Vertex alignment and changepoint localization in network time series

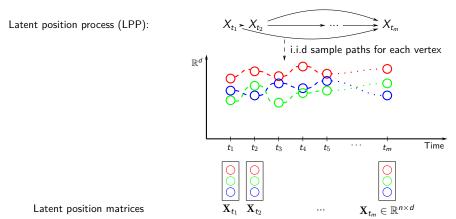
Tianyi Chen, Mohammad Sharifi Kiasari, Sijing Yu, Youngser Park, Avanti Athreya, Zachary Lubberts, Vince Lyzinski, Carey Priebe

Aug 13th 2025

In this talk, we will discuss:

- The latent position process time series of graphs (LPPTSG): a
 generative model for a time series of graphs, governed by an
 underlying stochastic process that can induce time dependence for
 each vertex
- The Euclidean mirror: a way to represent dynamics in time series of graphs, with use in changepoint localization for network time series
- How vertex misalignment affects the Euclidean mirror
- Two specific latent position processes: London and Atlanta, and their associated network time series
- The impact of vertex misalignment for changepoint localization in both the London and Atlanta models

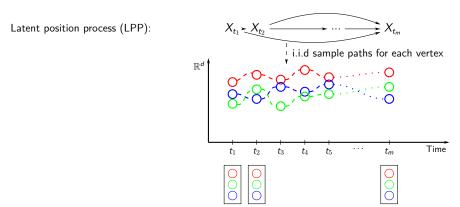
The latent position process: the DNA of a class of network time series



For time t, rows give latent positions for each vertex:

$$(\mathbf{X}_t)_1, (\mathbf{X}_t)_2, ..., (\mathbf{X}_t)_n \stackrel{\text{i.i.d}}{\sim} \mu_{X_t}$$
;

For vertex i across times t_1, \cdots, t_m , joint distribution of $(\mathbf{X}_{t_1})_i, (\mathbf{X}_{t_2})_i, ..., (\mathbf{X}_{t_m})_i \sim \mu_{X_{t_1}, X_{t_2}, ..., X_{t_m}}$.



Latent position matrices

For time t, rows give latent positions for each vertex:

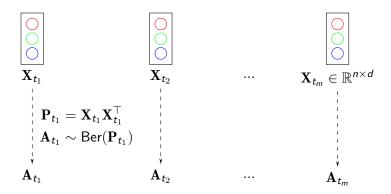
$$\left(\mathbf{X}_{t}\right)_{1},\left(\mathbf{X}_{t}\right)_{2},...,\left(\mathbf{X}_{t}\right)_{n}\overset{\mathsf{i.i.d}}{\sim}\mu_{X_{t}};$$

For vertex *i* across times t_1, \dots, t_m , joint distribution of

$$(\mathbf{X}_{t_1})_i, (\mathbf{X}_{t_2})_i, ..., (\mathbf{X}_{t_m})_i \sim \mu_{X_{t_1}, X_{t_2}, ..., X_{t_m}}.$$

Under vertex misalignment: $(\mathbf{X}_{t_1})_i, (\mathbf{X}_{t_2})_{\sigma_2(i)}, ..., (\mathbf{X}_{t_m})_{\sigma_m(i)} \sim ???$.

Latent position processes and the generation of time series of graphs (LPPTSG)



The LPP influences the dynamics of the TSG.

The Euclidean mirror: a low-dimensional representation of network dynamics

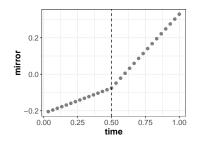
The *Euclidean mirror* is based on *pairwise dissimilarity* for the LPP at different time points:

