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Using attributed graphs to model network data has become an attractive approach
for various graph inference tasks. Consider a network containing a small subset of
interesting entities whose identities are not fully known and that discovering them
will be of some significance. Vertex nomination, a subclass of recommender systems
relying on the exploitation of attributed graphs, is a task which seeks to identify the
unknown entities that are similarly interesting or exhibit analogous latent attri-
butes. This task is a specific type of community detection and is increasingly becom-
ing a subject of current research in many disciplines. Recent studies have shown
that information relevant to this task is contained in both the structure of the net-
work and its attributes, and that jointly exploiting them can provide superior vertex
nomination performance than either one used alone. We adopt this new approach
to formulate a Bayesian model for the vertex nomination problem. Specifically, the
goal here is to construct a ‘nomination list’ where entities that are truly interesting
are concentrated at the top of the list. Inference with themodel is conducted using a
Metropolis-within-Gibbs algorithm. Performance of the model is illustrated by a
Monte Carlo simulation study and on the well-known Enron email dataset. © 2015
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INTRODUCTION

The representation of data as graphs, with the verti-
ces as individuals (articles, people, and neurons)

and the edges as interactions (citations, friendships,
synapses) between pairs of vertices, have emerged as
a powerful formalism across application domains.
The majority of networks often inherently contain a
rich set of attributes or characteristics attached to each
vertex. For example, in social networks, profile infor-
mation of individuals such as names, genders or ages
can be encoded as vertex attributes. This type of graph

has been extensively explored in many studies, partic-
ularly when information pertaining to a latent class
or class membership is embedded with each vertex.
Examples include the stochastic blockmodel1 and its
extensions. Similarly, we can have additional informa-
tion about the relationship of the vertex pairs, such as
communication topics and languages, embedded as
attributes associated with the edges. Attributed
graphs are becoming increasingly prevalent in network
modeling for representing a broad variety of data
because their use allows the additional intrinsic infor-
mation to be exploited, thereby potentially leading to
improved solutions for various network inference
tasks.

In many disciplines such as neuroscience, biol-
ogy, and social science, discovering hidden community
structures by exploiting information encoded in the
graph topology is often a primary concern. This task
is commonly described as community detection or
graph clustering (see Salter-Townshend et al.2 for a
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review of statistical network modeling for community
detection). Here, community refers to a set of vertices
that display a similar interaction pattern among them-
selves compared to the rest of the vertices in the net-
work. A special case of this task is the vertex
nomination problem. Suppose we have a network con-
taining a small subset of interesting entities whose iden-
tities are not fully known; in fact, only a few of them are
known. Vertex nomination, introduced by Copper-
smith and Priebe3 is a task that seeks to identify
the unknown interesting entities using available vertex-
and edge-attribute information, and to do so with a
quantifiable measure of being correct. Vertex nomina-
tion has connections with the semi-supervised classifi-
cation problem in the machine learning literature.

The meaning of ‘interesting’ depends on the
application context. For example, in the context of
insider commercial fraud, if the identities of a few
fraudsters are known, law enforcement might want
to find others who may be complicit. Another example
in law enforcement is to identify and prioritize child
abuse offenders using the logging of peer-to-peer activ-
ities on child pornography networks, motivated by evi-
dence of connection between individuals convicted
of child pornography possession and child abusers.
A country’s national security agency may be interested
in identifying terrorists hidden within the population,
starting from the known identities of a few terrorists.
Beyond law enforcement and homeland security, ver-
tex nomination is also relevant in various social and
business contexts; for example, targeted marketing
using recommender systems.4

The most relevant previous works that have an
impact on vertex nomination are stochastic blockmo-
dels (SBMs)1 and latent position models.5 The SBM
assumes that each of n vertices is randomly assigned
to one of K blocks, and that the existence of an edge
is independent given the block memberships of a pair
of vertices. Furthermore, the probability of an edge
depends only on the blockmemberships of the two ver-
tices. The SBM can be considered to be foundational
for the vertex nomination task. Specifically, in its sim-
plest form, the vertex nomination problem can be for-
mulated as a two-block SBMwhere one block contains
the interesting vertices and the block membership is
observed for a few of these vertices.6 Proceeding quite
in parallel to the development of the SBM, the idea of
modeling a network by associating a latent position
in a d -dimensional Euclidean space to each vertex gave
rise to the latent position model.5 This provided
anothermodeling avenue for vertex nomination, which
has been recently pursued by Sussman et al.7 and Tang
et al.8 using spectral embedding techniques and obtain-
ing promising results.

Other modeling approaches for the vertex nomi-
nation task include Lee et al.9 who developed a multi-
variate self-exciting point processmodel that associates
the memberships of the vertices to the communication
messaging events on the high risk topic. Marchette
et al.10 extended the random dot product graph model
of Nickel11 and Young and Scheinerman12 a special
case of the latent positionmodel, by incorporating edge
attributes.When the attribute of interest reflects abnor-
mal behavior, vertex nomination can be conceived as
an anomaly detection problem and this was pursued
by Priebe et al.13,14 and Grothendieck et al.15 Sun
et al.16 made a comparison between graph embedding
methods for vertex nomination by using a Wilcoxon
rank sum test based algorithm to estimate the power
of nominating vertices with a particular attribute of
interest. For a comprehensive review of vertex nomina-
tion, see Coppersmith.17

Recently Fishkind et al.18 proposed several vertex
nomination schemes, namely the canonical, spectral-
partitioning, and graph-matching vertex nomination
schemes, which operate on partially observed unattrib-
uted SBM graphs. The canonical method makes
use of the conditional probability of vertices
belonging to the interesting block, given the partially
observed graph, to rank the vertices. Unfortunately,
prior knowledge of all model parameters are needed
to implement this scheme, and it is difficult to compute
when there are more than 20 vertices. It therefore
serves as a comparison benchmark for their other
schemes. The spectral-partitioning scheme uses eigen-
decomposition of the adjacency matrix to embed the
vertices in a low-dimensional Euclidean space, which
is similar to Tang et al.8 Finally, the graph-matching
scheme utilizes graph-matching tools to construct the
nomination list.

