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In this talk, we will discuss:

The latent position process time series of graphs (LPPTSG): a
generative model for a time series of graphs, governed by an
underlying stochastic process that can induce time dependence for
each vertex
The Euclidean mirror: a way to represent dynamics in time series of
graphs, with use in changepoint localization for network time series
How vertex misalignment affects the Euclidean mirror
Two specific latent position processes: London and Atlanta, and
their associated network time series
The impact of vertex misalignment for changepoint localization in
both the London and Atlanta models



The latent position process: the DNA of a class of network time series

Latent position process (LPP): Xt1 Xt2 ... Xtm

i.i.d sample paths for each vertex

Time

Rd

t1 t2 t3 t4 t5 tm
. . .

Xt1 Xt2 Xtm ∈ Rn×d...Latent position matrices

For time t, rows give latent positions for each vertex:
(Xt)1 , (Xt)2 , ..., (Xt)n

i.i.d∼ µXt ;

For vertex i across times t1, · · · , tm, joint distribution of
(Xt1)i , (Xt2)i , ..., (Xtm)i ∼ µXt1 ,Xt2 ,...,Xtm .
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For time t, rows give latent positions for each vertex:
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For vertex i across times t1, · · · , tm, joint distribution of

(Xt1)i , (Xt2)i , ..., (Xtm)i ∼ µXt1 ,Xt2 ,...,Xtm
.

Under vertex misalignment: (Xt1)i , (Xt2)σ2(i), ..., (Xtm)σm(i) ∼???.



Latent position processes and the generation of time
series of graphs (LPPTSG)

Xt1 Xt2 Xtm ∈ Rn×d...

At1 At2 Atm
...

Pt1 = Xt1X>
t1

At1 ∼ Ber(Pt1)

The LPP influences the dynamics of the TSG.



The Euclidean mirror: a low-dimensional representation of
network dynamics
The Euclidean mirror is based on pairwise dissimilarity for the LPP at
different time points:

LPP: Xt1 Xt2 ... Xtm


0 dMV (Xt1 ,Xt2) · · · dMV (Xt1 ,Xtm)

dMV (Xt2 ,Xt1) 0 · · · dMV (Xt2 ,Xtm)
...

...
. . .

...
dMV (Xtm ,Xt1) dMV (Xtm ,Xt2) · · · 0


m×m

ψ ∈ Rm×c Euclidean mirror

Dissimilarity: dMV (X ,Y ) := min
W∈Od×d

∥∥E[(X − WY )(X − WY )>]
∥∥1/2
2

a quasi-covariance, based on the joint distribution of (X ,Y )

classical multidimensional scaling



Example: Euclidean mirror for changepoint localization

In the figure below:
we plot the Euclidean mirror for a particular LPP TSG
the LPP itself has an underlying changepoint at t∗ = 0.5

the associated Euclidean mirror has a slope change at t∗
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Estimating the Euclidean mirror [ALPP25]
A1 A2

... Am

X̂1 = UdΣ
1/2
d X̂2

... X̂m


0 d̂MV (X̂1, X̂2) · · · d̂MV (X̂1, X̂m)

d̂MV (X̂2, X̂1) 0 · · · d̂MV (X̂2, X̂m)
...

...
. . .

...
d̂MV (X̂m, X̂1) d̂MV (X̂m, X̂2) · · · 0


m×m

ψ̂ ∈ Rm×c estimated Euclidean mirror

A1 ≈ UdΣdU>
d ASE ASE

Define d̂MV (X̂t , X̂s) := min
W∈Od×d

1√
n‖X̂t − X̂sW ‖2.

known 1-1 vertex correspondence

classical multidimensional scaling
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Understanding vertex misalignment

We start with an LPP time series of graphs where vertex alignment is
known.

A1,A2, ...,Am.

What is the impact of vertex misalignment across time on subsequent
inference?

Let {σ1, σ2, ...σm} be independent permutations of the vertices,
with associated permutation matrices {P1,P2, ...,Pm}.
The adjacency matrices of the shuffled TSG are

P1A1P>
1 P2A2P>

2
... PmAmP>

m

What happens if we apply the Euclidean mirror to the shuffled
TSG?