$$\begin{aligned} & \text{LPP: } X_{t_1} & X_{t_2} & \cdots & X_{t_m} \\ & \text{Dissimilarity: } d_{MV}(X,Y) : \stackrel{\bot}{=} \min_{W \in \mathcal{O}^{d \times d}} \left\| \mathbb{E}[(X - WY)(X - WY)^\top] \right\|_2^{1/2} \\ & \text{a quasi-covariance, based on the joint distribution of } (X,Y) \\ & \begin{pmatrix} 0 & d_{MV}(X_{t_1}, X_{t_2}) & \cdots & d_{MV}(X_{t_1}, X_{t_m}) \\ \vdots & \vdots & \ddots & \vdots \\ d_{MV}(X_{t_2}, X_{t_1}) & 0 & \cdots & d_{MV}(X_{t_2}, X_{t_m}) \\ \vdots & \vdots & \ddots & \vdots \\ d_{MV}(X_{t_m}, X_{t_1}) & d_{MV}(X_{t_m}, X_{t_2}) & \cdots & 0 \end{pmatrix}_{m \times m} \\ & \text{classical multidimensional scaling} \\ & \psi \in \mathbb{R}^{m \times c} & \text{Euclidean mirror} \end{aligned}$$

Example: Euclidean mirror for changepoint localization

In the figure below:

- we plot the Euclidean mirror for a particular LPP TSG
- ullet the LPP itself has an underlying changepoint at $t^*=0.5$
- ullet the associated Euclidean mirror has a slope change at t^*



Estimating the Euclidean mirror [ALPP25]

Estimating the Euclidean mirror [ALPP25]

$$\begin{array}{c} \mathbf{A}_{1} & \mathbf{A}_{2} & \cdots & \mathbf{A}_{m} \\ \mathbf{A}_{1} \stackrel{\downarrow}{\approx} \mathbf{U}_{d} \boldsymbol{\Sigma}_{d} \mathbf{U}_{d}^{\top} \stackrel{\downarrow}{\downarrow} \mathsf{ASE} & \stackrel{\downarrow}{\downarrow} \mathsf{ASE} \\ \hat{\mathbf{X}}_{1} = \mathbf{U}_{d} \boldsymbol{\Sigma}_{d}^{1/2} & \hat{\mathbf{X}}_{2} & \cdots & \hat{\mathbf{X}}_{m} \\ \text{Define } \hat{d}_{MV}(\hat{\mathbf{X}}_{t}, \hat{\mathbf{X}}_{s}) := \min_{W \in \mathcal{O}^{d \times d}} \frac{1}{\sqrt{n}} \|\hat{\mathbf{X}}_{t} - \hat{\mathbf{X}}_{s} W\|_{2}. \\ & \stackrel{\downarrow}{\downarrow} & \hat{d}_{MV}(\hat{\mathbf{X}}_{t}, \hat{\mathbf{X}}_{s}) \stackrel{p}{\rightarrow} d_{MV}(X_{t}, X_{s}) \\ \begin{pmatrix} 0 & \hat{d}_{MV}(\hat{\mathbf{X}}_{1}, \hat{\mathbf{X}}_{2}) & \cdots & \hat{d}_{MV}(\hat{\mathbf{X}}_{1}, \hat{\mathbf{X}}_{m}) \\ \hat{d}_{MV}(\hat{\mathbf{X}}_{2}, \hat{\mathbf{X}}_{1}) & 0 & \cdots & \hat{d}_{MV}(\hat{\mathbf{X}}_{2}, \hat{\mathbf{X}}_{m}) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{d}_{MV}(\hat{\mathbf{X}}_{m}, \hat{\mathbf{X}}_{1}) & \hat{d}_{MV}(\hat{\mathbf{X}}_{m}, \hat{\mathbf{X}}_{2}) & \cdots & 0 \end{pmatrix}_{m \times m} \\ & \text{classical multidimensional scaling} \\ & \hat{\psi} \in \mathbb{R}^{m \times c} \quad \text{estimated Euclidean mirror} \end{array}$$

