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The purpose of this article is to describe a new visualization framework for the analysis
of hyperdimensional data. This framework was developed in order to facilitate the study
of a new class of classifiers designated class cover catch digraphs. The class cover catch
digraph is an original random graph technique for the construction of classifiers on high
dimensional data. This framework allows the user to study the geometric structure of
hyperdimensional data sets via the reduction of the original hyperdimensional space to a
cover with a small number of balls. The framework allows for the elicitation of geometric
and other structures through the visualization of the relationships between the balls and
each other and the observations they cover.

Keywords: Graph; Classifier; Visualization; Data Mining.

1. Introduction

Discriminant and cluster analysis on a set of n observations in d-dimensional space
is complicated by the curse of dimensionality.1 As d grows the number of parameters
required to model the data, for example using kernel and mixture-based approaches
grows simililarly.2 Kernel-based methods also have the disadvantage of needing to
store all of the observations associated with the training set.

Nevertheless, one is often faced with the need to analyze data sets that suffer
from large d, large n or a combination of these two factors. In the two-class case the
discriminant analysis problem is characterized by the interpoint distance structure
between the class 0 and class 1 observations. These, along with the within class
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interpoint distances, determine the geometric structure of the observations in the
high-dimensional space.

We (C. E. Priebe) have developed a new graph theoretic classification proce-
dure based on the use of class cover catch digraphs (CCCD). This classifier was
specifically designed in order to analyze moderately sized, n < 10000 data sets in
hyperdimensional spaces. By hyperdimensional we mean those data sets with a d
value in the thousands. The reader is referred to Priebe and Marchette3 and Priebe
et al.4 for a more thorough discussion of the details of this procedure.

The focus of our discussions is a visualization framework, the Interactive Hyper-
spectral Exploratory Data Analysis Tool (IHEDAT), that was developed in order
to study the interaction between the CCCD based classifier and hyperdimensional
data sets. This tool has proven beneficial in the fine tuning of the CCCD algorithms,
in the study of geometric structure within the data sets, and in the identification
of latent classes within the data sets.5

IHEDAT has been successfully applied to numerous data sets. These include an
artificial nose data set, a gene expression data set, and a hyperspectral data set. We
will provide an in-depth discussion on the use of IHEDAT to analyse an artificial
nose data set.

We will begin with a brief overview of the CCCD methodology followed by
an informative two-dimensional pedagogical example. Next, we will provide some
brief background material on the visualization components that make up IHEDAT.
Finally, the application of IHEDAT to the artificial nose data set will be discussed.

2. Methodology

We begin by considering two disjoint sets of d-dimensional observations, X =
{x1, . . . , xn} ⊂ <d and Y = {y1, . . . , ym} ⊂ <d. We initialize the procedure by
designating X as the “target class.” Although our procedure as stated is asymmet-
ric in target class, it can be made symmetric by repeating the procedure choosing
the other class as “target” in turn. The reader is referred to Priebe and Marchette,
et al.4 for an exposition of this idea as applied to classification.

Proceeding as in Priebe, DeVinney and Marchette,6 we define the class cover
catch digraph (CCCD) D = (V,A) for X against Y as follows. Our set of vertices
V = X (the set of target class observations). Now for each v ∈ V , we define Bv :=
B(v,miny∈Y ρ(v, y)) := {z ∈ <d : ρ(v, z) < miny∈Y ρ(v, y)} where ρ : <d × <d →
<+ := [0,∞) is a distance or pseudo-distance function. We may think of each Bv as
an open ball of maximum radius around v such that the ball contains only target
class observations. In our discussions within ρ will be L2 the standard Euclidean
metric. There is an arc or directed edge vw ∈ A ⇐⇒ w ∈ Bv. So an arc exists
between each observation and the observations covered by its ball.

