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The ‘‘mind-brain supervenience’’ conjecture suggests that all mental properties are derived from the
physical properties of the brain. To address the question of whether the mind supervenes on the brain, we
frame a supervenience hypothesis in rigorous statistical terms. Specifically, we propose a modified version of
supervenience (called e-supervenience) that is amenable to experimental investigation and statistical
analysis. To illustrate this approach, we perform a thought experiment that illustrates how the probabilistic
theory of pattern recognition can be used to make a one-sided determination of e-supervenience. The
physical property of the brain employed in this analysis is the graph describing brain connectivity (i.e., the
brain-graph or connectome). e-supervenience allows us to determine whether a particular mental property
can be inferred from one’s connectome to within any given positive misclassification rate, regardless of the
relationship between the two. This may provide further motivation for cross-disciplinary research between
neuroscientists and statisticians.

Q
uestions and assumptions about mind-brain supervenience go back at least as far as Plato’s dialogues
circa 400 BCE1. While there are many different notions of supervenience, we find Davidson’s canonical
description particularly illustrative2:

[mind-brain] supervenience might be taken to mean that there cannot be two events alike in all physical
respects but differing in some mental respect, or that an object cannot alter in some mental respect without
altering in some physical respect.

Colloquially, supervenience means ‘‘there cannot be a mind-difference without a physical-difference.’’ This
philosophical conjecture has potentially widespread implications. For example, neural network theory and
artificial intelligence often implicitly assume a local version mind-brain supervenience3, 4. Cognitive neuroscience
similarly seems to operate under such assumptions5. Philosophers continue to debate and refine notions of
supervenience6. Yet, to date, relatively scant attention has been paid to what might be empirically learned about
supervenience.

In this work we attempt to bridge the gap between philosophical conjecture and empirical investigations by
casting supervenience in a probabilistic framework amenable to hypothesis testing. We then use the probabilistic
theory of pattern recognition to determine the limits of what one can and cannot learn about supervenience
through data analysis. The implications of this work are varied. It provides a probabilistic framework for con-
verting philosophical conjectures into statistical hypotheses that are amenable to experimental investigation,
which allows the philosopher to gain empirical support for her rational arguments. This leads to the construction
of the first explicit proof (to our knowledge) of a universally consistent classifier on graphs, and the first
demonstration of the tractability of answering supervenience questions. Supervenience therefore seems to per-
haps be a useful but under-utilized concept for neuroscientific investigations. This work should provide further
motivation for cross-disciplinary efforts across three fields—philosophy, statistics, and neuroscience—with
shared goals but mostly disjoint jargon and methods of analysis.

Results
Statistical supervenience: a definition. Let M~ m1,m2, . . .f g be the space of all possible minds and let
B~ b1,b2, . . .f g be the set of all possible brains. M includes a mind for each possible collection of thoughts,
memories, beliefs, etc. B includes a brain for each possible position and momentum of all subatomic particles
within the skull. Given these definitions, Davidson’s conjecture may be concisely and formally stated thusly:
m ? m9) b ? b9, where m,bð Þ, m0,b0ð Þ[M|B are mind-brain pairs. This mind-brain supervenience relation
does not imply an injective relation, a causal relation, or an identity relation (see Appendix 1 for more details and
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some examples). To facilitate both statistical analysis and empirical
investigation, we convert this local supervenience relation from a
logical to a probabilistic relation.

Let FMB indicate a joint distribution of minds and brains.
Statistical supervenience can then be defined as follows:

Definition 1.M is said to statistically supervene on B for distribu-
tion F 5 FMB, denotedM S*FB, if and only if P m=m0jb~b0½ �~0,
or equivalently P m~m0jb~b0½ �~1.

Statistical supervenience is therefore a probabilistic relation on sets
which could be considered a generalization of correlation (see
Appendix 1 for details).

Statistical supervenience is equivalent to perfect classification
accuracy. If minds statistically supervene on brains, then if two
minds differ, there must be some brain-based difference to account
for the mental difference. This means that there must exist a
deterministic function g* mapping each brain to its supervening
mind. One could therefore, in principle, know this function. When
the space of all possible minds is finite—that is, Mj jv?—any
function g: B?M mapping from minds to brains is called a
classifier. Define misclassification rate, the probability that g
misclassifies b under distribution F 5 FMB, as

LF gð Þ~P g Bð Þ=M½ �
X

m,bð Þ[M|B
I g bð Þ=mf gP B~b,M~m½ �, ð1Þ

where I :f g denotes the indicator function taking value unity
whenever its argument is true and zero otherwise. The Bayes
optimal classifier g* minimizes LF(g) over all classifiers: g* 5
argming LF(g). The Bayes error, or Bayes risk, L* 5 LF(g*), is the
minimum possible misclassification rate.