Coppersmith and Priebe3 formulated a joint sta-
tistical model that operates on an attributed graph,
with vertices denoting entities and edges representing
communications between them. Both vertices and
edges have attributes that indicate, respectively,
whether an entity or the content of communication is
interesting. By defining context (who communicates
with who) and content (communication topics) statis-
tics, and making appropriate assumptions, Copper-
smith and Priebe proposed a parametric likelihood
model that combined both content and context statis-
tics for the vertex nomination task. Even in the simplest
two-block SBM case, they showed that useful informa-
tion for vertex nomination is present in both content
and context, and using both can improve performance
over either one used alone. Therefore, while it is possi-
ble to find solutions for vertex nomination using either
content or context alone, the use of both is critical for
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achieving optimal performance in real problems. This
motivates us to further explore the use of both content
and context statistics in a Bayesian perspective.

This paper demonstrates the utility of a Bayesian
solution for the vertex nomination problem, which
jointly exploits information from content and context
statistics derived from an attributed graph. To facilitate
this, we extend Coppersmith and Priebe’s likelihood
model into a Bayesian model by introducing a vector
of latent vertex attributes for the unknown entities,
together with appropriate prior distributions for para-
meters of the model. Inference with the model is per-
formed using a Metropolis-within-Gibbs algorithm,
which provides posterior sample points that allow us
to estimate the posterior probability that each latent
vertex is interesting, and thereafter to obtain a ‘nomi-
nation list’. We demonstrate the performance of our
Bayesian model using aMonte Carlo simulation study.
Another simulation study compares its performance
against the method in Coppersmith and Priebe. An
application example is provided using the Enron email
corpus (http://www.enron-mail.com/).

This paper is organized as follows. Details of
the Bayesian model are described in the next section.
The Markov chain Monte Carlo (MCMC) algorithm
that implements the Bayesian solution is given
in Section Inference. Section Simulation Results
describes the simulation studies and the results
obtained. Experiments using the Enron email corpus
are presented in Section Application Results. Finally,
Section Conclusion summarizes and concludes the
paper.

MODEL

We proceed by introducing some basic notation before
discussing specific definitions and models. Consider an
unweighted, undirected attributed graph G = (V,E)
with no self-loops, multi-edges, or hyper-edges, where
V is the set of vertices with |V| = n, and E is set of edges
(i.e., a subset of the set of unordered pairs of vertices).
The presence of an edge between two vertices indicates
that the vertex pair communicates. For the vertex
nomination problem, each vertex has an attribute—
‘uninteresting’ or ‘interesting’—which is observed for
a few vertices but hidden for the rest. Note that what
is hidden are the attributes and not the vertices, i.e.,
there are no missing vertices, but most of the vertex
attributes are unobserved except for a few ‘interesting’
ones. We will refer to a vertex whose attribute is unob-
served as a latent vertex. Each edge is also attachedwith
an attribute, again ‘uninteresting’ or ‘interesting’,
which characterizes the content of the communication.

Here, we assume that all edges and edge attributes are
observed. In what follows, we associate ‘uninteresting’
with the color green and the integer 1, and ‘interesting’
with the color red and the integer 2. The resulting graph
may thus be represented as an ‘edge-attributed’ adja-
cency matrix, A 2 {0, 1, 2}n × n, whose entry Auv = 1 if
there is a green edge between vertices u and v, Auv = 2
if there is a red edge, and Auv = 0 if no edge is present.

Letℳ be the set of red vertices, with |ℳ| =m� n,
leaving n −m green vertices inV\ℳ.We assume thatwe
observe the vertex attributes of only a few red vertices
and none of the green ones. Let ℳ0 �ℳ, with |ℳ0| =
m0 > 1, contain those observed red vertices. Thus the
latent vertices whose attributes are unobserved are
in V\ℳ0 and there are n −m0 of them (n −m green ones
and m −m0 red ones). Put together, we have the con-
straints, 1 <m0 ≤m� n. Note that it is possible to have
no latent red vertices.

Figure 1 illustrates the ideas underlying the
model. Vertices with filled circles are those whose ver-
tex attributes are observed, while hollow circles repre-
sent vertices with unobserved vertex attributes. All
existing edges are observed as well as their edge
attributes.

We adopt the likelihoodmodel proposed byCop-
persmith and Priebe3 but with slightly different
assumptions. While Coppersmith and Priebe assumed
that 0 <m0 <m� n, i.e., there is at least 1 observed
red vertex and at least 1 latent red vertex, we assume
that there are at least 2 observed red vertices but allow

m' n – m :

m and

q

p p:
:

FIGURE 1 | Illustrative attributed graph with 12 vertices. Here, m0 =
2 vertices are observed to be red, m −m0 = 3 are latent red vertices and
n −m= 7 are latent green vertices. Edges represent communication
between connected vertices and edge attributes, denoting content of
communication, are assumed to be binary: green or red (1 or
2, respectively). The frequency of communication and distribution
of content among red vertices are governed by q = (q0, q1, q2), while
p = (p0, p1, p2) quantifies these for the rest of the graph, i.e., among green
vertices as well as between a red vertex and a green one. Assuming that
all edges and their attributes are observed, these are used together with
the observed red vertices to find the remaining red vertices.

WIREs Computational Statistics Bayesian Vertex Nomination

© 2015 Wiley Per iodica ls , Inc.

http://www.enron-mail.com/


the number of latent red vertices to be 0. These new
assumptions remain reasonable for our intended appli-
cations. It is plausible that the difference between their
assumptions and ours will have diminishing conse-
quence as graph size grows. For the insider commercial
fraud example, they translate to having two known
fraudsters who had colluded in the crime and possibly
other (or no other) yet unidentified perpetrators. More
importantly, they allow simpler prior distributions that
yield a simplerMCMCalgorithm for implementing our
Bayesian solution. If required, switching to Copper-
smith and Priebe’s original assumptions can be accom-
modated through a different choice of prior
distribution that enforces the information that there
is at least 1 latent red vertex. More details about this
are given in the next section.

