem 1 is included in the Appendix.

3 Pitman’s asymptotic efficacy analysis.

Pitman’s asymptotic efficacy (PAFE) is often used for the purpose of com-
paring two test procedures on the basis of their asymptotic distributional prop-

erties (see Pitman 1979). It is defined in our case as follows:

r.l:s d k:r,l:s
PAE*"9) = (P oo/ 0

where F' = Fy, and G = Fy, with 0 = 0y + ¢/n'/?. Applying this definition we
easily see that for the location problem G(z) = F(z—@), under the assumption

the density of F' exists and is equal to f,

d (k:ryl:s) rls! k+1— r+s—k—I
" e = e e g L P P P

Next, let us investigate some commonly used distributions in the loca-

tion case to obtain the choice of k,r, [, and s giving maximum efficacy. We



shall discuss the double exponential, uniform, exponential, and logistic distri-

butions. For clarity, PAFs displayed below are scaled by the constant A(1—\).

1. The Double Exponential: f(x) = 1/2exp(—|z|), where —co < z < 0.

Table 1: PAFEs under the double exponential.

(r,3) (r/2:r,s/2:s) | (rir,s:s) | (1:r,1:8) | best
(1,1) 75 75 5|5
(2,2) 804 595 | 595 | .804
(3,3) 833 413 | 413 | .833
(4,4) 759 301 301 | .852
(5,5) 866 234 | 234 | .866
(6,6) 821 190 190 | .876
(7,7) 885 159 160 | .885
(8,8) 854 138 | 138 | .891
(9,9) 897 121 121 | .807
(10,10) 874 108 | .108 | .902
(19,19) 927 054 | 054 | .927
(29, 29) 941 0. 0. |.041
(35,35) 945 0. 0. |.945




It is evident from Table 1 that with the same subsample sizes r and s, the
statistic that maximizes PAFE among G MW W statistics is superior to the con-
ventional MWW, the Kochar-Ahamd, and the Priebe & Cowen statistics; some
members of the GMW W class other than these three gain the highest efficacy.
This fact proves the admissibility of the GMWW . In particular, notice that
the median selection, MMWW™s) = GMWW r/2:ns/29) where [x] is the
largest integer less than or equal to z, is much better than the Kochar-Ahmad
and Priebe & Cowen statistics although it is not necessarily the best. (While
it appears that PAFEs for Kochar-Ahmad and Priebe & Cowen statistics are
identical in this example, this is not, in general, the case.) As subsample sizes
r,s get large, the best GMWW statistic tends to be optimal. In other word,

it approaches the best efficacy of 1.

2. The Uniform [0,1]: f(z)=1,0<z <1.

For this case, PAE(k : r,1 : s) is a function of r+s and k+1[. For the sake of
illustration, consider subsample sizes r = s = 10. We obtain PAFE/(1:1,1:1)=12
and PAE(1:10,1:10) = PAE(10: 10,10 : 10) = 43.2 > PAE(i : 10, : 10)
for1 << 10and 1 < j < 10. Thus, the MWW is not the best statistic;
the Priebe & Cowen statistic and the Kochar-Ahmad statistic are admissible

relative to the MWW statistics for r = s = 10.



Table 2 : PAEs under the uniform distribution.

(r,9) (r/2:r,s/2:5) | (rer,s:s) | (1:r,1:s) | best
(1,1) 12 12 12 12

(2,2) 8.2 12.4 12.4 12.4
(3,3) 7.05 15.8 15.8 | 15.8
(4,4) 7.01 1959 | 19.59 | 19.59
(5,5) 6.09 2345 | 2345 |23.45
(6,6) 6.05 27.37 20137 | 27.37
(7,7) 5.66 31.3 31.3 | 31.3
(8,8) 5.63 35.3 35.3 35.3
(9,9) 5.41 30.2 30.2 | 39.2
(10,10) 5.38 43.2 432 | 432
(20,20) 4.87 83.1 83.1 | 83.1
(30,30) 4.68 1231 | 1231 |123.1

3. The Exponential: f(z) = exp(—x),z > 0.

For illustrative purposes, consider subsample size r = s = 5. Since PAE(1 :
1,1:1) =3 and PAE(1 :5,1:5) =19 > PAE(5 : 5,5 : 5) = 0.235, the
Priebe & Cowen statistic is admissible relative to the Kochar-Ahmad and the
MWW statistics. Furthermore, PAF(2 : 5,2 : 5) = 3.71; this GMW W (%529)

statistic is superior to the Kochar-Ahmad and MWW statistics, whereas it is

10



inferior to the Priebe & Cowen statistic.