Understanding vertex misalignment

We start with an LPP time series of graphs where vertex alignment is
known.

A1,A2, ...,Am.

We want to understand the impact of vertex misalignment across time on
subsequent inference

Let {σ1, σ2, ...σm} be independent permutations of the vertices,
with associated permutation matrices {P1,P2, ...,Pm}.
The adjacency matrices of the shuffled TSG are

P1A1P>
1 P2A2P>

2
... PmAmP>

m

P1X̂1 P2X̂2
... PmX̂m

ASE ASE ASE



Vertex misalignment, continued

What happens if we apply the Euclidean mirror to the shuffled
TSG?

First, consider the case when the true latent positions are known. Apply
d̂MV on shuffled true latent position matrices:

d̂MV (PtXt ,PsXs) := min
W∈Od×d

1√
n
‖PtXt − PsXsW ‖2

= min
W∈Od×d

1√
n
‖Xt − P−1

t PsXsW ‖2.



Vertex misalignment and associated latent positions

‖Xt − P−1
t PsXs‖2 is based on the shuffled true latent positions:


(Xt)1, (Xs)1
(Xt)2, (Xs)2
(Xt)3, (Xs)3

...
...

(Xt)10, (Xs)10

 shuffle−−−−−−→


(Xt)1, (Xs)1
(Xt)2, (Xs)3
(Xt)3, (Xs)5

...
...

(Xt)10, (Xs)7


{
((Xt)i , (Xs)i) ; i ∈ [n]

} {(
(Xt)i , (Xs)σ(i)

)
; i ∈ [n]

}
pairs are i.i.d from LPP no longer i.i.d



Shuffling weakens dependence

{(xi , yi); i ∈ [n]} are i.i.d samples drawn from a joint distribution µX ,Y .
σ is a uniform random permutation that is independent of the sampled
latent position process.

What is the empirical distribution of {(xi , yσ(i)); i ∈ [n]}?

when σ(i) = i , (xi , yσ(i)) ∼ µX ,Y .

when σ(i) 6= i , xi ⊥⊥ yσ(i) =⇒ (xi , yσ(i)) ∼ µX ⊗ µY .

E[#{i : σ(i) = i}] = 1 ∀ n.

E[#{i : σ(i) 6= i}] = n − 1 ∀ n.



Shuffling weakens dependence

Theorem (Shuffling weakens dependence)

For every function f : R2 → R1 bounded on the support of µX ,Y ,
denoted as S, and ∀ε > 0,

P

(∣∣∣∣∣1n
n∑

i=1

f
(
xi , yσ(i)

)
− EµX⊗µY [f ]

∣∣∣∣∣ > ε

)
≤

12B2
f ,S

nε2 +
4Bf ,S

nε .



Shuffling weakens dependence

Q: What information is lost when we lose the vertex correspondence?

A: We lose the information in the joint distribution µX ,Y and retain
information in the marginal distributions µX , µY .



Shuffled-dMV

Theorem (Shuffling vertices yields a shuffled-dMV dissimilarity )

Consider a class of 1-d LPPs in which the dMV distance for any two
times simplifies to:

d2
MV (Xt ,Xt′) = E[(Xt − Xt′)

2], d̂2
MV (Xt ,Xt′) =

1

n‖Xt − Xt′‖2F .

then for any ε > 0, we have

P
(∣∣∣d̂2

MV (Xt ,PσXs)− shuffled-d2
MV (Xt ,Xs)

∣∣∣ ≥ ε
)
≤ 12

nε2 +
4

nε.



Shuffled-dMV

shuffled-dMV
(
Xt ,Xt′

)
:= min

W∈Od×d
E
∥∥∥(X ′

t − WX ′
t′
)(

X ′
t − WX ′

t′
)>∥∥∥1/2

2
,

where
X ′

t
L
= Xt , X ′

t′
L
= Xt′ , and X ′

t ⊥⊥ X ′
t′ .