Let Y(v) be the vertex attribute of vertex v,

Y vð Þ = 1 if vertex is green,
2 if vertex is red:

�
Wedefine the two statistics asT(v) = (R(v), S(v)), where
R(v) is the number of observed red vertices connected
to v and S(v) is the number of red edges incident to v.
These are, respectively, the context and content statis-
tics defined in Coppersmith and Priebe and who
showed that the use of both statistics resulted in better
vertex nomination performance than either one used
alone. The advantage of using both context and content
was also reported by Qi et al.19 whomodeled multime-
dia objects and their user-generated tags as a graph
with context and content links for the purpose of mul-
timedia annotation. This is analogous to vertex nomi-
nation where the vertices are multimedia objects. For
the Bayesian approach adopted here, there is potential
to use the number of green edges incident to a vertex as
an additional statistic, but at the cost of greater model
and computational complexity. The cost–benefit of this
added complexity is currently being investigated by the
authors.

For the vertex pair u, v, the edge attribute
between two green vertices or between a green and a
red one (i.e., Y(u) =Y(v) = 1 or Y(u) 6¼Y(v)), is con-
trolled by the probability vector p = (p0, p1, p2), while
q = (q0, q1, q2) is the probability vector for edge attri-
butes between two red vertices (i.e., Y(u) =Y(v) = 2).
They can be expressed as follows:

(i) p1 =P Auv = 1jY uð Þ=Y vð Þ= 1ð Þ
=P Auv = 1jY uð Þ 6¼Y vð Þð Þ,

p2 =P Auv = 2jY uð Þ=Y vð Þ= 1ð Þ
=P Auv = 2jY uð Þ 6¼Y vð Þð Þ;

(ii) q1 =P Auv = 1jY uð Þ =Y vð Þ =2ð Þ,
q2 =P Auv = 2jY uð Þ =Y vð Þ =2ð Þ;

where in both cases, p1 and q1 denote the probabilities
of a green edge, and p2 and q2 denote the probabilities

of a red edge. Since
X2

i = 0
pi = 1 and

X2

i =0
qi =1, p0

and q0 are the probabilities of having no edge in
each case.

The probability vector q quantify both the fre-
quency (q1 + q2) of communication and distribution
(q1, q2) of content among red vertices. Likewise,
the probability vector p quantify these for the rest of
the graph, i.e., among green vertices as well as between
a red vertex and a green one—see Figure 1. It is also evi-
dent from this figure that the underlying random
graph is an edge-attributed two-block SBM, with one
block containing red vertices, and another block con-
taining green vertices. Ignoring the edge attributes,
the probability of an edge between two red vertices in
this SBM would be q1 + q2. The probability of an edge
between two green vertices is p1 + p2, which is also the
probability of an edge between a red vertex and a
green one.

Two key assumptions underpinning Copper-
smith and Priebe’s model are (1) pairs of red vertices,
both observed and latent, communicatewith a different
frequency from other pairs; and (2) the distribution of
content among red vertices is different from the rest of
the graph. More specifically, it is assumed that p1 = q1
and p2 < q2, where the latter prescribes that red
edges are more likely between red vertices, and hence
a higher frequency of communication among red verti-
ces (p1 + p2 < q1 + q2).

The joint distribution of the context and
content statistics depends on each vertex can be
described as follows. Given that a latent green
vertex v 2V\ℳ, the number of observed red vertices
connected to v has a binomial distribution with para-
meters m0 and p1 + p2, since there are m0 observed red
vertices and these can connect to v via green or red
edges; hence,

f1 R vð Þjp1,p2ð Þ =Bin m0,p1 + p2ð Þ; ð1Þ

where Bin(n, p) represents a binomial mass function
with parameters n and p. The subscript in f1
reminds us that this is for a latent green vertex.
Likewise, the number of red edges incident to v has a
binomial distribution with parameters n − 1 and
p2, i.e.,

f1 S vð Þjp2ð Þ =Bin n−1,p2ð Þ: ð2Þ
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The joint distribution can be written as

f1 T vð Þjp1,p2ð Þ= f1 S vð ÞjR vð Þ,p1,p2ð Þf1 R vð Þjp1,p2ð Þ
= Bin n−m0−1,p2ð Þ*Bin R vð Þ, p2

p1 + p2

� �� �
�Bin m0,p1 + p2ð Þ: ð3Þ

The first term on the RHS is the conditional distribu-
tion for the number of red edges incident to v given that
there are R(v) observed red vertices connected to
it. Knowing the number of observed red vertices con-
nected to v allows us to partition the number of incident
red edges into those from the connected observed red
vertices and those from the other latent vertices. The
distribution for the number of red edges from the other
latent vertices is Bin(n −m0 − 1, p2), since there are n −
m0 − 1 other latent vertices. The distribution for the
number of red edges from the connected observed
red vertices is Bin(R(v), p2/(p1 + p2)), since the proba-
bility that a connecting edge is red is p2/(p1 + p2). As
these two contributions must sum to S(v), the required
conditional distribution is a convolution of these two
binomial distributions. Here, g * h denotes the discrete
convolution such that g*h yð Þ =

X
z

g y−zð Þh zð Þ.
In a similar way, given a latent red vertex v 2

ℳ\ℳ0 and remembering that q1 = p1, the distribution
for the number of observed red vertices connected
to v is,

f2 R vð Þjp1,q2ð Þ =Bin m0,p1 + q2ð Þ; ð4Þ

where the subscript in f2 indicates that this is for a latent
red vertex. The red edges that are incident to v.