The primary result of casting supervenience in a statistical frame-
work is the below theorem, which follows immediately from
Definition 1 and Eq. (1):

Theorem 1.M S*FBuL�~0.

The above argument shows (for the first time to our knowledge)
that statistical supervenience and zero Bayes error are equivalent.
Statistical supervenience can therefore be thought of as a constraint
on the possible distributions on minds and brains. Specifically, let F
indicate the set of all possible joint distributions on minds and brains,
and let F s~ FMB[F : L�~0f g be the subset of distributions
for which supervenience holds. Theorem 1 implies that F s

5
=F .

Mind-brain supervenience is therefore an extremely restrictive
assumption about the possible relationships between minds and
brains. It seems that such a restrictive assumption begs for empirical
evaluation, vis-á-vis, for instance, a hypothesis test.

The non-existence of a viable statistical test for supervenience. The
above theorem implies that if we desire to know whether minds
supervene on brains, we can check whether L* 5 0. Unfortunately,
L* is typically unknown. Fortunately, we can approximate L* using
training data.

Assume that training data T n~ M1,B1ð Þ, . . . , Mn,Bnð Þf g are each
sampled identically and independently (iid) from the true (but
unknown) joint distribution F 5 FMB. Let gn be a classifier induced
by the training data, gn: B| M|Bð Þn.M. The misclassification
rate of such a classifier is given by

LF gnð Þ~
X

m,bð Þ[M|B
I gn b; T nð Þ=mf gP B~b,M~m½ �, ð2Þ

which is a random variable due to the dependence on a randomly
sampled training set T n. Calculating the expected misclassification
rate E LF gnð Þ½ � is often intractable in practice because it requires
a sum over all possible training sets. Instead, expected
misclassification rate can be approximated by ‘‘hold-out’’ error. Let

Hn0~ Mnz1,Bnz1ð Þ, . . . , Mnzn0 ,Bnzn0ð Þf g be a set of n9 hold-out
samples, each sampled iid from FMB. The hold-out approximation
to the misclassification rate is given by

L̂n0
F gnð Þ~

X
Mi,Bið Þ[Hn0

I gn Bi; T nð Þ=Mif g<E LF gnð Þ½ �§L�: ð3Þ

By definition of g*, the expectation of L̂n0
F gnð Þ (with respect to both

T n andHn0 ) is greater than or equal to L* for any gn and all n. Thus,
we can construct a hypothesis test for L* using the surrogate L̂n0

F gnð Þ.
A statistical test proceeds by specifying the allowable Type I error

rate a . 0 and then calculating a test statistic. The p-value—the
probability of rejecting the least favorable null hypothesis (the simple
hypothesis within the potentially composite null which is closest to
the boundary with the alternative hypothesis)—is the probability of
observing a result at least as extreme as the observed. In other words,
the p-value is the cumulative distribution function of the test statistic
evaluated at the observed test statistic with parameter given by the
least favorable null distribution. We reject if the p-value is less than a.
A test is consistent whenever its power (the probability of rejecting
the null when it is indeed false) goes to unity as n R ‘. For any
statistical test, if the p-value converges in distribution to d0 (point
mass at zero), then whenever a . 0, power goes to unity.

Based on the above considerations, we might consider the follow-
ing hypothesis test: H0 : L* . 0 and HA : L* 5 0; rejecting the null
indicates thatM S*FB. Unfortunately, the alternative hypothesis lies
on the boundary, so the p-value is always equal to unity7. From this,
Theorem 2 follows immediately:

Theorem 2. There does not exist a viable test ofM S*FB.

In other words, we can never reject L* . 0 in favor of superve-
nience, no matter how much data we obtain.

Conditions for a consistent statistical test for e-supervenience. To
proceed, therefore, we introduce a relaxed notion of supervenience:

Definition 2.M is said to e-supervene on B for distribution F 5

FMB, denotedM e*FB, if and only if L* , e for some e . 0.

Given this relaxation, consider the problem of testing for e-super-
venience:

He
0 : L�§e

He
A : L�ve:

Let n̂~n0L̂n0
F gnð Þ be the test statistic. The distribution of n̂ is avail-

able under the least favorable null distribution. For the above
hypothesis test, the p-value is therefore the binomial cumulative
distribution function with parameter e; that is, p-value 5

B n̂; n0,eð Þ~
P

k[ n̂½ �0 Binomial k; n0; eð Þ, where n̂½ �0~ 0,1, . . . ,n̂f g.
We reject whenever this p-value is less than a; rejection implies that
we are 100(1 2 a)% confident thatM e*FB.