Estimating the Euclidean mirror [ALPP25]

$$\begin{array}{c} \mathbf{A}_1 & \mathbf{A}_2 & \cdots & \mathbf{A}_m \\ \mathbf{A}_1 \stackrel{\downarrow}{\approx} \mathbf{U}_d \boldsymbol{\Sigma}_d \mathbf{U}_d^\top \stackrel{\downarrow}{\downarrow} \mathsf{ASE} & \stackrel{\downarrow}{\downarrow} \mathsf{ASE} \\ \hat{\mathbf{X}}_1 = \mathbf{U}_d \boldsymbol{\Sigma}_d^{1/2} & \hat{\mathbf{X}}_2 & \cdots & \hat{\mathbf{X}}_m \\ \text{Define } \hat{d}_{MV}(\hat{\mathbf{X}}_t, \hat{\mathbf{X}}_s) := \min_{W \in \mathcal{O}^{d \times d}} \frac{1}{\sqrt{n}} \|\hat{\mathbf{X}}_t - \hat{\mathbf{X}}_s W\|_2. \\ & \stackrel{\downarrow}{\downarrow} & \hat{d}_{MV}(\hat{\mathbf{X}}_t, P\hat{\mathbf{X}}_s) \stackrel{p}{\rightarrow}? \\ \begin{pmatrix} 0 & \hat{d}_{MV}(\hat{\mathbf{X}}_1, \hat{\mathbf{X}}_2) & \cdots & \hat{d}_{MV}(\hat{\mathbf{X}}_1, \hat{\mathbf{X}}_m) \\ \hat{d}_{MV}(\hat{\mathbf{X}}_2, \hat{\mathbf{X}}_1) & 0 & \cdots & \hat{d}_{MV}(\hat{\mathbf{X}}_2, \hat{\mathbf{X}}_m) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{d}_{MV}(\hat{\mathbf{X}}_m, \hat{\mathbf{X}}_1) & \hat{d}_{MV}(\hat{\mathbf{X}}_m, \hat{\mathbf{X}}_2) & \cdots & 0 \end{pmatrix}_{m \times m} \\ & \text{classical multidimensional scaling} \\ & \hat{\psi} \in \mathbb{R}^{m \times c} & \text{estimated Euclidean mirror} \end{array}$$

Understanding vertex misalignment

We start with an LPP time series of graphs where *vertex alignment is known*.

$$A_1, A_2, ..., A_m$$
.

What is the impact of *vertex misalignment across time* on subsequent inference?

- Let $\{\sigma_1, \sigma_2, ... \sigma_m\}$ be independent permutations of the vertices, with associated permutation matrices $\{P_1, P_2, ..., P_m\}$.
- The adjacency matrices of the shuffled TSG are

$$P_1 \mathbf{A}_1 P_1^{\top} \qquad P_2 \mathbf{A}_2 P_2^{\top} \qquad \cdots \qquad P_m \mathbf{A}_m P_m^{\top}$$

What happens if we apply the **Euclidean mirror to the shuffled** TSG?

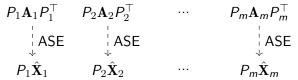
Understanding vertex misalignment

We start with an LPP time series of graphs where *vertex alignment is known*.

$$A_1, A_2, ..., A_m$$
.

We want to understand the impact of *vertex misalignment across time* on subsequent inference

- Let $\{\sigma_1, \sigma_2, ... \sigma_m\}$ be independent permutations of the vertices, with associated permutation matrices $\{P_1, P_2, ..., P_m\}$.
- The adjacency matrices of the *shuffled TSG* are



Vertex misalignment, continued

What happens if we apply the **Euclidean mirror to the shuffled TSG?**

First, consider the case when the true latent positions are known. Apply \hat{d}_{MV} on shuffled true latent position matrices:

$$\hat{d}_{MV}(P_t \mathbf{X}_t, P_s \mathbf{X}_s) := \min_{W \in \mathcal{O}^{d \times d}} \frac{1}{\sqrt{n}} \|P_t \mathbf{X}_t - P_s \mathbf{X}_s W\|_2
= \min_{W \in \mathcal{O}^{d \times d}} \frac{1}{\sqrt{n}} \|\mathbf{X}_t - P_t^{-1} P_s \mathbf{X}_s W\|_2.$$

Vertex misalignment and associated latent positions

 $\|\mathbf{X}_t - P_t^{-1} P_s \mathbf{X}_s\|_2$ is based on the shuffled true latent positions:

pairs are i.i.d from LPP

no longer i.i.d

Shuffling weakens dependence

 $\{(x_i,y_i); i \in [n]\}$ are i.i.d samples drawn from a joint distribution $\mu_{X,Y}$. σ is a uniform random permutation that is independent of the sampled latent position process.