Following standard graph theoretic terminology we define a dominating set S
for D as a set S ⊂ V such that, for all w ∈ V , either w ∈ S or vw ∈ A for some
v ∈ S. Under this definition each vertex is either a member of the dominating set
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or is connected to a member of the dominating set via an arc. The domination
number γ(D) is defined to be the cardinality of the smallest dominating set(s) of
D. In general γ(D) is invariant and 1 ≤ γ(D) ≤ cardinality (V ) = n. A minimum
dominating set for D is defined as a dominating set with cardinality γ(D). The
production of a minimum dominating set in a general digraph is an NP-Hard prob-
lem. In practice we find an approximate minimum dominating set Ŝ using a greedy
algorithm. The reader is referred to Priebe, DeVinney and Marchette,6 for a full
discussion of these methods. We will use γ̂ = cardinality(Ŝ) as an estimate for the
domination number of the digraph D.

Associated with each v ∈ V is a radius rv := miny∈Y ρ(v, y). The nature of
the discriminant boundary is determined by the radii of these balls. Balls with
the same sized radii are in a similar relationship to the nontarget observations.
Hence, we apply agglomerative clustering on the radii {rv : v ∈ Ŝ}, producing
a dendogram, or cluster tree.7 The leaves of this dendogram correspond to the γ̂
elements of Ŝ.

We can use this dendogram to provide a sequence of “cluster maps” mk : Rd →
Rk+ for each k = 1, . . . , γ̂. Each cluster map produces a disjoint partition of Ŝ.
We can produce the cluster map into a given k-dimensional range-space by visually
“cutting” the dendogram horizontally at a level which yields k branches, or clusters,
Ŝ1, . . . , Ŝk. The kth cluster map is then defined as mk(x) = [ρ(x, Ŝ1), . . . , ρ(x, Ŝk)]′,
where the distance ρ(x, S) from a point x to a set S is defined as the minimum over
s ∈ S of the distances ρ(x, s). One can think of a particular partition of Ŝ as a means
of capturing the target/nontarget relationship at that particular resolution level.

For each k = 1, . . . , γ̂ an empirical risk (resubstitution error rate estimate) L̂k
is calculated as

L̂k :=
(

1
n+m

)( n∑
i=1
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{
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(
v, min
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rw
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By construction, the empirical risk L̂γ̂ = 0. L̂k may, however, be nonzero for k < γ̂.
We may use the empirical risk as a function of k to select a reasonable cluster
map dimensionality. The “model complexity selection” problem is in general a very
difficult problem. In our case it is necessary in order to characterize the geometric
relationship between the target and nontarget observations.

We now define the “scale dimension” d̂? to be the cluster map dimension which
minimizes a dimensionality-penalized empirical risk; d̂?δ := min{argmink L̂k+ δ ·k}
for some penalty coefficient δ ∈ [0, 1]. By construction, we have d̂?δ = min{k :
L̂k = 0} for δ = 0 and d̂?δ = 1 for δ = 1. The value of δ ultimately determines
the sharpness required to locate the “elbow” or bend in the plot of empirical risk
versus cluster map dimension. Hence, the scale dimension is the abscissa of the
elbow in the curve. d̂?δ is of course an estimate of d?δ , the cluster map dimension
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Fig. 1. Depiction of the simulation example. (a) The domain space class-conditional scatter plot,
with dominating set Ŝ (γ̂ = 6) for the target class observations (represented by “◦”s). (b) The
dendogram for the six radii. (c) The class-conditional scatter plot resulting from cluster map m2

(with the convex hull of the projected non-target class observations). (d) The scale dimension
curve.

which minimizes the penalized probability of misclassification. One way to think
of the scale dimension is as the number of different sized balls needed to cover the
class. In Fig. 1(a) we depict data of two scales, a large scale region where the ball
is and a smaller scale region corresponding to the “+.” The scale dimension d̂?

is designed to estimate the number of scales appropriate to the data. Figure 1(d)
presents the scale dimension plot for this data set.

md̂? is the cluster map of interest, which will be used for our exploratory data
analysis. There are numerous relationships that one would like to be able to study
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within this visualization framework. First and foremost, we are interested in ascer-
taining the interpoint distance relationship between the target and the nontarget
observations. Second, we are interested in ascertaining the relationship between the
target observations and the open balls. In particular, we would like to know which
ball contains a particular observation. Finally, we are interested in studying the
spatial relationship of the open balls to one another. Each of these needs is ad-
dressed within the framework of IHEDAT. Each of these will be discussed in turn
in the subsequent sections.

