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Given i.i.d. observations x1; x2; x3; . . . ; xn drawn from a mixture of normal terms, one is often
interested in determining the number of terms in the mixture and their de®ning parameters.
Although the problem of determining the number of terms is intractable under the most

general assumptions, there is hope of elucidating the mixture structure given appropriate
caveats on the underlying mixture. This paper examines a new approach to this problem based
on the use of Akaike Information Criterion (AIC) based pruning of data driven mixture
models which are obtained from resampled data sets. Results of the application of this pro-

cedure to arti®cially generated data sets and a real world data set are provided.
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1. Introduction

Given X � f~x1;~x2; . . . ;~xng where each ~xi is d-dimensional
and i.i.d. according to an unknown density f0�~x�, one is
often interested in estimating f0�~x�. This problem occurs in
such areas as exploratory data analysis, classi®cation and
regression. There are a variety of approaches to the mul-
tivariate density estimation problem (Scott, 1992). An of-
ten used parametric approach is that of ®nite mixture
models (Everitt and Hand, 1981) in combination with the
expectation maximization (EM) method of Dempster et al.
(1977). One di�culty with this tactic is that one needs some
idea as to the appropriate number of terms in the mixture
model as well as the approximate parameter values. Given
this information, the EM algorithm is guaranteed to con-
verge to at least a local maxima in the likelihood surface
when properly constrained.

Some of the previous non-parametric approaches include
histograms, frequency polygons, adaptive histograms, av-
erage shifted histograms, kernel estimators and k nearest
neighbour estimators. The reader is referred to the recent
work of Scott (1992) for a good discussion of these density
estimation techniques. These approaches are bene®cial in
that they possess desirable asymptotic consistency proper-
ties, and robustness with regard to non-normality. They are
at a disadvantage as compared to the mixture model ap-
proach when it is suspected that the unknown true density
is a mixture of a number of normal terms and one would
like to estimate the posteriori probability of underlying
term membership for an unlabelled observation.
This type of problem exists in the areas of medical di-

agnosis and image processing. In medical diagnosis the
term membership may play an important role in identi®-
cation of the underlying mechanism of disease or the
identi®cation of appropriate tissue type (Carmen and
Merickel, 1990). In the general problem of image analysis
the term membership may pertain to region type.
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A recently developed density estimation technique that
circumvents some of the problems of the above techniques
is the adaptive mixtures density estimator (AMDE) of
Priebe and Marchette (1993) and Priebe (1994). This pro-
cedure is a blend of the ®nite mixtures and kernel estimator
approaches. It is essentially a mixtures approach that al-
lows for the creation of new terms in a data-driven manner.
We have successfully applied this technique, in combina-
tion with fractal-based features, to the detection of man-
made objects in land images (Solka et al., 1992) and aerial
(Priebe et al., 1993) images, the general problem of texture
classi®cation (Solka et al., 1993) and the measurement of
breast parenchymal tissue density (Priebe et al., 1994). The
adaptive mixtures estimator is asymptotically consistent
like the kernel estimator, but it has the added bene®t of
creating additional terms at a rate which is considerably
less than the O�n� creation rate associated with the kernel
estimator.

One drawback to the adaptive mixtures estimator is that
while there is asymptotic L1 convergence for the procedure,
this convergence is achieved through the creation of an
asymptotically in®nite number of terms. Thus the proce-
dure will result in an overly complex model given enough
data. Maximum likelihood estimation solutions derived
from a reordered starting point yields robustness as a
density, but with potentially di�erent underlying term
structure. Investigation of reordering properties is an in-
teresting but involved subject which will be the focus of
future analyses. Preliminary investigations can be found in
Solka (1995).

In this work we are interested in a model whose com-
plexity more closely matches that of the unknown distri-
bution. The approach is to use the adaptive mixtures
procedure as a starting point to generate a mixture model
with (potentially many) extra degrees of freedom or pa-
rameters and to prune this model to a much smaller mix-
ture model. This pruning of terms which is based on the use
of the Akaike Information Criterion (AIC) is performed to
obtain a model that matches the underlying distribution
not only in a functional sense but also with regard to model
complexity. Subsequent sections will detail how well our
pruning-based procedure meets these goals.