f2 S vð Þjm,p2,q2ð Þ =Bin n−m,p2ð Þ*Bin m−1,q2ð Þ; ð5Þ

where S(v) in Eq. (5) can be expressed as the sum of two
independent discrete variables (i.e., the number of red
edges connecting v to latent green vertices and to latent
red vertices). Given R(v), S(v) in Eq. (5) can further be
divided. Thus, the double convolution in Eq. (6) of the
three independent discrete random variables, consists of
the number of red edges connecting v to: (1) the observed
red vertices, (2) the latent red vertices, and (3) the latent
green vertices. Together with Eq. (4), we have

f2 T vð Þjm,p1,p2,q2ð Þ
= f2 S vð ÞjR vð Þ,m,p1,p2,q2ð Þf2 R vð Þjp1,q2ð Þ
= Bin n−m,p2ð Þ*Bin m−m0−1,q2

� �
*Bin R vð Þ, q2

p1 + q2

� �� �
�Bin m0,p1 + q2

� �
: ð6Þ

Note that f * g * h is the double convolution,

where f*g*h xð Þ =
X
y

f x−yð Þ
X
z

g y−zð Þh zð Þ
" #

.

Given that v 2ℳ0 is an observed red vertex,

f 0 R vð Þjp1,q2ð Þ=Bin m0−1,p1 + q2ð Þ; ð7Þ

f 0 S vð Þjm,p2,q2ð Þ=Bin n−m,p2ð Þ*Bin m−1,q2ð Þ; ð8Þ

f 0 T vð Þjm,p1,p2,q2ð Þ
= f 0 S vð ÞjR vð Þ,m,p1,p2,q2ð Þf 0 R vð Þjp1,q2ð Þ

= Bin n−m,p2ð Þ*Bin m−m0,q2ð Þ*Bin R vð Þ, q2
p1 +q2

� �� �
�Bin m0−1,p1 +q2ð Þ: ð9Þ

LetT0 = {T0(1),…, T0(m0)} be the statistics for those ver-
tices whose attributes are observed to be red. Similarly,
let T = {T(1),…, T(n −m0)} be the statistics for those
vertices whose attributes, Y = {Y(1),…, Y(n −m0)}, are
unknown. By making the simplifying assumption that
the statistics are conditionally independent givenY, p1,
p2, and q2, the likelihood function is given by

f T,T0jY,p1,p2,q2
� �

=
Y

i:Y ið Þ = 1
f1 T ið Þjp1,p2ð Þ

Y
j:Y jð Þ = 2

f2 T jð Þjm,p1,p2,q2ð Þ

Ym0

k= 1

f 0 T0 kð Þjm,p1,p2,q2ð Þ; ð10Þ

where m=m0 +
Xn−m0

i = 1

I 2f g Y ið Þð Þ. The first product con-

tains terms from latent green vertices, the second from
latent red vertices, and the third from observed red
vertices.

By Bayes rule, the posterior distribution for the
unknown quantities, Y, p1, p2, and q2, is given by

f Y,p1,p2,q2jT,T0� �
/ f T,T0jY,p1,p2,q2

� �
f Y,p1,p2,q2ð Þ; ð11Þ

where f(Y, p1, p2, q2) is a prior distribution thatmust be
specified. For our problem, the latent attribute vector,
Y, is the quantity of interest while p1, p2, and q2 may be
regarded as nuisance parameters.

We assume, for the prior distribution, that Y is
independent of (p1, p2, q2), and choose conditionally
independent Bernoulli(ψ) distributions for the compo-
nents of Y with the hyperparameter, ψ = P(Yi = 2),
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chosen to follow a beta distribution with parameters
α, β > 0. For (p1, p2, q2), we choose a Dirichlet distribu-
tion with parameters α0 = α1 = α2 = 1 for (p1, p2), and a
uniform distribution for q2 conditional on p1 and p2.
To summarize, the prior distributions on the model
parameters Y, p1, p2, q2 are

Yjψ �
Yn−m0

i = 1

Bernoulli ψð Þ;

ψ �Beta α,βð Þ;
q2jp1,p2 �Uniform p2,1−p1ð Þ;
p1,p2ð Þ�Dirichlet α0,α1,α2ð Þ:

Hence, the posterior distribution can now be factor-
ized as

f Y,p1,p2,q2,ψ jT,T0� �
/ f T,T0jY,p1,p2,q2

� �
f Yjψð Þf q2jp1,p2ð Þf p1,p2ð Þf ψ jα,βð Þ:

ð12Þ

It is worth noting that, in addition to using latent attri-
butes, Y, our Bayesian model also leverages observed
edge- and vertex-attributes through the content and
context statistics contained within T and T0.

INFERENCE

Posterior inference can proceed via Markov Chain
Monte Carlo (MCMC) using a Metropolis within
Gibbs algorithm. Since the components of Y are
binary, they can be updated sequentially using Gibbs
sampling as follows. Let Y− i =Y\Y(i) denote the vertex
attributes for all but vertex i and let γi be the conditional
posterior probability that the latent vertex i is red given
Y− i. Thus,

See Appendix A for details.
The conditional posterior density of ψ given

Y and nuisance parameters (p1, p2, q2) is

f ψ j T,T0,Y,p1,p2,q2
� �

/ψm−m0 + α−1 1−ψð Þn−m + β−1I 0,1ð Þ ψð Þ; ð14Þ

which is the beta(m −m0 + α, n −m + β) density. Thus,
ψ can easily be updated using a Gibbs update step.
Unfortunately, the conditional posterior distribution
of (p1, p2, q2) given Y and ψ does not have a standard
form that we can generate from exactly. As such,
we use random-walk Metropolis-Hastings to
update each parameter in turn, using the conditional
distributions, f(p1|p2, q2), f(p2|p1, q2), and f(q2|p1, p2)
as the proposal distributions (see Appendix A for
details).