3. Two-Dimensional Example

Let us consider, for the purpose of illustration, a simple two-dimensional simulation
example. For this case the domain space class-conditional scatter plot and the
algorithmically produced dominating set Ŝ (with γ̂ = 6) and the associated radii
(one large and a collection of five smaller) for the target class observations are
presented in Fig. 1(a), the dendogram for the complete linkage clustering of these six
radii is presented in Fig. 1(b), and the two-dimensional range space class-conditional
scatter plot (the result of the application of the cluster map m2 to the observations
of Fig. 1(a)) is presented in Fig. 1(c). In Fig. 1(d) we present a plot of the estimated
classification error as a fuction of the number of clusters. The elbow in the curve
corresponding to a scale dimension of 2 is clearly visible.

In this pedagogical example, clearly the scale dimension is 2. This is evidenced
by the fact that there are two obvious clusters of ball radii.

4. Visualization Components

We will now discuss the visualization components that are used within the IHEDAT.
Throughout this section we will refer to Fig. 2.

We need a convenient method to display the spatial relationship of the target and
nontarget observations. This information is contained within the interpoint distance
matrix. An examination of a tabulation of these values is somewhat daunting and
hence, we have chosen to encode each of the values as a grayscale level which
we then render as a grayscale image, see Fig. 2(a). This type of approach has
been used previously to study data structure under clustering based permutations.8

Greyscale renderings of the interpoint distance matrix has been used more recently
by Marchette and Solka,9 as a method for outlier detection.

The interpoint distance matrix can also be used to study the spatial structure
of the dominating set elements. In this case the interpoint distances are measured
from the center of one dominating set element to the center of another dominating
set element. Once computed these can be rendered as a grayscale image as we do
with the full data set interpoint distances.

The agglomerative clustering methodology is usually displayed using the den-
drogram. We follow this practice and also include color information that displays
the various clusters. Figure 2(b) illustrates an example dendrogram.
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(a) (b)

(c) (d)

Fig. 2. Visualization components. (a) The interpoint distance matrix. (b) Radii based dendro-
gram. (c) Parallel coordinates plot. (d) Ball coverage plot.

Given a cluster map mk : Rd → Rk+ we are interested in rendering the projected
observations in the k-dimensional space. Although k � d, k is still typically larger
than three and hence, one is faced with the task of plotting the observations in the
high dimensional space. One relatively simple solution to this probably was posed
by Wegman,10 and Inselberg.11 This method solves the problem of the impossibility
of placing coordinate axes perpendicular to one another in the dimensions d > 2 by
placing them parallel to one another. A point in Euclidean space becomes a broken
line in parallel coordinates. The reader is refered to Wegman10 for a full discussion
of the rendering of various structures in parallel coordinate space. We use parallel
coordinates to render the target observations in the k-dimensional space obtained
via an application of the cluster mapping in Fig. 2(c).

We have discussed ways to visualize the target/nontarget relationships, the dom-
inating set element relationships, and the cluster mapping. We are still interested
in being able to display the relationship between the dominating set elements/balls
and the target observations. By construction, each target is covered by the ball cor-
responding to at least one dominating set element. In fact it is often the case that
each target point resides in more than one dominating set element. We have chosen
to display this information by superimposing a color representation of dominating
set containment above a grayscale rendering of the target versus target interpoint
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distance matrix. Each column in the interpoint distance matrix corresponds to one
of the target observations. Above this column we place a series of colored pixels.
These colored pixels correspond to the same color scheme used in the dendrogram
for a particular cluster map. In this manner the coloring of the dendrogram and the
coloring of the dominating set containment map is consistent. Figure 2(d) presents
an example of this visualization component. From this representation one can see,
for example, that the orange and magenta clusters cover all the observations in the
top one half (lexicographically) of the data. We will investigate these insights more
thoroughly in the next section.

We have discussed the various visualization components used in the IHEDAT
system. As is always the case in the construction of a visualization system, there
are numerous other ways to display the information inherent in the CCCD system.
The exact inner workings of the IHEDAT system is best illustrated via the analysis
of an example data set.