The issues addressed herein are analogous to some of the
standard issues of cluster analysis. There have been many
di�erent approaches to the clustering problem. The reader
is referred to the paper of Milligan and Copper (1985) for a
comparison of the relative e�ectiveness of over 30 di�erent
clustering procedures. These include Bayesian approaches
(Binder, 1978), information theoretic approaches (Wallace
and Boulton, 1968) and mixture-based approaches
(McLachlan, 1987). Given the close connection between
our approach and the mixture-based approaches, we feel it
prudent to steer the reader to several good sources on

mixture analysis. There have been many works written
which provide a good summary of the recent attempts in
the literature to apply mixture models to cluster analysis.
These include such standard texts as Everitt and Hand
(1981), McLachlan and Basford (1988) and Titterington
et al. (1985).
The AIC was originally developed as a tool to choose

between two statistical estimators of di�ering complexities
(Akaike, 1974). The AIC is written as a function of the
likelihood L and number of free parameters M in a model
as follows

AIC� f̂ � � ÿ2 ln�L� � 2M:

In Akaike's original paper the AIC was applied to time
series analysis, but subsequent work has applied the tech-
nique to ISODATA-based (Carman and Merickel, 1990)
and general clustering (Bozdogan and Sclove, 1984), and
®nite mixture analysis (Liang et al., 1992).
We have developed a new approach to ®nite mixture

determination which employs AIC-based pruning of
AMDE estimates. This approach di�ers from the work of
Liang in two ways. Liang chooses to make an initial guess
as to the appropriate complexity of the data's ®nite mix-
ture model and then adjusts the number of terms in the
model up and down by adding and removing a term until
no further improvement is possible. Our approach begins
with an overdetermined data-driven model that is pro-
duced by the AMDE procedure and then uses AIC in
combination with the expectation maximization technique
to prune super¯uous terms from the model. So whereas
Liang's approach adds and subtracts terms to the model
our approach just removes terms. The second di�erence is
that where Liang's approach is to produce a single best
solution to the ®nite mixtures question, our approach
produces a distribution of model complexities from which
estimates of the appropriate model complexity can be
made.
Section 2 develops the methodology for term pruning in

the case of ®nite mixture models obtained from ®nite
sample application of the adaptive mixture procedure.
Section 3 presents results indicating that we can improve
upon an overdetermined mixture model and in some cases
determine the true model complexity. Section 4 concludes
with a discussion of the relevance of these results.

2. Approach

Our approach combines elements of non-parametric den-
sity estimation, parametric density estimation, and infor-
mation-based pruning. The non-parametric AMDE is used
as the starting point of our procedure. We begin our dis-
cussions with an overview of AMDE.
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2.1. Adaptive mixture density estimation

Given an unknown distribution f0�~x� we seek to model the
distribution using f̂ �~x� de®ned by

f̂ �~x; Ŵ� �
Xg

i�1
p̂iK�~x; ĥi�; �1�

where K is some ®xed density parameterized by ĥi, and
Ŵ � �p̂1; ĥ1; p̂2; ĥ2; . . . ; p̂g; ĥg� and g is the number of terms
in the mixture. The p̂i are referred to as the mixing pro-
portions. (We can assume for much of what follows that K
is taken to be the normal distribution, in which case ĥi

becomes fl̂i; R̂ig:) In the simplest case the mixture is as-
sumed to have a single term and the parameters that need
to be estimated are the mean and covariance of the distri-
bution.

The basic stochastic approach to parameter estimation is
to update the estimate Ŵ of the true parameters W0 re-
cursively based on the latest estimate Ŵn and the newest
data point~xn�1. That is,

Ŵn�1 � Ŵn � Un�~xn�1; Ŵn� �2�
for some update function Un. The speci®c form of the
update equation that we use is the one suggested by Tit-
terington (1984). If we let Ic�W� be the complete Fisher
information matrix, then the version of the recursive up-
date formula we will use is

Ŵn�1 � Ŵn � nIc�Ŵn�
� �ÿ1 o

oŴ

� �
log
�

f̂ �~xn�1; Ŵn�
�
�3�

where the derivatives represent the vector of partial deriv-
atives with respect to the terms of Ŵ.