Table 3 : PAFEs under the exponential distribution.

(r,8) (r/2:r,s/2:5) | (ror,s:s) | (1:r,1:5) | best
(1,1) 3 3 3 3
(2,2) 2.0 0.78 7 7
(3,3) 1.7 0.44 11 11
(4,4) 2.7 0.30 15 15
(5,5) 1.5 0.23 19 | 19
(6,6) 2.05 0.19 23 | 23
(7,7) 1.4 0.16 o7 | 27
(8,8) 1.78 0.14 31 31
9,9) 1.35 0.12 35 | 35
(10,10) 1.63 0.11 39 | 39
(20,20) 1.34 0.05 79 | 79
(30,30) 1.25 0.03 119 | 119

4. The Logistic: f(z) = exp(—z)/(1 + exp(—=x))?, where —oo < z < o0,

Note that PAE(L: 1,1: 1) = 1/3 and PAE(1 : 10,1 : 10) = PAE(10 :
10,10 : 10) = 0.088 and that PAE(5 : 10,5 : 10) = 0.299. Although the
G MWW G:10.5:10) gtatistic is inferior to the conventional MWW, it outperforms

the Kochar-Ahmad and Priebe & Cowen statistics when s = r = 10.

11



Table 4: PAEs under the logistic distribution

(r,3) (r/2:r,s/2:s) | (rir,s:s) | (1:r,1:8) | best
(1,1) 1/3 1/3 1/3 | 1/3
(2,2) 329 28 28 | .329
(3,3) 323 224 224 | 323
(4,4) 304 185 | 185 | .319
(5,5) 315 157 | 157 | 315
(6,6) 304 136 136 | .311
(7,7) 308 12 12 | .308
(8,8) 302 107 107 305
(9,9) 303 097 | 097 | .303
(10,10) 299 .088 .088 301

4 Extensions

Consider the independent random samples Xy, -+, X, and Y;,---,Y,, from
continuous distributions with c.d.f.’s F'(z) and F(z — #), respectively. A class
of Hodges-Lehmann estimators for 8, using GMW W {E2E=LI21=1) that satisfies

the three conditions of Randles and Wolfe (1979, p.204), is attained as follows:

é(k}:?k—l,l:?l—l) — medzan{Xk2k_l(Xll’ P R XiQk—l) J— %zzl_l(Yle, “ e R }/}2l—1)’

n,m

1<ip <o <ligoy <, 1 <y <o < gy <m}

12



= Dqr/2)

where 1 <43 < -+ <9 1 <nyand 1 < j; < -+ < Joy 1 < m, and where
Dgy < --- < Dy are the ordered values of differences Xj.0,1(X;,,- -+, Xiy, )

Y1 (Y, Y, c <o <, L < g < < gy <,

), 1
and L = (Zk 1) (2;”1) = 1,---,L, D, takes values from the set

{Dij = Xy = Yy,i =k,---n—r+k, and j=1---,m—s+I}
D) = D;,;,, then the number of duplicates of D;_;, in the sequence {Dy, s =

-, L} is (’S 1) (7}:1) (jls:ll) (""l”:g) These observations make the calculation

of k:2k=LE2=1) mych easier.
)

An approximate distribution-free confidence interval for a parameter 6 can
be derived from a distribution-free statistic, say V, for testing Hy : 6 = 0.
For ¢ = 1,---,(:”) and j = 1,---,(’;), define D;; = Yi.,(Y,,---,Yj,) —
Xir( Xy, oo+, X)) where 1 < jy <+ <jg<mand 1 <4 <--- < i, <n.
Thus, VErts) = (#  of positive D;j). Let Dy < -++ < Dygy be the or-

dered D;; differences, where R = (2) (T) Then [D,1), D(r—v)) is an approx-

imate 100(1 — «) percent asymptotic distribution-free confidence interval for

S ()
()

Za)20kpis/ (M +n)?) X R and o}, is the null variance for GMW W {Erts)

0, where v(a/2,k,1,r,s,n,m) is the integer closest to (

k:r,l:s)

presented in Theorem 1. Again, the calculation of Vn(7m can be simplified

as above.