What is the empirical distribution of $\{(x_i, y_{\sigma(i)}); i \in [n]\}$?

when
$$\sigma(i)=i, \quad (x_i,y_{\sigma(i)})\sim \mu_{X,Y}.$$
 when $\sigma(i)\neq i, \quad x_i\perp y_{\sigma(i)} \Longrightarrow (x_i,y_{\sigma(i)})\sim \mu_X\otimes \mu_Y.$
$$\mathbb{E}[\#\{i:\sigma(i)=i\}]=1 \quad \forall \ n.$$

$$\mathbb{E}[\#\{i:\sigma(i)\neq i\}]=n-1 \quad \forall \ n.$$

Shuffling weakens dependence

Theorem (Shuffling weakens dependence)

For every function $f: \mathbb{R}^2 \to \mathbb{R}^1$ bounded on the support of $\mu_{X,Y}$, denoted as S, and $\forall \varepsilon > 0$.

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}f\left(x_{i},y_{\sigma(i)}\right)-\mathbb{E}_{\mu_{X}\otimes\mu_{Y}}[f]\right|>\varepsilon\right)\leq\frac{12B_{f,\mathcal{S}}^{2}}{n\varepsilon^{2}}+\frac{4B_{f,\mathcal{S}}}{n\varepsilon}.$$

Shuffling weakens dependence

Q: What information is lost when we lose the vertex correspondence?

A: We lose the information in the joint distribution $\mu_{X,Y}$ and retain information in the marginal distributions μ_{X}, μ_{Y} .

Shuffled-d_{MV}

Theorem (Shuffling vertices yields a shuffled- d_{MV} dissimilarity)

Consider a class of 1-d LPPs in which the d_{MV} distance for any two times simplifies to:

$$d_{MV}^{2}(X_{t}, X_{t'}) = \mathbb{E}[(X_{t} - X_{t'})^{2}], \quad \hat{d}_{MV}^{2}(\mathbf{X}_{t}, \mathbf{X}_{t'}) = \frac{1}{n} \|\mathbf{X}_{t} - \mathbf{X}_{t'}\|_{F}^{2}.$$

then for any $\varepsilon > 0$, we have

$$\mathbb{P}\left(\left|\hat{d}_{MV}^{2}(\mathbf{X}_{t}, P_{\sigma}\mathbf{X}_{s}) - shuffled - d_{MV}^{2}(X_{t}, X_{s})\right| \geq \varepsilon\right) \leq \frac{12}{n\varepsilon^{2}} + \frac{4}{n\varepsilon}.$$

Shuffled-*d_{MV}*

$$\mathsf{shuffled-} d_{MV}\big(X_t, X_{t'}\big) \; := \; \min_{W \in \mathcal{O}^{d \times d}} \; \mathbb{E} \Big\| \big(X_t' - W X_{t'}'\big) \big(X_t' - W X_{t'}'\big)^\top \Big\|_2^{1/2},$$

where

$$X_t' \stackrel{\mathcal{L}}{=} X_t, \quad X_{t'}' \stackrel{\mathcal{L}}{=} X_{t'}, \quad \text{and} \quad X_t' \perp \!\!\! \perp X_{t'}'.$$

Note: shuffled- d_{MV} is wholly determined by the marginal distributions of $(X_t, X_{t'})$ —not their joint distribution.

Two edge-case LPPs, London and Atlanta.

Goal:

- To understand the impact of vertex misalignment on the Euclidean mirror
- ② More specifically, understand d_{MV} and shuffled- d_{MV}

Both models have a changepoint t^* .

London: shuffled- $d_{MV} \approx d_{MV}$ and estimation of t^* is *robust to misalignment*.