In the case of mixtures of multivariate normals, we may
write the recursive update equations as

ŝ�i�n�1 �
p�i�n f̂ �i��~xn�1; ĥn�Pg
t�1 p�t�n f̂ �t��~xn�1; ĥn�

�4�

p̂�i�n�1 � p̂�i�n �
1

n
ŝ�i�n�1 ÿ p̂�i�n

� �
�5�

l̂�i�n�1 � l̂�i�n �
ŝ�i�n�1
np̂�i�n

xn�1 ÿ l̂�i�n

� �
; �6�

and

R̂�i�n�1 � R̂�i�n �
ŝ�i�n�1
np̂�i�n

~xn�1 ÿ l̂�i�n

� �
~xn�1 ÿ l̂�i�n

� �T
ÿR̂�i�n

� �
:

�7�
This is where ŝ�i�n�1 is the estimated posteriori probability of
~xn�1 belonging to the ith term of the mixture, p̂�i�n�1 is the
estimated mixing coe�cient, l̂�i�n�1 is the d-dimensional
estimated mean, R̂�i�n�1 is the d � d estimated covariance
matrix of the ith term, and f̂ �t��x� is the functional form of
the tth term. We will use a superscripted �i� to denote the
ith term in the case of the recursive update equations and

a subscripted i in the case of the iterative equations to
follow.
The adaptive mixtures density estimation (AMDE) sto-

chastic approximation approach is to update Ŵ recursively,
the estimate of the true parameters W0, while at the same
time providing the capability to expand the extent of the
parameter space Ŵ if dictated by the underlying complexity
of the data. We note that in the AMDE case our parameter
space Ŵ is given by Ŵ � �p̂1; ĥ1; p̂2; ĥ2; . . .�. The procedure

Ŵn�1 � Ŵn � A � Un�~xn�1; Ŵn� � B � Cn�~xt�1; Ŵt; t�; �8�
is used to update the density recursively where A �
�1ÿ Pn�~xn�1; Ŵn�� and B � Pn�~xn�1; ~Wn�. Pn represents a
possibly stochastic create decision and takes on values 0 or
1. Un updates the current parameters using Equations 4±7
while Cn adds a new term to the model. As is implicit in the
equation, the decision to add a new term is a function of
the current data point, our current estimation of the pa-
rameters and time. The time dependence is important in
those cases for which we wish to anneal the probability of
creation as a function of training time. The models pro-
duced by the AMDE procedure are good functional esti-
mates, but are typically overdetermined with regard to the
number of terms.
The exact nature of the creation process is as follows.

The Mahalanobis distance from the new observation xt to
each of the terms in the model is computed using

MHD�i� � xt ÿ l̂�i�
� �T

R̂ÿ1�i� xt ÿ l̂�i�
� �

:

If MHD�i� > sc (a `create' threshold) for every term then
a new term is created at ~l�new� � xt, with a covariance given
by R�new� � I�R�i�� and a mixing coe�cient of p̂�new� � 1=n
assuming xt is the nth data point. I�:� is a weighted average
based on posterior probability. We also note that the
mixing coe�cients of the remaining terms are all rescaled
by �nÿ 1�=n

2.2. Approaches to AIC-based pruning of AMDE-generated
mixture models

Previous work in the literature has examined the applica-
tion of the AIC to the determination of the number of
terms in a ®nite mixture (Liang et al., 1992). The AIC/n
estimates ÿ2 times the expected value of the log likelihood
of the estimated model (Akaike, 1972)

AIC

n
� ÿ2E

Z
f0 log f̂

� �
: �9�

AIC is de®ned in terms of likelihood, L, and the number
of free parameters in the model, M, as

AIC� f̂ � � ÿ2 ln�L� � 2M � ÿ2 ln� f̂ �~x�� � 2M: �10�
One uses the AIC to choose between models of di�ering
complexities by selecting the model with the minimum
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AIC. This choice is equivalent to maximizing the mean
likelihood of the model.