13



5 One-sample generalization.

Let X;, X5, -+, X,, be independent random variables with continuous c.d.f.
F. Assume that the distribution F' is symmetric about a point @ such that
for each z, F(x + 0) + F(—z + 0) = 1; 0 is referred to as the center of the
distribution. This is equivalent to saying that u(F(x + 0)) = u(F(—x + ),
where u is an arbitrary strictly increasing, bounded, real-valued function on
[0,1] and F'(z) = 1 — F(x). Consider the problem of testing that the center of
symmetry, 6, is 0 against § # 0. The Wilcoxon signed rank (WSR) statistic
used for this purpose is, essentially, a nonparametric estimator of the functional
§ = [® F(—z)dF(z). It is clear that § is but a special case of the class of
functionals 6(**) defined by 6% = [* w(F(—x))dv(F(x)) where the real-

valued function v on [0,1] is increasing, continuous and bounded. Without

loss of generality, under H; : 8 > 0,

§0) = [ w(F(z + 20))dv(F(z))

oo

is larger than under Hy, for which delta™™") = [*_u(F(z))dv(F(z)). Thus,
the associated test rejects for large values of §(“*). Proceeding as before, one

special case of functional §(*?) ig

5(’“”15) = P(Xk:r(Xla s ,Xr) + Xl:s(XrJrla T Xr+s) > 0)

14



where k,r, [, and s are fixed.

In fact, 679 can be estimated empirically by

GWSRErEs)  — Do L (X (Xiy, -+ X5, ) 4+ X (X, -+, Xiy,) > 0)
() ()
_ Xk S wi x4 x <0}
(1) ()
where Y, stands for summation over all permutations (i1, --,i,45) of r + s

integers such that 1 <41 <o <+ <4 <Ny 1 < Gpyy <lpyo < o0 < g <
n,and i, #ifife# f, 1 <e<rand 1 < f <s, and where for i < j,
= (i—1\[(i—k\(i—i—-1\(n—j\[n+v—i—s
S ¥{ P | (o [ [ (e
wij =0for i=j
o o ey
”_v:(] [—-1 v k—v—1)\r—=k s—1
for i > j. GWSRF"E9) includes the WSR statistic and the one-sample Ahmad

statistic (1996) as special cases, GW SRILED and GW SR | respectively.

The following theorem summarizes the asymptotic behavior of GW S R{kmt:s)

Theorem 2 Letn — o©0. Fixl < k< r<ocoandl <[] < 5 < 0.
Then n'/?(GW SRkrts) — §knlis)y s asymptotically normal with mean 0 and

variance op,, .. given by

varlrl [ By () Fa() + [ F ke (o)dF ()] +

-X;

S @dE () — [ @)dE (),

—o0 —o0

15



Under Hy : F(z) + F(—x) =1 for all z, the variance reduces to

Pl +1—k—Di(s+k—1—1)!
oD = =)= 1511

- os+r—1)! 5”2:—1 ()
(s=l+k=Dlr+l-k-1! _=Z , (2r+2s—1)!

(20420 -2k —2s+1)(r+1+i—k—1)!2s+r+k—1—i—2)!+

(20 +2k—2r =20+ 1)(s—l+k+i—-1)l(s+2r+1—i—k—2)1)).

The Pitman’s asymptotic efficacy analyses of GWSR for the double expo-
nential, uniform and logistic distribution have been performed. Similar conclu-
sions as the two-sample case can be drawn as far as admissibility is concerned.
Moreover, the corresponding Hodges-Lehmann estimators and approximate

confidence intervals are obtainable as well.
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7 Appendix

Proof of Theorem 1. Following Theorem 3.4.13 of Randles and Wolfe

(1979), it suffices to establish the variance. Let

@(k:r’l:s) (le e X Y )/8) = I{Xk:r(Xl,---,Xr)<Yl:s(Y1,-“,Ys)}

and proceed separately for four distinct cases in terms of the values of &, r, [, s.

Case 1: 2<k<rand 1 <I[<s.

Ao (X)) = Blp®I(X - X Y Y1)
= P(Xpr < Y| X0)
= P(Xi < Xporro1(Xo, -+, X5) < Vil Xy) +
P(Xp10-1(Xo, -+, Xp) < X < X3 Xy < V| X)) +
P(Xpr1(Xg, -+, X;) <X <Y |X0) +
P(Xppo1(Xo, -+, Xp) <V < XG1X0)

o X1
= /7 Fk—l:r—ldGl:s + [ (Fk:r—l - Fk—l:r—l)dGl:s($)~
Case 2: 2<k=rand 1 <[ <s.