Note: shuffled-dMV is wholly determined by the marginal
distributions of (Xt ,Xt′)—not their joint distribution.



Two edge-case LPPs, London and Atlanta.

Goal:
1 To understand the impact of vertex misalignment on the Euclidean

mirror
2 More specifically, understand dMV and shuffled-dMV

Both models have a changepoint t∗.

London: shuffled-dMV ≈ dMV and estimation of t∗ is robust to
misalignment.

Atlanta: shuffled-dMV 6= dMV and estimation of t∗ is sensitive to
misalignment.



The London latent position process

XL
0 = 0 with probability 1,

XL
i =

{
XL

i−1 +
1
m with probability p

XL
i−1 with probability 1− p.

Jump probability p will change to q after t∗.



London LPP and TSG; adequate signal for changepoint
localization
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The Atlanta latent position process

Let u denote the uniform distribution on the discrete set
{0, 1

N−1 ,
2

N−1 , . . . , 1}.

XA
0 ∼ u,

XA
i =


XA

i−1 +
1

N−1 with probability p,
XA

i−1 − 1
N−1 with probability p,

XA
i−1 with probability 1− 2p,

jump probability will change from p to q at t∗.



Atlanta LPP and TSG: loss of signal for changepoint
localization
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Mirror and shuffled mirror for both models
dMV 100% shuffled dMV
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London model: n = 100, p = 0.3, q = 0.9,m = 30, t∗ = 0.5.
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Atlanta model: n = 1000, p = 0.05, q = 0.45, m = 30, t∗ = 0.5.



To summarize, we discussed

Latent position process time series of graphs (LPPTSG)
The Euclidean mirror, changepoint localization, and
time-dependence in the LPP
The impact of vertex misalignment on the Euclidean mirror
Two specific latent position processes: London and Atlanta, as well
as their associated network time series, that serve as illustrative
edge-cases for understanding vertex alignment in multiple network
inference
The London LPP TSG, which is robust to vertex misspecification,
and the Euclidean mirror can still recover the changepoint even after
shuffling
The Atlanta LPP TSG, in which the Euclidean mirror can recover
the changepoint when misalignment is not severe, but it loses
structure and information after sufficient vertex misalignment



Thank you!



Simulated swarm data [HDSS24]

Video:
https://www.cis.jhu.edu/~parky//SofA/NRL-swarm-movie.mp4

797s 805s 815s

We decide by eye there are two changepoints around 800s and 810s.

How do quantitatively find the changepoint for the dynamics of overall
swarms?

https://www.cis.jhu.edu/~parky//SofA/NRL-swarm-movie.mp4
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Video to Time series of graphs

There are m = 400 frames, and in each frame there are n = 100 objects
with locations in R2.
For each frame at time t,
1, latent position matrix Xt ∈ R100×2 by stacking the locations row-wise,
2, Pt = XtX>

t ∈ R100×100,
3, generate a graph using Pt , Ai,j ∼ Bernoulli(Pi,j).

Given a latent position matrix and do step 2 and 3 is so called generating
random dot product graph(RDPG) from a latent position matrix.
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2, Pt = XtX>

t ∈ R100×100,
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Euclidean mirror for simulated swarm data

Gray dots are iso-mirror of simulated swarm data, every dot represents a graph.
Red line is the piecewise linear fit of the gray dots with number of slope changes
chosen by BIC . We see slope change around 800 and 810.



What if there is vertex misalignment?

Gray dots are iso-mirror of 100% shuffled simulated swarm time series of graphs,
every dot represents a graph. Signal are completely washed out.
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dMV , shuffled-dMV for both models

You don’t have to read this because i have figures for you!



Mirror and shuffled mirror for both models
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London model: n = 100, p = 0.3, q = 0.9,m = 30, t∗ = 0.5, cL = 0.1,
δm = 0.9/30.
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Atlanta model: n = 1000, p = 0.05, q = 0.45, m = 30, t∗ = 0.5, cA = 0.8,
N = 50.