Using the idea as a starting point we have developed a
procedure that uses a single or set of adaptive mixture
density estimates and produces a pruned model with a
lower complexity. This procedure uses AIC to evaluate the
appropriateness of lower complexity models that have been
subjected to the iterative EM method. In the iterative EM
method the update equation takes the form

Ŵn�1 � Ŵn � U�~X ; Ŵn�; �11�
where U is the update function and ~X is the set of obser-
vations. In the case of mixtures of multivariate normals we
may write the iterative update equations as

ŝij � p̂if̂i�~xj; ĥ�Pg
t�1 p̂t f̂t�~xj; ĥ�

; �12�

p̂i �
Xn

j�1

ŝij

n
; �13�

l̂i �
Pn

j�1 ŝijxj

np̂i
; �14�

and

R̂i �
Xn

j�1

ŝij�xj ÿ l̂i��xj ÿ l̂i�T
np̂i

: �15�

This is where ŝij is the estimated posterior probability that
xj belongs to term i, p̂i is the estimated mixing coe�cient, l̂i
is the d-dimensional estimated mean vector, and R̂i is the
d � d estimated covariance matrix for the ith term. So the
EM algorithm is essentially a two step process. In the ®rst
step, the expectation step, the posterior probabilities of
membership for each point and term are estimated using
Equation 12. In the second step, the maximization step, the
maximum likelihood estimates of the mixing parameters
are computed based on this posterior estimate. These are
computed in Equations 13 through 15.

The steps in our pruning procedure are as follows:

Step 1. Obtain f̂g an initial adaptive mixtures approxima-
tion to f0 containing g terms.
Step 2. Compute the AIC of each of the gÿ 1 term models
after application of the EM method of Equations 12±15 to
each of the models.
Step 3. If AIC � f̂gÿ1� < AIC � f̂g� for one of the gÿ 1 term
models then the pruning process is repeated using this
model.
Step 4. Repeat this process of pruning and expectation
maximization until no further improvement is possible.

It is important to point out that at each pruning step the
remaining terms p̂i are updated based on their Mahalan-
obis distance to the pruned term prior to updating with the
EM method. In addition we note that at Step 3 of the

procedure we make use of the model with the minimum
AIC.
Figure 1 illustrates the pruning process. The log likeli-

hood for the true model, the original ten-term model, and
the pruned and subsequently expectation maximized
models are plotted. The ®rst plotted point on the graph is
plotted using a `*' and it represents the log likelihood of the
underlying distribution. Then at the start of each likelihood
maximization curve the number of terms is plotted. Each of
these curves is separated from the next by a gap of one unit
along the x-axis. The x-axis really serves as a convenient
means to keep track of the number of iterations of the EM
algorithm for each level of model complexity. In this case
the process was able to reduce a ten-term model of the
mixture 0:5N�ÿ2; 1� � 0:5N�2; 1� to the appropriate two-
term model. This case will be discussed in Section 3.

3. Results

In this section we present results which detail the perfor-
mance of our density estimation procedure on a group of
test cases. The ®rst set of test cases consists of a suite of test
densities chosen to illustrate the performance of the pro-
cedure on a variety of density types. In the second part of
the results section we present simulation results that detail
the performance of the estimator on a two-term mixture
model as we vary the number of observations and the
separation of the terms.
First we will detail results obtained from testing the

pruning procedure on data sets drawn from two di�erent
bimodal two-term distributions, one four-mode four-term
distribution, a standard unimodal normal distribution and
the Bu�alo snowfall data (Parzen, 1979) (see Fig. 2). In

Fig. 1. Pruning curves for the reduction of a 10 term model to a 2
term model
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each simulated data case, 10 000 points were drawn from
each distribution. The snowfall data consisted of 63 points.
One hundred bootstrap resamples were extracted from

each of the data sets using their empirical distributions

(Efron and Tibshirani, 1993). One hundred was chosen as a
compromise between the suggested value of 25 for the es-
timate of standard error and that of 200 for the estimate of
signi®cance (Efron and Tibshirani, 1993). These resamples