For the above e-supervenience statistical test, if gn R g* as n R ‘,
then L̂n0

F gnð Þ?L� as n, n9 R ‘. Thus, if L* , e, power goes to unity.
The definition of e-supervenience therefore admits, for the first time
to our knowledge, a viable statistical test of supervenience, given a
specified e and a. Moreover, this test is consistent whenever gn con-
verges to the Bayes classifier g*.

The existence and construction of a consistent statistical test for
e-supervenience. The above considerations indicate the existence of
a consistent test for e-supervenience whenever the classifier used is
consistent. To actually implement such a test, one must be able to (i)
measure mind/brain pairs and (ii) have a consistent classifier gn.
Unfortunately, we do not know how to measure the entirety of
one’s brain, much less one’s mind. We therefore must restrict our
interest to a mind/brain property pair. A mind (mental) property
might be a person’s intelligence, psychological state, current
thought, gender identity, etc. A brain property might be the
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number of cells in a person’s brain at some time t, or the collection of
spike trains of all neurons in the brain during some time period t to t9.
Regardless of the details of the specifications of the mental property
and the brain property, given such specifications, one can assume a
model,F . We desire a classifier gn that is guaranteed to be consistent,
no matter which of the possible distributions FMB[F is the true
distribution. A classifier with such a property is called a universally
consistent classifier. Below, under a very general mind-brain model
F , we construct a universally consistent classifier.

Gedankenexperiment 1. Let the physical property under con-
sideration be brain connectivity structure, so b is a brain-graph
(‘‘connectome’’) with vertices representing neurons (or collec-
tions thereof) and edges representing synapses (or collections
thereof). Further let B, the brain observation space, be the collec-
tion of all graphs on a given finite number of vertices, and letM,
the mental property observation space, be finite. Now, imagine
collecting very large amounts of very accurate identically and
independently sampled brain-graph data and associated mental
property indicators from FMB. A kn-nearest neighbor classifier
using a Frobenius norm is universally consistent (see Methods
for details). The existence of a universally consistent classifier
guarantees that eventually (in n, n9) we will be able to conclude
M e*FB for this mind-brain property pair, if indeed e-superveni-
ence holds. This logic holds for directed graphs or multigraphs or
hypergraphs with discrete edge weights and vertex attributes, as
well as unlabeled graphs (see ref. 8 for details). Furthermore, the
proof holds for other matrix norms (which might speed up con-
vergence and hence reduce the required n), and the regression
scenario where Mj j is infinite (again, see Methods for details).

Thus, under the conditions stated in the above Gedanken-
experiment, universal consistency yields:

Theorem 3.M e*FB[b?1 as n, n9R ‘.

Unfortunately, the rate of convergence of LF(gn) to LF(g*) depends
on the (unknown) distribution F 5 FMB

9. Furthermore, arbitrarily
slow convergence theorems regarding the rate of convergence of
LF(gn) to LF(g*) demonstrate that there is no universal n, n9 which
will guarantee that the test has power greater than any specified target
b . a10. For this reason, the test outlined above can provide only a
one-sided conclusion: if we reject we can be 100(1 2 a)% confident
that M e*FB holds, but we can never be confident in its negation;
rather, it may be the case that the evidence in favor of M e*FB is
insufficient because we simply have not yet collected enough data.
This leads immediately to the following theorem:

Theorem 4. For any target power bmin . a, there is no universal n,
n9 that guarantees b $ bmin.

Therefore, even e-supervenience does not satisfy Popper’s falsifia-
bility criterion11.

The feasibility of a consistent statistical test for e-supervenience.
Theorem 3 demonstrates the availability of a consistent test under
certain restrictions. Theorem 4, however, demonstrates that con-
vergence rates might be unbearably slow. We therefore provide an
illustrative example of the feasibility of such a test on synthetic data.

Caenorhabditis elegans is a species whose nervous system is
believed to consist of the same 302 labeled neurons for each organ-
ism12. Moreover, these animals exhibit a rich behavioral repertoire
that seemingly depends on circuit properties13. These findings motiv-
ate the use of C. elegans for a synthetic data analysis14. Conducting
such an experiment requires specifying a joint distribution FMB over
brain-graphs and behaviors. The joint distribution decomposes into
the product of a class-conditional distribution (likelihood) and a
prior, FMB 5 FBjMFM. The prior specifies the probability of any
particular organism exhibiting the behavior. The class-conditional

distribution specifies the brain-graph distribution given that the
organism does (or does not) exhibit the behavior.