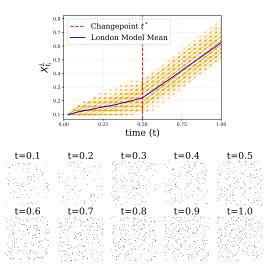
Atlanta: shuffled- $d_{MV} \neq d_{MV}$ and estimation of t^* is sensitive to misalignment.

The **London** latent position process

$$\begin{split} & \textbf{X}_0^L = 0 \quad \text{with probability 1,} \\ & \textbf{X}_i^L = \begin{cases} \textbf{X}_{i-1}^L + \frac{1}{m} & \text{with probability } p \\ \textbf{X}_{i-1}^L & \text{with probability } 1 - p. \end{cases} \end{split}$$

Jump probability p will change to q after t^* .

London LPP and TSG; adequate signal for changepoint localization



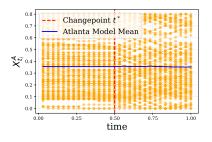
The Atlanta latent position process

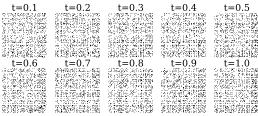
Let u denote the uniform distribution on the discrete set $\{0,\frac{1}{N-1},\frac{2}{N-1},\ldots,1\}.$

$$\begin{split} X_0^A \sim u, \\ X_i^A = \begin{cases} X_{i-1}^A + \frac{1}{N-1} & \text{with probability } p, \\ X_{i-1}^A - \frac{1}{N-1} & \text{with probability } p, \\ X_{i-1}^A & \text{with probability } 1 - 2p, \end{cases} \end{split}$$

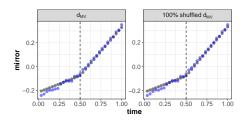
jump probability will change from p to q at t^* .

Atlanta LPP and TSG: loss of signal for changepoint localization

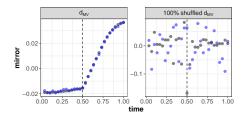




Mirror and shuffled mirror for both models



London model: n = 100, p = 0.3, q = 0.9, m = 30, $t^* = 0.5$.



Atlanta model: n = 1000, p = 0.05, q = 0.45, m = 30, $t^* = 0.5$.

To summarize, we discussed

- Latent position process time series of graphs (LPPTSG)
- The <u>Euclidean mirror</u>, changepoint localization, and time-dependence in the LPP
- The impact of vertex misalignment on the Euclidean mirror
- Two specific latent position processes: London and Atlanta, as well
 as their associated network time series, that serve as illustrative
 edge-cases for understanding vertex alignment in multiple network
 inference
- The London LPP TSG, which is robust to vertex misspecification, and the Euclidean mirror can still recover the changepoint even after shuffling
- The Atlanta LPP TSG, in which the Euclidean mirror can recover the changepoint when misalignment is not severe, but it loses structure and information after sufficient vertex misalignment

Simulated swarm data [HDSS24]

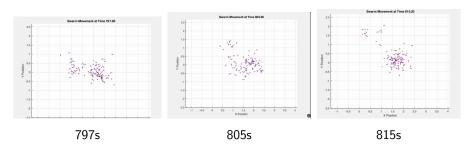
Video:

https://www.cis.jhu.edu/~parky//SofA/NRL-swarm-movie.mp4

Simulated swarm data [HDSS24]

Video:

https://www.cis.jhu.edu/~parky//SofA/NRL-swarm-movie.mp4

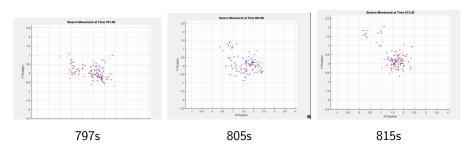


We decide by eye there are two changepoints around 800s and 810s.

Simulated swarm data [HDSS24]

Video:

https://www.cis.jhu.edu/~parky//SofA/NRL-swarm-movie.mp4



We decide by eye there are two changepoints around 800s and 810s.

How do quantitatively find the changepoint for the dynamics of **overall** swarms?

Video to Time series of graphs

There are m=400 frames, and in each frame there are n=100 objects with locations in \mathbb{R}^2 .