Fig. 2. Test cases: (a) a(x)=0.5 * N()2, 1)+0.5 * N(2, 1); (b) a(x)=0.5 * N()1.25, 1)+0.5 * N(1.25, 1); (c) a(x)=0.25 *
N()6, 1)+0.25 * N()2, 1)+0.25 * N(2, 1)+0.25 * N(6, 1); (d) a(x)=N(0, 1); (e) the Bu�alo Snowfall data
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are used in a way that is slightly di�erent from the standard
procedure. In standard bootstrapping one uses the resam-
ples to estimate the standard error of a statistic whose
standard error is not available in closed form. Our goal in
bootstrapping is the production of a distribution on the
number of terms in the models after AIC-based pruning.
This distribution can then be used to estimate the number
of terms in the true model. Given that the standard AMDE
is highly order-dependent, the use of this reordering is es-
sential in that it gives our estimator a chance to solve for
the appropriate model complexity.

We wish to standardize the number of terms the AMDE
produces under reorderings. This number obviously chan-
ges slightly under reorderings. Ten was chosen to limit the

initial complexity level. This level is signi®cantly overde-
termined for our test cases and yields su�cient complexity
to represent a rich class of densities (Marron and Wand,
1992). Each of these models was then subjected to the AIC-
based pruning process. This process provides a model
complexity distribution based on the data set.
In Figs 3a and b we present adaptive mixtures solutions

for two of the resamplings of the data set drawn from
f0�x� � 0:5 � N�ÿ2; 1� � 0:5 � N�2; 1�. We have included
dF space plots along with the standard functional repre-
sentation of the distributions. dF space plots are an e�ec-
tive way to display the terms in a mixture. Each term,
piN�li; r

2
i �, is plotted as a circle whose radius is propor-

tional to pi and whose centre is given by �li; r
2
i �. The reader

Fig. 3. Adaptive mixtures estimates for two of the resamplings of the data set drawn from case a
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is referred to our recent paper on the visualization of
mixture models for a more complete discussion of the is-
sues associated with various methods of mixture visuali-
zation (Solka et al., 1995). Where it is hard to discern the
distributional structure from a standard function plot, it is
quite easy in a dF space plot. We notice that the terms in
each of the two solutions are markedly di�erent. This
phenomenon illustrates the multiplicity of mixtures models
that lead to the same functional estimate. We also notice
that there are more than the `theoretical' number of terms
needed. Each of the models is made up of ten terms. The
occurrence of a matching number of terms in each model is
the result of our initial constraint on the model complexity.
It is important to note that although the terms are di�erent
in each solution, the location and number of modes are

not, and that there are terms that are super¯uous to the
minimal representation of the distribution.
Table 1 illustrates the results of the pruning process. For

each of the ®ve distributions we have listed the number of
terms in the ®nal pruned models for each of the 100 re-

Table 1. Number of terms for each case

Case/No. of terms 1 2 3 4 5 6 7

a ± Separated bimodal 53 16 22 5 4

b ± Bimodal 19 20 26 22 11 7
c ± Quadmodal 74 13 12 1
d ± Standard normal 10 7 20 23 24 15 1

e ± Bu�alo snowfall 2 15 35 29 14 1

Table 2. Average L1 error for each test case for each model complexity

Case/No. of terms 1 2 3 4 5 6 7

a ± Separated bimodal 0.017
(0.006)

0.025
(0.008)

0.023
(0.006)

0.025
(0.005)

0.043
(0.006)

b ± Bimodal 0.021
(0.009)

0.027
(0.010)

0.030
(0.008)

0.036
(0.013)

0.034
(0.010)

0.038
(0.030)

c ± Quadmodal 0.046

(0.008)

0.050

(0.011)

0.057

(0.011)

0.043

±
d ± Standard normal 0.012

(0.006)
0.016
(0.006)

0.025
(0.007)

0.029
(0.007)

0.031
(0.007)

0.031
(0.007)

0.0236
±

e ± Bu�alo snowfall

Fig. 4. Comparison of the pruned 3-term model (solid line) which has been expectation maximized against kernel estimates of the original
Bu�alo snowfall data with bandwidths of 6 and 4 (dashed line)
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samples. In case a, the procedure converged to the correct
solution in 53 of 100 times, 19 of 100 times in case b, 74 of
100 times in case c, and 10 of 100 times in case d. The
procedure converged to a 3-term solution in 15 of the 100
times in the case of the snowfall data. The appropriate
solution for the case of the snowfall data will be the subject
of later discussions.