5. Exploration of an Artificial Nose Data Set

IHEDAT was originally developed to study the relationship between an artificial
nose data set and the CCCD classifier. The artificial nose data set consists of the
response of a nonlinear artificial nose to a sequence of chemicals. These chemicals
consist of a target compound (trichloroethylene (TCE)) at various concentrations
along with various confusers (chloroform, hexane, Coleman fuel, etc.). A particular
analyte consists of the target compound at a particular concentration as diluted
with air and possible confuser. The analyte is drawn across the fibers of the system
in a 20 second pulse. Each of the nose’s 19 fiber responses is sampled 60 times
and at two wavelengths during the 20 second interval. Hence, each system response
consists of a point in a 2280 dimensional space. The reader is referred to Priebe12

for a full discussion of the artificial nose data collection process.
The data set for our discussions consists of 80 target observations (consisting of

TCE along with air and benzene at various concentrations) along with 40 nontarget
observations (consisting of benezene in air). This data set was chosen in order to
illustrate the IHEDAT capabilities while not overloading the reader.

Figure 3 presents a screen snapshot of the IHEDAT system. The upper left
window presents a grayscale rendering of the target(T), nontarget(NT) versus T,NT
interpoint distance matrix. The upper right window contains a parallel coordinates
plot of the target observations rendered in the cluster map space. We point out that
the observations have been colored to match the cluster map representated by the
colored dendrogram residing in the lower left-hand corner of the frame. The lower
right-hand window contains a file selection widget that allows one to choose the
observations that reside in the target and nontarget classes. Now let’s take a closer
look at each of the windows in turn.

The lower left hand window contains a colored dendrogram that represents the
cluster mapping. Each of the terminal leaves of the dendrogram corresponds to a
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Fig. 3. IHEDAT interpoint distance matrix plot for the TCE and benzene versus benezene arti-
ficial nose data set.

dominating set element. We have cut the dendrogram at five clusters as indicated
by the scale dimension procedure. The first seven dominating set elements colored
yellow reside in one cluster. The next four elements, colored cyan, reside in the next
cluster. Altogether the reader can discern five different clusters. We have provided
the capability to interact with the dendrogram to ascertain the center, radius, and
target containment for each of the dominating set elements. This capability will be
discussed shortly.

Next, we turn our attention to the interpoint distance matrix displayed in the
upper left-hand corner. The observations are ordered based on the selection made
by the user with the data selection widget. The pattern of selected observations
is as follows. We have ten replicates with target (trichloroethylene (TCE)) at a
concentration of 1:1 and nontarget (benezene (BEZ)) at a concentration of 1:2, ten
replicates with TCE at a concentration of 1:1 and BEZ at a concentration of 1:7,
ten observations with TCE at a concentration of 1:2 and BEZ at a concentration
of 1:2, ten replicates with TCE at a concentration of 1:2 and BEZ at a concen-
tration of 1:7, ten replicates with TCE at a concentration of 1:7 and BEZ at a
concentration of 1:2, ten replicates with TCE at a concentration of 1:7 and BEZ
at a concentration of 1:7, ten replicates with TCE at a concentration of 1:10 and
BEZ at a concentration of 1:2, and ten replicates with TCE at a concentration of
1:10 and BEZ at a concentration of 1:7. So the concentration of TCE in the target
observations is nonincreasing as we proceed down the list. The nontarget obser-
vations consist of nine observations of satrated BEZ, two observations with BEZ
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diluted in air at a concentration of 1:1, nine observations with BEZ diluted in air at
a concentration of 1:2, ten observations with BEZ diluted in air at a concentration
of 1:7, and ten observations with BEZ diluted in air at a concentration of 1:10. Ex-
amining the interpoint distance matrix for target versus target, we see that the high
concentration target observations seem to be at the greatest distance from the low
concentration target observations. This is indicated by the white block in the lower
left-hand and upper-right hand portion of the target versus target section of the
diagram. Continuing on with our analysis of the target versus target portion of
the diagram, we notice that the low concentration target observations are close to
the other low concentration target observations. This is indicated by the dark block
in the lower right-hand portion of the target versus target portion of the interpoint
distance image.