Let the state at iteration h be denoted by

Y hð Þ,p hð Þ
1 ,p hð Þ

2 ,q hð Þ
2 ,ψ hð Þ

� 	
, our Metropolis-within-

Gibbs sampler proceeds according to Algorithm 1.
The ability to update ψ using a Gibbs step that

generates from a beta distribution is the motivation
for allowing the number of latent red vertices to be
0. This makes the independent Bernoulli model a pos-
sible choice as prior for Y. Together with the beta
hyperprior for ψ , we end up with a conjugate condi-
tional posterior in Eq. (14) that facilitates the Gibbs
step for updating ψ . With Coppersmith and Priebe’s
assumption that the number of latent red vertices is
at least 1, however, the specified prior is no longer
appropriate. Letting ΣY =Y(1) + � � � + Y(n −m0), a pos-
sible alternative is

f Yjψð Þ=
0 ΣY = 0,

ψm−m0
1−ψð Þn−m

1− 1−ψð Þn−m0 ΣY >0;

8<: ð15Þ

which no longer admits a conjugate hyperprior. Updat-
ing of ψ will therefore require an additional Metropo-
lis-Hastings step within the Gibbs sampler. The cost–
benefit of using this alternative prior model is currently
being investigated by the authors.

Performance Measures
Similar to recommender systems, vertex nomination is
predominantly concerned with a few suggestions
(or interesting vertices) instead of a complete classifica-
tion of vertices. Choosing an appropriate performance

γi Y− i,p1,p2,q2,ψð Þ=P Y ið Þ = 2jY− i,T,T
0,p1,p2,q2,ψ

� �
=

f Y ið Þ= 2,Y− i,p1,p2,q2,ψ jT,T0� �
f Y ið Þ= 1,Y− i,p1,p2,q2,ψ jT,T0� �

+ f Y ið Þ = 2,Y− i,p1,p2,q2,ψ jT,T0� � : ð13Þ
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measure for vertex nomination depends on the exploi-
tation task at hand. Two common exploitation
tasks are to identity from among the latent vertices
(1) as many vertices as possible that are likely to be
interesting, and (2) one vertex that is most likely to
be interesting. The first task seeks to position as many
truly interesting vertices as possible near the top of a
ranked nomination list. A performance measure that
is suitable for quantifying this is mean average preci-
sion (MAP).3 Average precision (AP) evaluates the pre-
cision, at each rank, of the positions of all truly
interesting vertices in a ranked list, and then averages
the precision values at the rank of each vertex that is
truly interesting.

Let v 1ð Þ,v 2ð Þ,…,v n−m0ð Þ be the ordered latent ver-
tices in a ranked list. Following Coppersmith and
Priebe3 we define precision at rank r as

π rð Þ=

Xr

i =1

I 2f g Y v ið Þ
� �� �

r
; ð16Þ

and taking the average of the precision values obtained
from Eq. (16) as

�π =

Xn−m0

i = 1

I 2f g Y v ið Þ
� �� �

π ið Þ

m−m0 : ð17Þ
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The MAP for a random experiment is defined as

MAP=E �π½ �: ð18Þ

Note that the closer MAP is to 1 the better the model is
able to position truly interesting vertices near the top of
a ranked nomination list.

When the exploitation task is to find only one
interesting vertex, an appropriate measure is the prob-
ability of correct nomination, which focuses on getting
a correct result at the top of the nomination list:

Pr v 1ð Þ 2ℳ j ℳ0� �
=E I 2f g Y v 1ð Þ

� �� �
 �
: ð19Þ

The reader is referred to Coppersmith and Priebe3 and
Manning et al.20 for additional information on these
performance measures. Here, we will use both MAP
and probability of correct nomination to evaluate the
performance of our model.

SIMULATION RESULTS

Consider an illustrative example where n = 12, m = 5,
m0 = 2, p1 = 0.25, p2 = 0.15, and q2 = 0.25. A particular
graph realization is shown in Figure 1. Labeling the
observed red vertices as 1 and 2, the latent red vertices
as 3, 4, and 5, and the latent green vertices from 6 to
12, the observed edge attributes are given in Table 1.

To use the MCMC sampler developed, values
must first be specified for the parameters of the beta
hyperprior for ψ . Our choice is motivated by the goal

of finding a single vertex as being red. Hence, it is desir-
able that the hyperprior be chosen to induce sparsity in
the potential nominees. One way to achieve this is to
select a beta density with mode at 1/(n −m0); a conven-
ient choice being α = 2 and β = n −m0. The results given
in this section and the next are based on this choice.We
have also studied other choices, including (1) a flat
prior (i.e., beta(1, 1) or U(0, 1)); (2) a flat prior on
the interval (0, 0.5) (i.e., truncated beta(1, 1) on (0,
0.5) or U(0, 0.5)) motivated by our expectation that n
�m; and (3) a beta density with α =m0 and β = n − 2m0,
and thus having mean at m0/(n −m0). Results for these
other choices are not reported here but we observed
that inference about the probability of correct nomina-
tion and nuisance parameters was insensitive to the
choice of hyperprior, although there were variations
in posterior inference about latent vertex attributes
and the hyperparameter ψ .

To check and monitor MCMC convergence, we
computed Gelman-Rubin statistics for two parallel
Markov chains by calculating the percentage of misas-
signed vertices per iteration. Convergence was assessed
based on the potential scale reduction, which is a meas-
ure of howmuch the two parallel chains overlap, with a
value below 1.2 or 1.1 indicating convergence.21 Poste-
rior inference was based on the last 500 iterations of
each chain after convergence, giving a total of 1000
MCMC sample points. Figure 2 shows trace plots of
the moving average estimates of the marginal posterior
probabilities that each of the 10 latent vertices is red.
For latent vertex v 2V\ℳ0, for example, this is esti-
mated at iteration h by

TABLE 1 | Edge-attributed Adjacency Matrix AWhose Entries Auv = 1 If Edge Between Entity u and v Is Green, Auv = 2 If Edge Is Red and Auv = 0 If No
Edge Presence, for the Attributed Graph Shown in Figure 1
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bPh Y vð Þ= 2jT,T 0ð Þ= 1
h

Xh
j = 1

I 2f g Y jð Þ vð Þ
� 	

: ð20Þ

Estimates of the marginal posterior probabilities
that each of the latent vertices is a red vertex are given
in Table 2. Consequently, vertex number 3, which
has themaximumprobability, will be posited at the list’s
beginning. In this case, this turns out tobe a correct nom-
ination (recall that the latent red vertices are 3, 4, and 5).
We advise caution in interpreting these marginal poste-
rior probabilities at face values because the relationship
between them and the probability of correct
nomination is not so straightforward. Again, even
though we observed that the rankings of these posterior
probabilities were quite insensitive to the hyperprior for
ψ , the values of the posterior probabilities do vary with
different hyperpriors. Fortunately, we will show
later on that there is evidence of a trend of increasing
probability of correct nomination with increasing max-
imum marginal posterior probability of a latent vertex
being red.