We may estimate the model complexity through the use
of statistical measures on this distribution. For example
one could choose the minimal order statistic as the measure
of the number of terms in the minimal complexity mixture
model that characterizes the data. This choice has the ad-
vantage that it represents the lowest complexity model
obtainable from the procedure. Alternatively one could use
the expected value of the distribution. This choice indicates

the average complexity of the mixture models that repre-
sent the data set.
Table 2 presents the average L1 error between the true

mixture model and the pruned model for each of the ®rst
four cases for each of the obtained model complexities. No
L1 results were provided for the snowfall data since the true
underlying model is unknown. It is encouraging to note
that in all cases except the quadmodal, the minimum av-
erage error occurred at the appropriate level of model
complexity. In the case of the quadmodal, a lower L1 error
was obtained for a single 7-term model. This particular
case was an outlier.
The number of modes in the snowfall data has been the

topic of continued debate throughout the history of density
estimation. Arguments have been made in favour of tri-

Fig. 5. Expectation maximized adaptive mixtures estimates along with the output of the pruning process for the ®rst three cases
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modal (Scott, 1992) and unimodal structure (Scott, 1994).
In Fig. 4 we compare the output of the pruning process for
one of the 3-term models to a standard kernel estimator
with a bandwidth of 6. The bandwidth of 6 was chosen as
an appropriate setting to illustrate the trimodality of the
data (Silverman, 1986). The 3-term model has been ex-
pectation maximized against the original data in order to
make a fair comparison between the two. We note that the
two models are very similar in character, speci®cally with
regard to the mode placement.

The output of the pruning procedure is discussed next. In
Figs 5a, b, c and 6a and b, we present an expectation
maximized adaptive mixture solution along with the output
of pruning this solution. We notice that the number of
terms in the solution has been reduced from ten to the
appropriate number in each case. We also notice that the
terms left from the process are in approximately the correct
location and have about the right mixing coe�cients and
variances.

Finally we turn our attention to the simulation results
which study the performance of the procedure on a two-
term mixture model as we vary the separation of the terms
and the number of points in the sample. The densities
used for the study consisted of f0�x� � 0:3N�0; 1��
0:7N�D; 2� where D varies from 1 to 4 in steps of 1 and the
sample sizes assume the values of 100, 500 and 1000. One
hundred data sets were generated for each possible test
case and the performance of the algorithm was studied
using 100 resamples per test case. The create threshold

used in the adaptive mixtures step of the procedure was
held constant at 4. This implies that a new term is created
whenever the Mahalanobis square distance between a new
observation and each data point exceeds 4. For each re-
sample an adaptive mixtures model was built using these
parameters and then we attempted to remove terms from
this model using our procedure described above. There-
fore, each resample produced an original and pruned
mixture model.
There are numerous ways in which we may present the

simulation results. One measure of complexity is the ex-
pected number of terms in the original and pruned models.
This metric was used extensively in the discussions of our
previous test cases. An alternative measure of the e�ec-
tiveness of our procedure is the mode (most frequently
occurring) complexity for the 100 original and 100 pruned
models for each of the 100 data sets comprising a given test
case. In Fig. 7 we present histograms of the modal distri-
bution for the original and pruned models as measured on
the 100 data sets for all of the test cases. Cross hatches that
rise from left to right represent the original models while
those that fall from left to right represent the pruned
models. The plots are laid out so that a given column
represents the test results for a particular sample size and
each row represents the results at a particular separation D.
When the bars from the original and the pruned cases oc-
cupy identical bins the bar corresponding to the pruned
results has been appended to the bar corresponding to the
original results.