Let Auv be the number of chemical synapses between neuron u and
neuron v according to15. Then, let S be the set of edges deemed
responsible for odor-evoked behavior according to16. If odor-evoked
behavior is supervenient on this signal subgraph S, then the distri-
bution of edges in S must differ between the two classes of odor
evoked behavior17. Let Euvjj denote the expected number of edges
from vertex v to vertex u in class j. For class m0, let Euvj0 5 Auv 1

g, where g 5 0.05 is a small noise parameter (it is believed that the
C. elegans connectome is similar across organisms12). For class m1, let
Euvj1 5 Auv 1 zuv, where the signal parameter zuv 5 g for all edges
not in S, and zuv is uniformly sampled from [25, 5] for all edges
within S. For both classes, let each edge be Poisson distributed,
FAuv jM~mj

~Poisson Euvjj
� �

.
We consider kn-nearest neighbor classification of labeled multi-

graphs (directed, with loops) on the 279 under Frobenius norm (the
C. elegans somatic nervous system has only 279 neurons that make
synapses with other neurons). The kn-nearest neighbor classifier
used here satisfies kn R ‘ as n R ‘ and kn/n R 0 as n R ‘, ensuring
universal consistency. (Better classifiers can be constructed for the
joint distribution FMB used here; however, we demand universal
consistency.) Figure 1 shows that for this simulation, rejecting
(e 5 0.1)-supervenience at a 5 0.01 requires only a few hundred
training samples.

Importantly, conducting this experiment in actu is not beyond
current technological limitations. 3D superresolution imaging18

combined with neurite tracing algorithms19, 20, 21 allow the collection
of a C. elegans brain-graph within a day. Genetic manipulations, laser
ablations, and training paradigms can each be used to obtain a non-
wild type population for use as M 5 m1

13, and the class of each
organism (m0 vs. m1) can also be determined automatically22.

Figure 1 | C. elegans graph classification simulation results. The

estimated hold-out misclassification rate L̂n0
F gnð Þ (with n9 5 1000 testing

samples) is plotted as a function of class-conditional training sample size

nj 5 n/2, suggesting that for e 5 0.1 we can determine thatM e*FB holds

with 99% confidence with just a few hundred training samples generated

from FMB. Each dot depicts L̂n0
F gnð Þ for some n; standard errors are

L̂n0
F gnð Þ 1{L̂n0

F gnð Þ
� �

=n0
� �1=2

. For example, at nj 5 180 we have

kn~t
ffiffiffiffiffi
8n
p

s~53 (where t?s indicates the floor operator), L̂n0
F gnð Þ~0:057,

and standard error less than 0.01. We reject H0:1
0 : L* $ 0.1 at a 5 0.01.

Note that L* < 0 for this simulation.
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Discussion
This work makes the following contributions. First, we define stati-
stical supervenience based on Davidson’s canonical statement
(Definition 1). This definition makes it apparent that supervenience
implies the possibility of perfect classification (Theorem 1). We then
prove that there is no viable test against supervenience, so one can
never reject a null hypothesis in favor of supervenience, regardless of
the amount of data (Theorem 2). This motivates the introduction of a
relaxed notion called e-supervenience (Definition 2), against which
consistent statistical tests are readily available. Under a very general
brain-graph/mental property model (Gedankenexperiment 1), a con-
sistent statistical test against e-supervenience is always available, no
matter the true distribution FMB (Theorem 3). In other words, the
proposed test is guaranteed to reject the null whenever the null is
false, given sufficient data, for any possible distribution governing
mental property/brain property pairs.

Alas, arbitrary slow convergence theorems demonstrate that
there is no universal n, n9 for which convergence is guaranteed
(Theorem 4). Thus, a failure to reject is ambiguous: even if the data
satisfy the above assumptions, the failure to reject may be due to
either (i) an insufficient amount of data or (ii) M may not be
e-supervenient on B. Moreover, the data will not, in general, satisfy
the above assumptions. In addition to dependence (because each
human does not exist in a vacuum), the mental property measure-
ments will often be ‘‘noisy’’ (for example, accurately diagnosing psy-
chiatric disorders is a sticky wicket23). Nonetheless, synthetic data
analysis suggests that under somewhat realistic assumptions, con-
vergence obtains with an amount of data one might conceivably
collect (Figure 1 and ensuing discussion).