We next turn our attention to the target versus nontarget portion of the inter-
point distance image. We first note that the high concentration target observations
are at a large distance from the low concentration nontarget observations. This is
evidenced by the white rectangle in the upper right-hand and lower left-hand corners
of the interpoint distance image. We next note that the low concentration target
observations are at a close distance to the low concentration nontarget observa-
tions. This is indicated by the dark rectangle midway down the interpoint distance
matrix image on the right-hand side along with it symmetrical representation that
appears in the lower left middle nontarget section.

Perhaps one of the most striking features of the interpoint distance image is the
white plus sign running vertically in the nontarget portion of the image and horizon-
tally slightly below the midpoint of the image. This visual feature is a clear indica-
tion that these sets of observations are outliers as compared to the rest of the target
and nontarget observations. The nine observations resident in this plus sign are the
nontarget obsrvations consisting of saturated benzene vapor. This type of insight
is representative of some of the possibilities that can be obtained using IHEDAT.

Now consider the parallel coordinates plot in the upper right-hand section. Each
target observation has been rendered in the parallel coordinates plot produced
using the cluster map transformation. The purpose of this plot is to evaluate the
observations for structure in the cluster map space. Each observation has been
colored according to which dominating element contains the observation. There is
a problem of overplotting here in that each target observation may be covered by
more than one dominating set element.

Next, we wish to touch upon some of the other dendrogram-based operations
that we have provided. We have previously mentioned the capability to cut the
dendrogram to create a resultant cluster map. We also can click on a particu-
lar dominating element/terminal node and have the target observations that are
covered by this node highlighted in the target selection widget in the lower right-
hand corner and also in the cluster map parallel coordinates plot in the upper
right-hand corner. The center and radii of the dominating set element are also indi-
cated during this operation. Sometimes we are interested in knowing which target
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Fig. 4. IHEDAT ball coverage plot for the TCE and benzene versus benzene artifical nose data
set.

observations are covered by a particular cluster of dominating set elements. This is
accomplished by selecting the node in the dendrogram that sits right above a par-
ticular cluster of dominating set elements. This “branch forward” operation also
highlights the appropriate observations in the target point selection widget and
parallel coordinates plot.

Next, we draw the readers attention to Fig. 4. The only difference between
Fig. 3 and Fig. 4 is that in Fig. 4 we have moved the “ball coverage” window in
the upper left-hand portion of the frame to the front. The numerous windows in
the upper left-hand corner reside in a set of overlaid “tab pane” windows. The
bottom portion of this window contains the target versus target interpoint distance
grayscale image. Above each column (observation) we have provided a series of
colored pixels indicating the cluster containment relationships. For example, the
left most set of target observations are only covered by elements of the orange and
magenta dominating set clusters.

Once one has ascertained the representative radii associated with each of the
dominating set elements, this information can be incorporated into the analysis
of the ball coverage diagram. In the case being considered the orange and ma-
genta clusters are associated with larger dominating set radii. Given our previous
discussions on the order of data by concentration, this indicates that these elements
cover the high concentration target observations. It is in keeping with our intu-
ition that these high concentration target observations are farther to the nontarget
observations than the low concentration target observations are to the nontarget
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observations. This fact is also supported by our previous analysis of the {T,NT}
versus {T,NT} interpoint distance matrix.

The use of the ball coverage window to aid in the analysis of the cluster map
produced parallel coordinates plot is a bit more tenuous but we still feel that such
an analysis can prove beneficial. The magenta and orange clusters cover the high
concentration observations. These observations are far from one another in the
original high-dimensional space. This is evidenced by the lightness of the interpoint
distance matrix in this area. The target observations colored magenta and orange
in the parallel coordinates plot seem to be more spread out than those observations
that are colored yellow, green and blue. The reader is urged to compare their parallel
coordinates structure with that of the observations colored yellow, cyan and blue
that correspond to the lower concentration observations. The later travel much
more tightly through the parallel coordinates plot.

The above arguments can be made more clear using a sequence of branch forward
maps on the low and high concentration observations. In Fig. 5 we have performed
branch forward operations on the orange and magenta balls. Now the observatiosn
covered by the orange and magenta balls have been highlighted in red in the parallel
coordinates plot. Similarly, one can chose to perform the branch forward operation
at the branch point directly above the yellow, cyan and blue balls. Figure 6 presents
the result of this operation. The closer spatial proximity of the lower concentration
observations are clearly revealed in the parallel coordinates plot.