Fig. 6. Expectation maximized adaptive mixtures estimates along with the output of the pruning process for the last two cases
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There are several things to notice about the ®gure. First
we point out that in general the histograms for the pruned
models lie to the left of those for the original ones. There is
some overlap in several of the cases but the distributions
represent a clear decrease in the complexity of the models
in the pruned cases. Next we notice that there is an ap-
parent increase in the number of terms in the original
models as the number of data points increases. This trend is
in agreement with our understanding of the inner workings
of the adaptive mixtures procedure. Given the nature of

our creation process the number of terms generally in-
creases as the number of observations increases. We also
notice that for a ®xed sample size, the number of terms in
the original model decreases as the separation between the
terms, D, decreases. This too agrees with our intuitive un-
derstanding of the creation process. Next we turn our at-
tention to the analysis of trends in the pruned models. In
general the pruned models follow the same trends as the
original models. Speci®cally the number of terms in the
pruned models grows as the sample size increases and

Fig. 7. Histogram plots for original and pruned models complexity
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shrinks as the separation between the terms decreases. So
the pruned model's complexity seems to be driven by the
complexity in the original model.

4. Conclusions

The AMDE procedure provides a data-driven method for
obtaining a good mixture model density estimate. The
convergence properties of the procedure tend to guarantee
that the model will be of higher complexity than the true
density if the latter is a ®nite mixture. The exceptions to
this occur when the sample size is small enough that too
few terms are created by the AMDE. The AMDE does
provide a useful mixture-model estimate of an unknown
density; however it is not designed to nor does it yield a
useful estimate of the underlying complexity in terms of the
number of components present. The AIC provides a con-
venient tool for evaluating appropriate model complexity.
It serves as a good `rule of thumb' in choosing between
models. Under appropriate conditions it has the capability
to help reveal the underlying mixture which generates a
data set.

In many cases we have reason to believe that the un-
known density is a mixture model but of unknown com-
plexity. In these cases we are often interested in the
structure of the underlying mixture mode. It is in this case
that AIC-based pruning can be used to ®nd not only an
`optimal' model but also a distribution of pruned models
which provides some knowledge about the true density. In
those cases where the true model is not a mixture model we
believe that the pruning process is still capable of produc-
ing more parsimonious solutions.

In this paper we have presented a new technique to help
determine the unknown structure of a mixture model. This
technique uses a set of adaptive mixtures solutions that
have been subject to AIC-based pruning to help determine
the minimum complexity mixture model that best charac-
terizes the data. The goal of this technique is the produc-
tion of a more parsimonious mixture model of an unknown
distribution.

This approach embodies the spirit in which the AIC
should be used, in that one is comparing two maximum
likelihood solutions. There is a penalty with regard to
computational complexity that occurs in the production of
expectation maximized models at each step of the pruning
process. However, the pruning procedure is highly parallel
in nature and we could expect substantial speed-ups on a
parallel machine.

Acknowledgements

The authors (JLS, WLP, GWR) would like to acknowledge
the support of the NSWCDD Independent Research Pro-

gram through the O�ce of Naval Research. The work of
EJW was supported by the Army Research O�ce under
contract number DAAH04-94-G-0267, and by the O�ce of
Naval Research under contract number N00014-92-J-
1303. In addition the work of CEP was supported through
the O�ce of Naval Research under contract number
N00014-95-1-0777. Finally, we would like to thank the
reviewers for their many helpful comments.

References

Akaike, H. (1974) A new look at the statistical model identi®-
cation . IEEE Transactions on Automatic Control, 19, 716±23.

Binder, D. A. (1978) Bayesian cluster analysis. Biometrika, 65(1),
31±8.

Bozdogan, H. and Sclove, S. L. (1984) Multi-sample cluster

analysis using Akaike's information criterion. Annals of the
Institute of Statistics and Mathematics, 36, 163±80.

Carmen, C. S. and Merickel, M. (1990) Supervising isodata with
an information theoretic stopping rule. Pattern Recognition,

23, 185±97.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum

likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, Series B, 39, 1±38.
Efron, B. and Tibshirani, R. (1993) An Introduction to the Boot-

strap, London: Chapman and Hall.

Everitt, B. S. and Hand, D. J. (1981) Finite Mixture Distributions,
London: Chapman and Hall.

Liang, Z., Jaszczak, R. J. and Coleman, R. E. (1992) Parameter

estimation of ®nite mixtures using the EM algorithm and in-
formation criteria with applications to medical image pro-
cessing. IEEETransactions onNuclear Science, 39(4), 1126±33.