Thus, given measurements of mental and brain properties that we
believe reflect the properties of interest, and given a sufficient
amount of data satisfying the independent and identically sampled
assumption, a rejection of He

0 : L* $ e in favor of M e*FB entails
that we are 100(1 2 a)% confident that the mental property under
investigation is e-supervenient on the brain property under investi-
gation. Unfortunately, failure to reject is more ambiguous.

Interestingly, much of contemporary research in neuroscience and
cognitive science could be cast as mind-brain supervenience investi-
gations. Specifically, searches for ‘‘engrams’’ of memory traces24 or
‘‘neural correlates’’ of various behaviors or mental properties (for
example, consciousness25), may be more aptly called searches for
the ‘‘neural supervenia’’ of such properties. Letting the brain pro-
perty be a brain-graph is perhaps especially pertinent in light of the
advent of ‘‘connectomics’’26, 27, a field devoted to estimating whole
organism brain-graphs and relating them to function. Testing super-
venience of various mental properties on these brain-graphs will
perhaps therefore become increasingly compelling; the framework
developed herein could be fundamental to these investigations. For
example, questions about whether connectivity structure alone is
sufficient to explain a particular mental property is one possible
mind-brain e-supervenience investigation. The above synthetic data
analysis demonstrates the feasibility of e-supervenience on small
brain-graphs. Note that e-supervenience tests need not investigate
seemingly intractable problems, like consciousness. For example,
aspects of visual perception appear to supervene on visual cortical
activity (for example, binocular rivalry28). Moreover, an inability to
reject e-supervenience for small e is also potentially meaningful. For
example, perhaps auditory localization precision supervenes on a
rate code only to some e . c, the rest supervening on a spike timing
code29. Similar supervenience tests on increasingly complex mental
properties will potentially benefit from either higher-throughput
imaging modalities30, 31, more coarse brain-graphs32, 33, or both.

Methods
The 1-nearest neighbor (1-NN) classifier works as follows. Compute the distance
between the test brain b and all n training brains, di 5 d(b, bi) for all i g [n], where
[n] 5 1,2,..., n. Then, sort these distances, d(1) , d(2) , ... , d(n), and consider their

corresponding minds, m(1), m(2),..., m(n), where parenthetical indices indicate rank
order among {di}ig[n]. The 1-NN algorithm predicts that the unobserved mind is of
the same class as the closest brain’s class: m̂~m 1ð Þ. The kn nearest neighbor is a
straightforward generalization of this approach. It says that the test mind is in the
same class as whichever class is the plurality class among the kn nearest neighbors,

m̂~argmaxm0 I
Pkn

i~1 m ið Þ~m0
n o

. Given a particular choice of kn (the number of
nearest neighbors to consider) and a choice of d(?,?) (the distance metric used to
compare the test datum and training data), one has a relatively simple and intuitive
algorithm.

Let gn be the kn nearest neighbor (knNN) classifier when there are n training
samples. A collection of such classifiers {gn}, with kn increasing with n, is called a
classifier sequence. A universally consistent classifier sequence is any classifier
sequence that is guaranteed to converge to the Bayes optimal classifier regardless of
the true distribution from which the data were sampled; that is, a universally con-
sistent classifier sequence satisfies LF(gn) R LF(g*) as n R ‘ for all FMB. In the main
text, we refer to the whole sequence as a classifier.

The knNN classifier is consistent if (i) kn R ‘ as n R ‘ and (ii) kn/n R 0 as n R ‘34.
In Stone’s original proof34, b was assumed to be a q-dimensional vector, and the L2

norm (d b,b0ð Þ~
Pq

j~1 bj{b0j

� �2
, where j indexes elements of the q-dimensional

vector) was shown to satisfy the constraints on a distance metric for this collection of
classifiers to be universally consistent. Later, others extended these results to apply to
any Lp norm9. When brain-graphs are represented by their adjacency matrices, one
can stack the columns of the adjacency matrices, effectively embedding graphs into a
vector space, in which case Stone’s theorem applies. Stone’s original proof also applied
to the scenario when Mj jwas infinite, resulting in a universally consistent regression
algorithm as well.

Note that the above extension of Stone’s original theorem to the graph domain
implicitly assumed that vertices were labeled, such that elements of the adjacency
matrices could easily be compared across graphs. In theory, when vertices are
unlabeled, one could first map each graph to a quotient space invariant to iso-
morphisms, and then proceed as before. Unfortunately, there is no known poly-
nomial time complexity algorithm for graph isomorphism35, so in practice, dealing
with unlabeled vertices will likely be computationally challenging8.
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