For each frame at time t,

- 1, latent position matrix $\mathbf{X}_t \in \mathbb{R}^{100 \times 2}$ by stacking the locations row-wise,
- 2, $\mathbf{P}_t = \mathbf{X}_t \mathbf{X}_t^{\top} \in \mathbb{R}^{100 \times 100}$
- 3, generate a graph using P_t , $A_{i,j} \sim \mathsf{Bernoulli}(P_{i,j})$.

Video to Time series of graphs

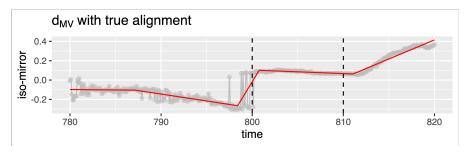
There are $\emph{m}=400$ frames, and in each frame there are $\emph{n}=100$ objects with locations in \mathbb{R}^2 .

For each frame at time t,

- 1, latent position matrix $\mathbf{X}_t \in \mathbb{R}^{100 \times 2}$ by stacking the locations row-wise,
- 2, $\mathbf{P}_t = \mathbf{X}_t \mathbf{X}_t^{\top} \in \mathbb{R}^{100 \times 100}$,
- 3, generate a graph using \mathbf{P}_t , $\mathbf{A}_{i,j} \sim \mathsf{Bernoulli}(\mathbf{P}_{i,j})$.

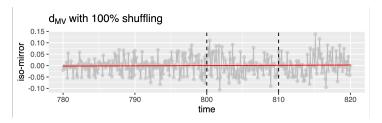
Given a latent position matrix and do step 2 and 3 is so called generating random dot product graph(RDPG) from a latent position matrix.

Euclidean mirror for simulated swarm data



Gray dots are iso-mirror of simulated swarm data, every dot represents a graph. Red line is the piecewise linear fit of the gray dots with number of slope changes chosen by BIC . We see slope change around 800 and 810.

What if there is vertex misalignment?



Gray dots are iso-mirror of 100% shuffled simulated swarm time series of graphs, every dot represents a graph. Signal are completely washed out.

References I

- Avanti Athreya, Zachary Lubberts, Youngser Park, and Carey Priebe, Euclidean mirrors and dynamics in network time series, Journal of the American Statistical Association (2025), 1–12.
 - Jason Hindes, Kevin Daley, George Stantchev, and Ira B Schwartz, Swarming network inference with importance clustering of relative interactions, Journal of Physics: Complexity 5 (2024), no. 4, 045009.