Fig. 5. IHEDAT forward mapping operation on the high concentration observations in the TCE
and benzene versus benezene case.
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Fig. 6. IHEDAT forward mapping operation on the low concentration observations in the TCE
and benzene versus benezene case.

Fig. 7. IHEDAT ball versus ball interpoint distance matrix for the TCE and benzene versus
benzene artificial nose data set.
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We next turn our attention to an analysis of the interpoint distance image based
on the dominating set elements, (see Fig. 7). We first note that the yellow domi-
nating set elements that cover some of the lower concentration target observations
seem to be the farthest to one another and the other balls. This is indicated by the
light band in the left-hand corner of the the balls versus balls interpoint distance
matrix. We next note that the spread of the remaining balls is fairly low.

We conclude our discussions in this section with a brief examination of two more
nose test cases. In the first of these we have selected BTEX as the confuser. BTEX
is a mixture of benzene, toluene, ethylbenzene and xylene. The concentrations for
the TCE and BTEX in the 80 target observations are as follows, ten (1:1,1:2), ten
(1:1,1:7), ten (1:2, 1:2), ten (1:2, 1:7), ten (1:7, 1:2), ten (1:7, 1:7), ten (1:10, 1:2), and
ten (1:10, 1:7). The concentrations for the BTEX in the 40 nontarget observations
are as follows, ten saturated, ten 1:2, ten 1:7, and ten 1:10. Figure 8 presents a
ball coverage plot for this test case. In this the low concentration observations are
covered by the yellow balls. These balls have consistently lower radii as compared
to the cyan and magenta balls that cover the higher concentrations.

In our final example the confuser compound is carbon tetrachloride (CTET).
The concentrations of TCE and CTET in the 80 target observations are as in the
previous example. The concentrations of CTET in the 40 nontarget observations are
also as in the previous example. Figure 9 presents a ball coverage plot for this test
case. In this case the scale dimension of two indicates that the target observations

Fig. 8. IHEDAT ball coverage plot for the TCE and BTEX versus BTEX artifical nose data set.
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Fig. 9. IHEDAT ball coverage plot for the TCE and CTET versus CTET artificial nose data set.

can be covered by balls with two types of radii. The cyan balls over in the right-
hand side of the dendrogram cover the lower concentration observations and have
smaller radii than the yellow ball covering the higher concentration observations.
In fact, the single yellow ball that covers all of the target observations with TCE
at a concentration of 1:1 along with several of the observations with TCE at a
concentration of 1:2 has a radius of around 4034. This is as compared to the radii
of the cyan balls covering the lower concentrations all of which are at a radii less
than 1000.

Fig. 10. IHEDAT ball versus ball interpoint distance matrix for the ball versus ball data.
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Fig. 11. IHEDAT parallel coordiantes plot for the TCE versus CTET case. High concentration
ball center identified.

We may evaluate the location of the single ball that covers these high concentra-
tion observations through an examination of the ball versus ball interpoint distance
matrix. In Fig. 10 we present the ball versus ball interpoint distance matrix for
this data set. We notice that the first ball, the one covering the high concentration
observations, is at a large distance from the other balls. This is indicated by the
white bar on the left and top of the image. Using a left forward operation one can
ascertain that this ball is centered at TCTE1203.dat. This is an observation with
a TCE concentration of 1:1 and a CTET concentration of 1:2. A little exploratory
data analysis allows one to identify this observation in the parallel coordinates plot,
see Fig. 11.

6. Conclusions

We have presented a new framework for the analysis of hyperdimensional data us-
ing class cover catch diagraphs. This method, IHEDAT, has been discussed via the
analysis of an artificial olfactory data set. IHEDAT is based on several different vi-
sualization components, some of which are well known to the statistical community
and some of which are novel creations. IHEDAT allows the user to formulate a hy-
pothesis about the geometric relationship between a group of target and nontarget
observations.

We have numerous ideas for continuing our work on the IHEDAT. Some of these
include provisions for the display of the underlying class cover catch digraph. Some
of these focus on the effect of metric space choice on the classification process.
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We look forward to new research paths that might be provided by the readers of
this article.
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