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In this talk, we will discuss:

e The (LPPTSG): a
generative model for a time series of graphs, governed by an
underlying stochastic process

o The : a way to represent dynamics in time series of
graphs, with use in changepoint localization for network time series

e How affects the Euclidean mirror

@ Two specific latent position processes: and , and
their associated network time series

@ The impact of in
both the and models



The latent position process: the DNA of a class of network time series
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For time t, rows give latent positions for each vertex:
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For vertex i across times ty,--- , tp,, joint distribution of
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Under vertex misalignment: (X¢, )i, (Xt ) (i)5 -5 (Xt ) (i) ~777.



Latent position processes and the generation of time
series of graphs (LPPTSG)
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The LPP influences the dynamics of the TSG.



The Euclidean mirror: a low-dimensional representation of
network dynamics

The Euclidean mirror is based on pairwise dissimilarity for the LPP at
different time points:

LPP: Xy, Xey, Xt
Dissimilarity: duyv(X,Y) = min
" weodxd

a quasi-covariance, based on the joint distribution of (X, Y)
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Example: Euclidean mirror for changepoint localization

In the figure below:
@ we plot the Euclidean mirror for a particular LPP TSG
@ the LPP itself has an underlying changepoint at t* = 0.5

@ the associated Euclidean mirror has a slope change at t*
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Estimating the Euclidean mirror [ALPP25]
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Estimating the Euclidean mirror [ALPP25]
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Estimating the Euclidean mirror [ALPP25]
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Understanding vertex misalignment

We start with an LPP time series of graphs where

A1, As, .. A,

What is the impact of

on subsequent
inference?

o Let {01,092,...0m} be independent permutations of the vertices,
with associated permutation matrices {P1, Pa, ..., Pm}.

@ The adjacency matrices of the are
PiA1P  PyAsP) PnAmP,

What happens if we apply the



Understanding vertex misalignment

We start with an LPP time series of graphs where

A1, Ag, . A,

We want to understand the impact of on
subsequent inference

o Let {01,092,...0m} be independent permutations of the vertices,
with associated permutation matrices {P1, Pa, ..., Pm}.

@ The adjacency matrices of the are
PiAIP]  PyAyP) PmAnP,l
. ASE . ASE . ASE

~ ~ ~

PiX, PyXo PmXom



Vertex misalignment, continued

What happens if we apply the

First, consider the case when the true latent positions are known. Apply

HMV on shuffled latent position matrices:
dMV(PtXta PSXS) = ngégxd f“PtXt P5X5W||2

-1
= min_ fuxt CIPX W2



Vertex misalignment and associated latent positions

|X: — P; ' PsXs]|2 is based on the shuffled true latent positions:

(Xt)1, (Xo)h (Xt)1, (Xs)
(Xt)2, (X huffl (Xt)2,  (Xs)3
(Xe)s,  (Xs) shuttle (Xt)s, (Xs)s
(Xt)10, (Xs)10 (Xt)10, (Xs)7
{(@onx0ie )} { (@00 X) i € ]

pairs are i.i.d from LPP no longer i.i.d



Shuffling weakens dependence

{(xi,yi);i € [n]} are i.i.d samples drawn from a joint distribution fx y.
o is a uniform random permutation that is independent of the sampled
latent position process.

What is the empirical distribution of {(x;, y,(j));i € [n]}?
when o (i) =i, (X, Yo(i)) ~ KX,y

when o(i) #i, X L,y = (X5, Yo(i) ~ ix @ py.
E[#{i:o(i)=i}]=1 Vn.
E[#{i:0(i)#i}]=n—1 ¥V n.



Shuffling weakens dependence

Theorem (Shuffling weakens dependence)

For every function f : R? — R! bounded on the support of jix.y,
denoted as S, and Ve > 0,

1 n
P <‘; Z f (Xi,)/a(i)) - Eux®uy[f]
i=1

1282 AB
>5> S f,S+ f,S'




Shuffling weakens dependence

Q: What information is lost when we lose the vertex correspondence?

A: We lose the information in the joint distribution px y and retain
information in the marginal distributions ux, y.



Shuffled-dyy

Theorem (Shuffling vertices yields a shuffled-dy dissimilarity )

Consider a class of 1-d LPPs in which the dyy distance for any two
times simplifies to:

N 1
diny (Xe, Xp) = E[(Xe — Xe)?],  dyy (Xe, Xp) = ;”Xr — Xy

then for any € > 0, we have

P (‘Eﬁw(xt, P,Xs) — shuffled-d2p, (Xe, Xs)

12 4
> 6) £ = =
ne2  ne




Shuffled-dyy

shuffled-duy (Xe, Xe) = min B[ (x; - waxi) (X; - WX{/)TH:2

)

where
X £ X, X, £Xy, and X LX),

Note: shuffled-dy,, is wholly determined by the marginal
distributions of (X;, X;)—not their joint distribution.