d_{MV} , shuffled- d_{MV} for both models

```
Theorem 4. For London model, with \delta_m = \frac{1}{n}, we have:
                  · for duv distance.
                                                                      \left(\mathcal{D}^{\mathcal{L}(2)}\right)_{i,j} = d_{MV}^2(X_{t_i}^L X_{t_j}^L) = \begin{cases} \mathbb{P}^2 \left(\frac{i_n}{n} - \frac{i_n}{n}\right)^2 + \frac{\mathbf{e} \cdot \mathbf{p}^2}{n} | \frac{i_n}{n} - \frac{i_n}{n}| + j \le t_m^2, \\ \mathbb{P}\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right)^2 + \frac{\mathbf{e} \cdot \mathbf{p}^2}{n} | \frac{i_n}{n} - \frac{i_n}{n}| + \frac{q \cdot \mathbf{p}^2}{n} | \frac{i_n}{n} - \frac{i_n}{n}| \\ \mathbb{P}\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right)^2 + \frac{\mathbf{e} \cdot \mathbf{p}^2}{n} | \frac{i_n}{n} - \frac{i_n}{n}| + \frac{q \cdot \mathbf{p}^2}{n} | \frac{i_n}{n} - \frac{i_n}{n}| \\ \mathbb{P}\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + \frac{q \cdot \mathbf{p}^2}{n} | \frac{i_n}{n} - \frac{i_n}{n}| \\ \mathbb{P}\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) \\ \mathbb{P}\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) \\ \mathbb{P}\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) \\ \mathbb{P}\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n} - \frac{i_n}{n}\right) + q\left(\frac{i_n}{n
                                                    - as m \to \infty, \hat{\psi}^{\dagger}_{1} is asymptotically Euclidean 1-realizable with asymptotic mirror \psi_{2}, that is,
                                                                                                   \sup_{t \in W_{i,j}} \left| \tilde{\psi}_{d,i,i}^{L}(t) - \psi_{Z}(t) \right| \rightarrow 0, \quad \left( \mathcal{D}^{\mathcal{L}}_{d,i,i,i} \right)_{i,j} \rightarrow \left| \psi_{Z}(t_{i}) - \psi_{Z}(t_{j}) \right| \text{ as } m \rightarrow \infty \quad \text{for all } i, j \in \{1, 2, \dots, m\};

    for shuffled-d<sub>MV</sub> distance

                                                             \left(\mathcal{D}^{\mathcal{L}_{ONS}^{COS}}(x_{tot})_{i,j} = \text{Adaglite-}d_{AVV}^{\mathcal{L}}(X_{t}^{\mathcal{L}}, X_{t}^{\mathcal{L}}) = \begin{cases} g^{\mathcal{L}}\left(\frac{1}{2} + \frac{1}{2}\right)^{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right) + \frac{1}{2} \left(\frac{1}{2} 
                                                    - as m \to \infty, \tilde{\psi}^L_{double-1,...} is asymptotically Euclidean 1-realizable with asymptotic mirror \psi_Z, that is:
                                                                  \sup_{t=0} \left| \tilde{\psi}_{shag0id-dyr}^{1}(t) - \psi_{Z}(t) \right|, \quad \left( \mathcal{D}^{C}_{shag0id-dyr} \right)_{i,j} \rightarrow \left| \psi_{Z}(t_{i}) - \psi_{Z}(t_{j}) \right| \text{ as } m \rightarrow \infty \quad \text{for all } i, j \in \{1, 2, \dots, m\};
                  • for \alpha-shuffled-d<sub>MV</sub> distance with 0 \le \alpha < 1:
                                                                                                                                                                                                                                                                                  D^{\mathcal{L}_{(2)}^{(2)}} = \alpha D^{\mathcal{L}_{(2)}^{(2)}} = \alpha D^{\mathcal{L}_{(2)}^{(2)}} + (1 - \alpha)D^{\mathcal{L}_{(2)}^{(2)}}
                                                    \sup_{t} \left| \tilde{\psi}_{\alpha-s \log t \circ d - \delta_{MV}}^{L}(t) - \psi_{Z}(t) \right|, \quad \left( \mathcal{D}^{L}_{\alpha-s \log t \circ d - \delta_{MV}} \right)_{i,j} \rightarrow \left| \psi_{Z}(t_{i}) - \psi_{Z}(t_{j}) \right| \text{ as } m \rightarrow \infty \quad \text{for all } i, j \in \{1, 2, \cdots, m\};