Marron, J. S. and Wand, M. P. (1992) Exact mean integrated

squared error. Annals of Statistics, 20(2), 712±36.
McLachlan, G. J. (1987) On bootstrapping the likelihood ratio

test statistic for the number of components in a normal

mixture. Applied Statistics, 36(3), 318±24.
McLachlan, G. J. and Basford, K. E. (1988) Mixture Models,

New York: Marcel Dekker.

Milligan, G. W. and Cooper M. C. (1985) An examination of
procedures for determining the number of clusters in a data
set. Psychometrika, 50(1), 159±79.

Parzen, E. (1979) Nonparametric statistical data modeling.
Journal of the American Statistical Association, 74, 105±31.

Priebe, C. E. (1994) Adaptive mixtures. Journal of the American
Statistical Association, 89, 796±806.

Priebe, C. E. and Marchette, D. J. (1993) Adaptive mixture
density estimation. Pattern Recognition, 26(5), 771±85.

Priebe, C. E., Solka, J. L. and Rogers, G. W. (1993) Discriminant

analysis in aerial images using fractal based features. In F. A.
Sadjadi (ed.) Adaptive and Learning Systems II, Proc. SPIE
1962, pp. 196±208.

Priebe, C. E., Solka, J. L., Lorey, R. A., Rogers, G. W., Poston,
W. L., Kallergi, M., Qian, W., Clarke, L. P. and Clark, R. A.
(1994) The application of fractal analysis to mammographic
tissue classi®cation. Cancer Letters, 77, 183±89.

Scott, D. W. (1985b) Frequency polygons. Journal of the Amer-
ican Statistical Association, 80, 348±54

Mixture structure analysis using the Akaike Information Criterion and the bootstrap 187



Scott, D. W. (1985b) Average shifted histograms: e�ective non-
parametric density estimation in several dimensions. Annals
of Statistics, 13, 1024±40.

Scott, D. W. (1992) Multivariate Density Estimation, New York:
John Wiley.

Scott, D. W. (1994) Multivariate Density Estimation, Short

Course Interface 1994.
Silverman, B. W. (1986) Density Estimation for Statistics and Data

Analysis. New York: Chapman and Hall.

Solka, J. L. (1995) Matching Model Information Content to Data
Information, PhD Dissertation, George Mason University,
Fairfax, Virginia.

Solka, J. L., Priebe, C. E. and Rogers, G. W. (1992) An initial

assessment of discriminant surface complexity for power law
features. Simulation, 58(5), 311±18.

Solka, J. L., Priebe, C. E. and Rogers, G. W. (1993) A probabi-

listic approach to fractal based texture discrimination. In
F. A. Sadjadi (ed.) Adaptive and Learning Systems II, Proc.
SPIE 1962, pp. 209±18.

Solka, J. L., Priebe, C. E., Rogers, G. W., Poston, W. L. and
Lorey, R. A. (1994) Maximum likelihood density estimation

with term creation and annihilation. In Computationally In-
tensive Statistical Methods, Proceedings of the 26th Sympo-
sium on the Interface, pp. 222±25.

Solka, J. L., Poston, W. L. and Wegman, E. J. (1995) A visuali-
zation technique for studying the iterative estimation of
mixture densities. Journal of Computational and Graphical

Statistics, 4(3), 180±97.
Sturges, H. A. (1926) The choice of a class interval. Journal of the

American Statistical Association, 21, 65±6.

Titterington, D. M. (1984) Recursive parameter estimation using
incomplete data. Journal of the Royal Statistical Society,
Series B, 46, 257±67.

Titterington, D. M., Smith, A. F. M. and Makov, V. E. (1985)

Statistical Analysis of Finite Mixture Distributions, New
York: Wiley.

Wallace, C. S. and Boulton D. M. (1968) An information measure

for classi®cation. Computer Journal, 11, 185±94.
Wegman, E. J. (1970) Maximum likelihood estimation of a uni-

modal density function. Annals of Statistics, 41, 457±71.

188 Solka et al.