Although inference about the nuisance parameters
and hyperparameter is not required, it is interesting to
look at their prior and posterior distributions. The mar-
ginal prior and posterior densities are shown in Figure 3.
We used a Gaussian kernel density estimator with

diffusion-based bandwidth selection (Algorithm 1 in
Botev et al.22).

Figure 3 shows that concentration of the poste-
rior densities near the true parameter values, indicated
by red points on the horizontal axis, is evident for p1
and p2 but less so for q2 because of the smaller number
of red vertices.We observed that posterior inference for

0.5

0.4

0.3

0.2

P
(Y

(v
) 
=

 2
 ǀT

,T
')

0.1

0
0 100 200 300 400 500 600

MCMC iteration
700 800 900

Vertex

3

4

7

Others

1000

FIGURE 2 | Trace plots of the moving average estimates of the marginal posterior probabilities that each of the latent vertices is red. The top-three
ranking vertices (3, 4, and 7) are labeled as shown; the others (5, 6, 12, 9, 11, 10, and 8) are clustered together at the bottom. Recall that the three latent
red vertices are 3, 4, and 5, and so we have a correct nomination in this case.

TABLE 2 | Posterior Probabilities That Latent Vertex Is Red for the
Illustrative Attributed Graph with 12 Vertices

Vertex Number bP Y vð Þ= 2jT,T 0� �
3 0.2080

4 0.1510

5 0.0900

6 0.0900

7 0.1060

8 0.0550

9 0.0830

10 0.0640

11 0.0800

12 0.0890
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these nuisance parameters were quite insensitive to the
choice of hyperprior for ψ , even though the posterior
distribution for ψ itself obviously did depend on the
hyperprior.

To quantify nomination performance, we repeat
the simulation for 1000 graphs using the same param-
eter settings, i.e., n = 12, m = 5, m0 = 2, p1 = 0.25, p2 =
0.15, and q2 = 0.25. We obtain MAP of 0.5413 with
95% bootstrap confidence interval of (0.5409,
0.5417) computed using amethod suggested by Park.23

Notably, MAP of chance is 0.3. Moreover, the esti-
mated probability of correct nomination based on these
1000 graphs is 0.44, with equal-tail 95% confidence
interval estimated by the BCA bootstrap24 as (0.41,
0.47). Recall that for this toy example, the probability
of correct nomination purely by chance is 0.3. Hence,
both performance measures show that our model per-
forms significantly better than chance. The odds ratio
for correct nomination relative to chance is (0.44/
0.56)/(0.3/0.7) = 1.8.

Since we have, for any given graph, the marginal
posterior probability that the nominated vertex is red,
we can estimate the conditional probability of correct
nomination given that this marginal posterior proba-
bility exceeds p. This is shown in Figure 4 where, for

example, if the marginal posterior probability that
the nominated vertex is red exceeds 0.4, then the con-
ditional probability of correct nomination is estimated
to be 0.53, with 95% confidence interval of (0.48,
0.59). There is evidence of a trend of increasing prob-
ability of correct nomination with increasing posterior
probability that the nominated vertex is red.

The marginal distributions of the posterior
means obtained from the 1000 graphs, for the
nuisance parameters and hyperparameter, are illus-
trated in Figure 5. They show concentration of proba-
bility mass around the true values of the nuisance
parameters.

Coppersmith and Priebe3 defined a linear fusion
statistic for vertex v, combining its context and content
statistics, as

τλ vð Þ = 1−λð ÞR vð Þ+ λS vð Þ; ð21Þ

where λ/2 [0, 1] is a fusion parameter that deter-
mined the relative weight of context and content infor-
mation. For a given value of λ, the nominated
vertex was a latent vertex with the largest value of τλ.
To compare that approach with the one here, we con-
ducted a simulation study adopting the values that
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FIGURE 3 | Marginal prior densities (dashed curves) and posterior densities (solid curves) for p1, p2, q2, and ψ . Red points on the horizontal axis
indicate the true parameter values.
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they had used: n = 184, p1 = 0.2, p2 = 0.2, and q2 = 0.4.
We investigated two values for m, 8 and
32, which represented a ‘small’ value and a ‘large’ value
of m that they had considered. For each value ofm, we
looked atm0 =m/4,m/2 and 3m/4, just as they haddone.
The results, in terms of the probability of correct nomi-
nation estimated from 1000 graphs along with 95%
BCAbootstrap confidence interval, are given in Table 3.

In Table 3, BVN denotes the approach in this
paper and C&P denotes the approach in Coppersmith
and Priebe3 for which the estimated probabilities of
correct nomination that are shown corresponded to
optimal values of the fusion parameter that gave the
best performance. The last row in each table gives the
odds ratio (BVN relative to C&P) for correct nomina-
tion. We see, for this simulation study and in terms of
the probability of correct nomination, that the two
approaches have the same performance when m0 =m/
4, i.e., when the number of latent red vertices, m −
m0, is big relative to m. However, as the number of
latent red vertices gets smaller relative to m, BVN per-
forms increasingly better thanC&P (form = 8, the odds
ratio increasing from 1 to 1.10 to 1.55 as m0 increases
and, for m = 32, increasing from 1 to 1.47 to 1.89).
Moreover, the rate of improvement appears to be
higher for a bigger m. Note that in an actual applica-
tion, C&P approach might not achieve its optimal per-
formance because of the difficulty of finding the
optimal value of the fusion parameter.