    for expected average degree, when <sup>ti</sup><sub>i</sub> = t<sup>*</sup>, for all i ∈ |m|:

                                                                                                                                                                                                                                                                                                                                                             \sqrt{\mathbb{E}\psi_{\text{avg-degree}}^{L}(t_{i})} = \psi_{\sigma}(t_{i}).
```

```
Theorem 5. For Atlanta model with N.m. c4. t*, we have:
    · For the dury distance:
                                               \left(D^{A(2)}_{d_{SV}}\right)_{i,j} = d_{MV}^2(X_{i_i}^A, X_{i_j}^A) =\begin{cases} \frac{c_i^2 - i_{1}}{(N-1)^2 N} \operatorname{tr}\left(T_p^{(i-j)}M\right) & i, j < t_{m}^*, \\ \frac{c_i^2}{(N-1)^2 N} \operatorname{tr}\left(T_p^{(i-1)^*}|T_q^{(i-j)}M\right) & i < t_{m}^* < j, \end{cases}
                    where (M)_{i,j} = (i-i)^2. Note for non-negative integer 2 \le k \le N, we h
                                                                           \operatorname{tr}\left(T_{p}^{k}M\right) = 2(N-1)kp - 4\sum_{t=1}^{n}\frac{(-1)^{t}}{t-1}\binom{k}{t}\binom{2t-4}{t-2}p^{t}
                                        \operatorname{tr}\left(T_{p}^{k}T_{q}^{\ell}M\right) = 2(N-1)(kp+lq) - \sum_{l}^{k+l} \sum_{min(d,k)}^{\min(d,k)} (-1)^{d} \frac{4}{d-1} \binom{2d-4}{d-2} \binom{k}{t} \binom{l}{d-t} p^{i}q^{d-t}.

    Further for fixed m as N → ∞, and when t<sup>*</sup><sub>m</sub> = t<sup>*</sup>m, the first dimension of CMDS on D<sup>A</sup><sub>d<sup>2</sup>...</sub> has property.

                                          \max_{i \in [\omega]} \left| \frac{N(N-1)}{2\omega^2 m} \psi^A_{\mathcal{E}_{d,V}}(t_i) - \psi_Z(t_i) \right| \rightarrow 0, \quad \left| \frac{N(N-1)}{2\omega^2 m} \left( \mathcal{D}^A_{\mathcal{E}_{d,V}^0} \right)_{i,i} \right| \rightarrow |\psi_Z(t_i) - \psi_Z(t_j)|.
    . For the 100%-shuffled-day distance
                                                     \left(\mathcal{D}^{A(2)}_{\text{shafflad-dMV}}\right)_{i,i} = \text{shaffled-d}_{MV}^{2}\left(X_{i_{i}}^{A}, X_{i_{j}}^{A}\right) = \begin{cases} 2 \operatorname{Var}(\mathbf{u}) = \frac{c_{i}^{2}}{6} \frac{N+1}{N-1}, & i \neq j, \\ 0, & i = -1, \end{cases}

    further the first m − 1 dimensions of CMDS of D<sup>A</sup><sub>→−00→4</sub>.... is

                                     \mathbf{\Psi}_{\text{shefted-darr}}^{A,1/(m-1)} = \sqrt{\frac{c_A(N+1)}{6(N-1)}} \mathbf{U}_{m-1} \text{ where } \mathbf{U}_{m-1} \text{ is any matrix so that } \mathbf{U}_{m-1}^{\top} \mathbf{U}_{m-1} = I_{m-1}.

 For α-shuffled-d<sub>MV</sub> distance with 0 ≤ α < 1:</li>

                                                                            D^{A(2)} = \alpha D^{A(2)} = \alpha D^{A(2)} = (1 - \alpha)D^{A(2)}

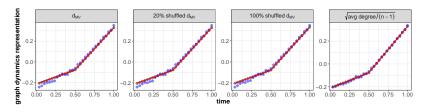
    the first dimension of CMDS on DA n-shaffled-door satisfy that

                                           \psi_{\alpha-shuffleddary}^A = \sqrt{(1-\alpha) + \frac{\alpha c_A(N+1)}{12(N-1)\lambda_1}} \psi_{dary}^1, where \lambda_1 := \lambda_1 \left(-\frac{1}{2}HD^A_{dary}^{(2)}H\right)
    · For the expected average degree,
                                                                                    \mathbb{E}[\psi_{\text{constants}}^{A}(t_{i})] = (n-1)\frac{c_{A}^{2}}{\epsilon} \quad \forall i \in [m]
```

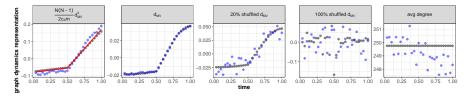
(3)

You don't have to read this because i have figures for you!

Mirror and shuffled mirror for both models



London model: n=100, p=0.3, q=0.9, m=30, $t^*=0.5$, $c_L=0.1$, $\delta_m=0.9/30$.



Atlanta model: n = 1000, p = 0.05, q = 0.45, m = 30, $t^* = 0.5$, $c_A = 0.8$, N = 50.