Two edge-case LPPs, London and Atlanta.

Goal:

@ To understand the impact of vertex misalignment on the Euclidean
mirror

@ More specifically, understand dyy, and shuffled-dpy

Both models have a changepoint t*.

London: shuffled-dyy ~ dpyy and estimation of t* is robust to
misalignment.

Atlanta: shuffled-dyy # dpy and estimation of t* is sensitive to
misalignment.



The latent position process

Xé‘ =0 with probability 1,

XL _ Xt + L with probability p
" X,-L_1 with probability 1 — p.

Jump probability p will change to g after t*.



London LPP and TSG; adequate signal for changepoint
localization

--- Changepoint t*
—— London Model Mean
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The latent position process

Let u denote the uniform distribution on the discrete set

{O? N 1° N 172" 1}
Xé“ ~ U,
XA 1+ N with probability p,
X,-A = Xi‘ll — ﬁ with probability p,
X-"ll with probability 1 — 2p,

]

jump probability will change from p to g at t*.



Atlanta LPP and TSG: loss of signal for changepoint
localization

--- Changepoint t*
—— Atlanta Model Mean




Mirror and shuffled mirror for both models
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London model: n =100, p =0.3, g = 0.9,m = 30, t* = 0.5.
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model: n = 1000, p = 0.05, g = 0.45, m = 30, t* = 0.5.



To summarize, we discussed

° (LPPTSG)

@ The , changepoint localization, and
time-dependence in the LPP

@ The impact of on the Euclidean mirror

° ; and , as well

as their associated network time series, that serve as illustrative
edge-cases for understanding vertex alignment in multiple network
inference

@ The London LPP TSG, which is ,
and the even after
shuffling

@ The Atlanta LPP TSG, in which the Euclidean mirror can recover
the changepoint when misalignment is not severe, but it



Thank you!



Simulated swarm data [HDSS24]

Video:
https://www.cis. jhu.edu/~parky//SofA/NRL-swarm-movie.mp4


https://www.cis.jhu.edu/~parky//SofA/NRL-swarm-movie.mp4

Simulated swarm data [HDSS24]

Video:
https://www.cis. jhu.edu/~parky//SofA/NRL-swarm-movie.mp4

‘Swarm Movemart st Time 81520
‘Swaem Movemant o Time 80556
‘Swarm Mavement t Time 797.95

797s 805s 815s

We decide by eye there are two changepoints around 800s and 810s.
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Simulated swarm data [HDSS24]

Video:

https://www.cis. jhu.edu/~parky//SofA/NRL-swarm-movie.mp4

Swarm Movemert ot Time 79796

‘Swaem Movemant o Time 80556

‘Swarm Movemarnt st Time 81520

797s

805s

815s

We decide by eye there are two changepoints around 800s and 810s.

How do quantitatively find the changepoint for the dynamics of overall

swarms?


https://www.cis.jhu.edu/~parky//SofA/NRL-swarm-movie.mp4

Video to Time series of graphs

There are m = 400 frames, and in each frame there are n = 100 objects
with locations in R2.

For each frame at time t,

1, latent position matrix X; € R100x2 by stacking the locations row-wise,
2, P, = XtX;I— c RlOOXlOOY

3, generate a graph using P, A;; ~ Bernoulli(P; ;).



Video to Time series of graphs

There are m = 400 frames, and in each frame there are n = 100 objects
with locations in R2.

For each frame at time t,

1, latent position matrix X; € R100x2 by stacking the locations row-wise,
2, P, = XtX;I— c RlOOXlOOY

3, generate a graph using P, A;; ~ Bernoulli(P; ;).

Given a latent position matrix and do step 2 and 3 is so called generating
random dot product graph(RDPG) from a latent position matrix.



Euclidean mirror for simulated swarm data

dmv with true alignment
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Gray dots are iso-mirror of simulated swarm data, every dot represents a graph.
Red line is the piecewise linear fit of the gray dots with number of slope changes
chosen by BIC . We see slope change around 800 and 810.



What if there is vertex misalignment?

duv with 100% shuffling
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780 790 800 8
time

Gray dots are iso-mirror of 100% shuffled simulated swarm time series of graphs,
every dot represents a graph. Signal are completely washed out.
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dyy, shuffled-dyy for both models

Theorem 4. For London model, with
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Theorem 5. For Atlanta model with N.m, ca, ", we have.
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You don’t have to read this because i have figures for you!



Mirror and shuffled mirror for both models
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London model: n =100, p =0.3, g =0.9,m =30, t* =0.5, ¢, = 0.1,
dm = 0.9/30.
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Atlanta model: n = 1000, p = 0.05, g = 0.45, m = 30, t* = 0.5, c4 = 0.8,
N = 50.