APPLICATION RESULTS

The Enron email corpus consists of email communica-
tions among Enron employees and their associates,
where vertices represent Enron employees and edges
represent email communication among them. Some
of them were allegedly committing fraud and their
fraudulent activity was captured in some emails along
with many innocuous ones. The data is available at
http://www.enron-mail.com/. Other related inference
problems had been investigated using this dataset.
Priebe et al.13 looked at anomaly detection by using
scan statistics on graphs derived from the email data.
In Zhang et al.25 an influence model that incorporated
both email content information and context informa-
tion (who emailed who) was used to learn the interac-
tion matrix between people in the Enron corpus,
and people were clustered based on this interaction
matrix.

Priebe et al.13 derived a processed version of a
subset of the email data, over a period of 189 weeks
from 1998 to 2002. This yielded 189 graphs (1 graph
perweek), each containing the same n = 184 email users
forming the vertices of the graph. Ten of these users
have been found to have committed fraud. Berry
et al.26 indexed the contents of a subset of the email cor-
pus into 32 topics. These same topics were adopted by
Coppersmith and Priebe,3 who introduced a mapping
from the topics to a binary edge attribute, {green,
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red}, denoting content perceived as innocuous and
fraudulent, respectively. We use one of the graphs
derived by Priebe et al.13 together with the binary edge
attributes from Coppersmith and Priebe3 for the
experiments described here.

For the first experiment, we use Priebe et al.’s
Enron graph for week 38. We treat m0 = 5 of the
10 fraudsters as observed red vertices, the other 5 as
latent red vertices and all other remaining users as
latent green vertices, to see the nomination perfor-
mance of our model. The probability of correct nomi-
nation and MAP were estimated from all
252 (10 choose 5) combinations of five observed red
vertices taken from the 10 fraudsters. For each combi-
nation, MCMC iterations for two parallel chains were
simulated and the last 500 iterations from each chain
were used for estimation oncewe have reached approx-
imate convergence as indicated by the Gelman-Rubin
statistics. Here, we obtain MAP of 0.1623 with 95%
bootstrap confidence interval of (0.1616, 0.1629).
Note that MAP of chance is 0.03. The estimated
probability of correct nomination is 0.12, with 95%
BCA bootstrap confidence interval of (0.11, 0.13).
Recall that for this experiment, the probability of

TABLE 3 | Estimated Probability of Correct Nomination Based on
1000 Graphs

m0 = 2 m0 = 4 m0 = 6

(a) m = 8

BVN 0.0907 0.1001 0.1283

(0.082, 0.10)1 (0.10, 0.13) (0.08, 0.11)

C&P2 0.09 0.11 0.06

OR BVN
CP

3 1 1.10 1.55

m0 = 8 m0 = 16 m0 = 24

(b) m = 32

BVN 0.83 0.91 0.87

(0.81, 0.85) (0.90, 0.93) (0.86, 0.89)

C&P 0.83 0.86 0.78

OR BVN
CP

1 1.47 1.89

For n = 184, p1 = 0.2, p2 = 0.2, q2 = 0.4. BVN denotes the approach in this
paper while C&P is the approach described in Coppersmith and Priebe.3
1 BCA bootstrap confidence interval.
2Optimal performance with optimal fusion parameter.
3Odds ratio for correct nomination.
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correct nomination purely by chance is 5/179 ≈ 0.03.
This gives an odds ratio of (0.12/0.88)/(0.03/0.97) =
4.41, for correct nomination by the Bayesianmodel rel-
ative to chance.

The distributions of the marginal posterior
means of the nuisance parameters, from the 252 combi-
nations, are shown in Figure 6. The sample means
of the posterior means are �p1 = 0:0175, �p2 = 0:0112,
and �q2 = 0:1303. These estimates will be used in the sec-
ond experiment.

For the second experiment, we treat the estimates
of p1, p2, and q2 from the first experiment as true values
in aMonte Carlo simulation involving n = 184,m = 10,
andm0 = 5. Vertices 1–5were known red vertices, 6–10
were latent red vertices and the rest were latent green
vertices. 1000 graphs are generated and similar proce-
dure is carried out for inference as described in
Section Simulation Results. We obtain MAP of
0.2957 with (0.2953, 0.2960) as 95% bootstrap confi-
dence interval, and the probability of correct nomina-
tion is estimated to be 0.50, with 95% BCA
bootstrap confidence interval of (0.47, 0.52). Hence,
the odds ratio for correct nomination relative to chance
is (0.50/0.50)/(0.03/0.97) = 32.3.

Estimates of the probability of correct nomina-
tion given that the posterior probability that the nomi-
nated vertex is red exceeds p are illustrated in
Figure 7. Once again, there is a clear trend of increas-
ing probability of correct nomination with increasing
posterior probability. Furthermore, since we have
more data (larger graph with more vertices), the prob-
ability of correct nomination is higher. For example,
recall that for the graph with 12 vertices in the previ-
ous section, the probability of correct nomination
given that the posterior probability exceeds 0.4 was
between 0.48 and 0.59 with 95% confidence interval.
For the current graph with 184 vertices, the same
probability of correct nomination is between 0.73
and 0.83.

CONCLUSION

We have formulated a Bayesian model for the vertex
nomination task using content and context statistics
derived from an attributed graph. Our methodology
is motivated by the joint statistical approach of Cop-
persmith and Priebe.3 It is important to note that, in
addition to using latent vertex attributes in the model,
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our approach leverages observed edge and vertex attri-
butes by harnessing information from content and con-
text. Inference with the model proceeds via a
Metropolis-within-Gibbs algorithm for generating
sample points from the posterior distribution. Inference
about the probability of correct nomination appeared
to be insensitive to the choice of hyperprior for ψ even
though there were variations in posterior inference
about latent vertex attributes.