(pgl[c]:r,l:s)(Xl) _ E[gy(’”’l’s)(Xh'",Xr,Y1,"',Ys)|X1]
= P(Xr:r < Y2:5|X1)

- P(Xl S X?"—I:T—I(X27 o '7Xr) S Yi:s|X1) +

17



P(X,_1-1(Xg, -+, X)) < Xy < V| X))

= /Xolo Fr 1 1(2)dGrq(z) + /Z Frpo1(7)dGs()

where F., 1(z) =0.

Case 3: 1=k<rand1<[<s.

Ao = Blp*(X e X Y YOI
= P(Xpy < Y| X1)
= P(X; < Xp,0(Xg, -+, X)) < V| X)) +
P(X; <Y < Xy Xy) +
P(Xipo1(Xg, -, Xy) <Xy <V Xq) +
P(Xip(Xy, -+, X)) <Y, < X41X0)

= > Fo;rfl(x)dGl:s(Xl) + /): Fl:rfl(x)dGl:s(x)

X1

where Fy.,._q(z) = 1.

Case 4: 1=k=rand 1 <[ <s.
gO%:l,l:s) (Xl) _ E[QO(I:I’Z:S) (Xh Yl, e Ys) |X1]
= P(Xl:l < Y2:5|X1)

— //oo Foo(2)dG.s(y) + /_): Fio(2)dGG(x)

X1

18



where Foo(z) =1 and Fio(z) = 0.

To unify the above results, we write
(k:ryl:s) o o X1
9010 (Xl) — kal:rfldGl:s + : (Fk:rfl - kal:rfl)dGl:s(x)

where Fi..(x) =1or0ask=0ork >rand Gi5(y) =1lor0asl=0o0rl>s.

Under H,,
r—=1 (l+i=1Y (r4s—i—k-1
/wo Fi—tr1dGis == ( (:—I—S)S) — )
and
k+1—2\ (r+s—k—l
/X1 (Fk:r—l - Fk—l:r—l)dGl;s(lL’) = _( -1 )( s—I1 )

oo (r+§fl)
rtell (r +s5—1

>

i=k+l—1

)Fi(l o F)r—l—s—i—l.
]

Thus

(i) ()~ ik (l+271)(r+jj:i*1) (Hlfﬁ)(ﬁz:f*z)

P10

(7 )

r4+s—1 -1 ) )
(T +5 >FZ(1 . F)r+sfzflh

>

i=lth—1 L

On the other hand,
(p(()'i”"’l:s)(Xﬂ _ E[gp(k:r,l:s)(Xl, e X, Y, Y)Y

= 1- [ > Gl,hs,l(l‘)dFk:r(I') + /_1:0 Gl:s,1($)dFk:r($)].

Y1

19



Hence, under Hy,

Beig™ (Y1) = Bon™ (M)
()0
()

Next,

Eip = wvar(pf™(X,))

= B[ (Fors ~ By )@~ B [ (Fios = Fiorp 1)dFi(a)
G0, () e e, 208 (M) (5)s

(r+:71) T(rjs) (H;*l) (1—1)!(s—1)!
e rbs -1\ +i+E-1D)2r+25s—i—1—k—1)!
> () |

e i (2r +2s — 1)!
Since
E [ IOO(F’“” — Fy 10 1)dFis()
(0
B GY
we have

X1
E[/ﬁ (Fk:rfl - Flcfl:rfl)dF’l:s]2

— /_0:0 /_)(: (Fk:rfl - kal:rfl)dF}:s]ZdF
- [(kzr_ZIQ) (r+s;ic];l+1)(s —1+1) , 2(142512) (’"+Zi§”) (21)5!
- r("+) ("= 1)is = D!
e fr+s—1N\(+i+k—D)I2r+2s—i—1—k—1)!
> ( ' ) (2r +2s—1)! .

i=k+1-1

A
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Similarly we have

Soqp = UGT(SOS?:T’Z:S)(YI))
(e ), )" e =k, 20085 (105 ()
(r+271) S(ris) (Hi*l)(k —D!(r — k)
e frts—N\(I+i+k-D)I2r+2s—i—1—k—1)!
> ( ; ) (2r +2s —1)! '

i=k+1—1

7

Hence, ’"Qfm + (sf)_i/\l) yields the variance under Hy. Observe that the statistic

5,(5;;’“) is distribution free under H,. Note also that we must choose 1 < k <

r<mandl1<I[<s<n.
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