Results from simulation studies, using a toy
example and Coppersmith and Priebe’s3 simulation
setting, show that our Bayesian model performs signif-
icantly better than chance. Moreover, comparing
with the approach in Coppersmith and Priebe3 our
Bayesian model performs increasingly better as the
number of unknown interesting vertices decreases rel-
ative to the total number of interesting vertices, and
with a higher rate of improvement as the total number
of interesting vertices gets larger. In the case of nomi-
nating only one interesting vertex, there is evidence
to indicate a trend of increasing probability of correct
nomination when the posterior probability that the
nominated vertex is interesting increases. Similar
results are observed from experiments with the Enron
email corpus.

Our results were focused on identifying interest-
ing vertices based on their marginal posterior probabil-
ities of being interesting. In practice, it can be of
interest to identify two or more vertices as being jointly
interesting. For example, in the context of insider com-
mercial fraud, one may wish to identify two or more
individuals who are complicit in committing fraud.
It would be relatively straightforward to estimate the
required posterior joint probabilities given that we
haveMCMCsample points from the full joint posterior
distribution, but this might require a greater number of
points.

In reality, connections between vertices as well
as attributes of edges may not be observed per-
fectly, leading to missing edges and missing edge
attributes respectively. One way to extend our
model to handle missing data is to use similar ideas
as in Aicher et al.27 to distinguish between (1) no
edge: observed absence of connection between ver-
tices, (2) missing edge: unobserved connection
between vertices, and (3) missing edge attribute:
observed connection between vertices but unob-
served edge attribute. These distinctions can then
be explicitly incorporated into the model to handle
missing data.
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APPENDIX A: FULL CONDITIONAL POSTERIOR DISTRIBUTION FOR Y

Continuing from Eq. (13), γi can be computed as follows:

1
γi Y− i,p1,p2,q2,ψð Þ
= 1+

f Y ið Þ= 1,Y− i,p1,p2,q2,ψ jT,T0ð Þ
f Y ið Þ= 2,Y− i,p1,p2,q2,ψ jT,T0ð Þ

= 1+

1−ψð Þ=ψ �f1 T ið Þjp1,p2ð Þ
Y

j:j 6¼i,Y jð Þ = 2
f2 T jð Þjm− i,p1,p2,q2ð Þ

Ym0

k =1

f 0ðT0 kð Þjm− i,p1,p2,q2

24 1A
f2 T ið Þjm− i + 1,p1,p2,q2ð Þ

Y
j:j 6¼i,Y jð Þ =2

f2 T jð Þjm− i + 1,p1,p2,q2ð Þ
Ym0

k = 1

f 0 T0 kð Þjm− i + 1,p1,p2,q2ð Þ

= 1+

1−ψð Þ=ψ �f1 T ið Þjp1,p2ð Þ
Y

j:j 6¼i,Y jð Þ = 2
f2 S jð ÞjR jð Þ,m− i,p1,p2,q2ð Þ

Ym0

k = 1

f 0ðS0 kð ÞjR0 kð Þ,m− i,p1,p2,q2

24 1A
f2 T ið Þjm− i + 1,p1,p2,q2ð Þ

Y
j:j 6¼i,Y jð Þ =2

f2 S jð ÞjR jð Þ,m− i + 1,p1,p2,q2ð Þ
Ym0

k= 1

f 0 S0 kð ÞjR0 kð Þ,m− i + 1,p1,p2,q2ð Þ
;

ðA1Þ

where m− i =m0 +
X
j:j 6¼i

I 2f g Y jð Þð Þ.

The conditional prior distributions of the nuisance parameters: p1, p2, q2
Since the joint prior distribution of the nuisance parameters as described in Section 3 is

f p1,p2,q2ð Þ = f q2jp1,p2ð Þf p1,p2ð Þ
=Uniform p2,1−p1ð Þ �Dirichlet α0,α1,α2ð Þ: ðA2Þ

Choosing α0 = α1 = α2 = 1 for the Dirichlet distribution gives

f p1,p2,q2ð Þ = 2
1−p1−p2

I 0,1ð Þ p1ð ÞI 0,1−p1ð Þ p2ð ÞI p2,1−p1ð Þ q2ð Þ; ðA3Þ

and by choice, we specify

f q2j p1,p2ð Þ =Uniform p2,1−p1ð Þ = 1−p1−p2ð Þ−1I p2,1−p1ð Þ q2ð Þ: ðA4Þ

From Eq. (24), the conditional prior for p1|p2, q2 is

f p1j p2,q2ð Þ/ 1−p1−p2ð Þ−1I 0,1−q2ð Þ p1ð Þ; ðA5Þ

which, for p1 2 (0, 1 − q2), can be written as

f p1j p2,q2ð Þ = 1−p1−p2ð Þ−1
log 1−p2ð Þ− log q2−p2ð Þ : ðA6Þ
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The corresponding conditional distribution function is

F p1j p2,q2ð Þ= log 1−p2ð Þ− log 1−p1−p2ð Þ
log 1−p2ð Þ− log q2−p2ð Þ ; ðA7Þ

and so the conditional inverse distribution function is, for u 2 [0, 1],

F−1 uj p2,q2ð Þ= 1−p2− q2−p2ð Þu
1−p2ð Þu−1 : ðA8Þ

This enables us to generate from f(p1|p2, q2) easily by the inverse distribution function method. Similarly,

f p2j p1,q2ð Þ/ 1−p1−p2ð Þ−1I 0,q2ð Þ p2ð Þ; ðA9Þ

and so for p2 2 (0, q2),

f p2j p1,q2ð Þ = 1−p1−p2ð Þ−1
log 1−p1ð Þ− log 1−p1−q2ð Þ ðA10Þ

F p2j p1,q2ð Þ= log 1−p1ð Þ− log 1−p1−p2ð Þ
log 1−p1ð Þ− log 1−p1−q2ð Þ ; ðA11Þ

and

F−1 uj p1,q2ð Þ =1−p1− 1−p1−q2ð Þu
1−p1ð Þu−1 : ðA12Þ
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