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1 Introduction
Given a gray scale or color image, the focus of attention is
usually on a particular area. One way to accomplish this is
to segment the image into various regions based on texture.
This selective segmentation process has applications to both
medical and satellite image processing. In this paper, we
detail an approach to this selective segmentation process
based on features extracted from a set of analog-computed
pseudowavelet coefficients.

The silicon retina of Mead1 displays many features of
human retinal processing . Two key features of interest here
are the optical input to the silicon retina chip and the center
surround response of each node in the retina that is remi-
niscent of a Morletlike mother wavelet. This center surround
response, which is similar to the difference of Gaussians,
is accomplished by differencing the input at a pixel with a
local average computed via an analog resistive grid. In this
paper, we propose an optoelectronic system for performing
resistive grid-based wavelet transformations. We include an
example where the multiresolution wavelet coefficients2 have
been further processed to produce local variance and van-
ance of variance features , which can be used to perform
texture discrimination. The twin advantages of this hybrid
approach are the near real-time processing to obtain wavelet
coefficients and/or texture features and the nonlinear data-
driven nature of the effective wavelets produced by a re-
sistive grid composed of nonlinear components.

2 Background
As an outgrowth of previous work in texture discrimination
based on fractal dimension-derived power law features,3'4
we have recently begun looking at using a (hypothetical)
silicon retina to do image preprocessing for texture analysis.
There are twin motivations for this line of investigation.
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First and foremost, the texture discrimination ability of retinal-
based biological systems provides a working prototype for
this approach. Second, optoanalog implementation of our
hypothetical retina offers the potential of parallel prepro-
cessing. The postpnocessing is based on well-understood
parametric and nonparametric statistical techniques.5 This
permits an analysis of the contributions of individual fea-
tunes produced in the preprocessing and gives us a capability
to follow an ''evolutionary'

' orexperimental approach with
our silicon retina model. We can delete features that do not
perform, while trying variations on good features, or using
new features altogether. Central to our model is the set of
nonlinearities encountered in analog VLSI implementations
as well as in biological systems. These nonlinearities are
crucial, for example, to both segmentation and the preven-
tion of feature contamination between disparate texture types.

We begin with a brief review of the properties of the
1-D resistive grid. Figure 1 displays a nonlinear resistive
rit Given a functionf(x): R— R by associating an input

x bin with each node of the network, we may map a set of
sampled functional values {(x, ,y) : 1 � i into the re-
sistive grid by assigning for bin i an input voltage V, pro-
portional to y, when x, falls in the i'th bin. In this manner,
a discrete approximation fRG to the convolution of f with
an exponential kernel is obtained. For the in-line horizontal
resistor circuits, it can be shown that I ='sat tanh[(Vi — V2)/
2]. The voltage V1 at the i'th node of the grid is given by
solving

In this equation, the nonlinear resistance of the i'th hori-
zontal resistor is given by

R,=
Ro[(V1+1—V)/2]

tanh[(V1+i — V1)/2}

and the discrete convolution value of our function at the
i'th bin fP' is just the output voltage V, of the i'th node.
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Fig. 1 Nonlinear resistive grid with optical input. The bias circuit
associated with each node is not shown.

Our (hypothetical) silicon retina is centered on the use
of 2-D resistive grids with orthogonal (four nearest neigh-
bor) geometry . In a manner analogous to the 1 -D case , the
2-D resistive grid functions to smooth the input in a linear
or (of interest to us) a nonlinear fashion. In its linear version,
the resistive grid smooths the inputs to produce an output
that corresponds approximately to the convolution of the
input image with an exponential kernel with a characteristic
length or kernel size we denote by Lk or, equivalently, by
an associated scale 8k.

Letf: R2—÷ R be the function that produces our 2-D input
image defined on a discrete (pixel) array. Further, let
R(f):R2 x R— R2 x R be the resistive grid transform of
fat scale 6. Supose that we compute R8(f) for n different
scales: R9(f), R2(f), R(f),. . . ,R 1(f) Notationally, we
let L1 =R 1(f). The L can be thought of as functional
estimates at different levels of smoothing. Next, we corn-
pute a set of features for each pixel:

Fa=R'(f)R(f)=LaLa+i, 1,..., n—i
We now have a set of n — 1 features defined at each array
or grid (pixel) point that corresponds to a difference of
kernels of different characteristic scales. Figure 2 details
the architecture of the device that computes these features
in the case of n =4. It utilizes optical components for input
and image passing, multiple resistive grids for convolution
computation, and a digital pixel on pixel subtraction process
to produce the final wavelet coefficients. These are the (non-
linear) resistive grid analogs of the difference-of-Gaussian
wavelet basis. Thus, at each pixel, we have the first n — 1

coefficients of a wavelet (or pseudowavelet) basis with the
Fa being the coefficient arrays . In contrast to standard wave-
let techniques using power of two sampling rates, we fully
sampled the wavelet coefficient network at each scale value.
This produces a set of wavelet functions that is over-
determined, i.e., nonorthogonal.

Now that we have these pseudowavelet coefficients, how
do we use them to compute texture features? Previous work
of Mallat2 has suggested a correspondence between the tex-
ture primitives or textons of Julesz6 and the functions in a
wavelet orthonormal basis. These textons, like wavelets,
have a particular spatial orientation and a narrow frequency

Fig. 2 Hybrid optical/analog/digital architecture for near real-time
nonlinear wavelet transform. Focusing lenses are not shown for sim-
plicity.

tuning. Work by Caelli7 has suggested that the outputs from
these textons can best be used for texture discrimination by
computing local estimates of energy. We need to estimate
the local energy via our resistive grid framework.

Mead1 has demonstrated the feasibility of performing
half- and full-wave rectification in analog VLSI. An obvious
feature to compute using the twin elements of resistive grids
and full-wave rectifiers is a mean variance of the pseudo-
wavelet coefficients as a function of scale. The goal is to
compute local energy features that are relatively texture
invariant. We compute these variance features as follows:

Va=RT [IFaR(Fa)I
Here T€ {1 , 2, . . .} is chosen to smooth these variance es-
timates—essentially, this last smoothing is analogous to
basebanding on some carrier frequency.

This gives a set of additional features for each array
location (pixel) that gives a measure of the variance of the
difference of kernel features for the different scales. This
set of steps can be repeated (iterated) using vk as input
(instead of Fk) to produce a set of second-order variances
Vkk. Thus, we have a truncated double expansion in pseudo-
wavelet coefficients and orders of variance of these coef-
ficients, for each array location or pixel.

3 Results
In this section we discuss the linear version of our functional
estimation technique along with some nonlinear simulation
results. A full analytical treatment of the nonlinear theory
is beyond the scope of this document. For analytical pur-
poses, consider a linear approximation to our functional
estimation technique. Call the exponential function (x)
(Fig. 3), obtained from the resistive grid, our scaling func-
tion. We then have as our mother wavelet 4i(x) the differ-
ence of exponentials depicted in Fig. 4. Figure 5 gives 141(x)
at three different scale values. The effect of the nonlinearity
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Fig. 5 One-dimensional resistive grid wavelets at three increasing
scales.
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Fig. 6 (a) Nonlinear 1 -D resistivegrid input: Thegrid is allowed to
come to equilibrium with the step function input, then resistances are
held fixed while the spike is input and (b) the effective resultant linear
and nonlinear wavelet for the spike component of the total input
shown in (a). The nonlinear response strongly damps the wavelet
amplitude at a contrast boundary.
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Fig. 4 Mother wavelet tji (x) for a 1-D resistive grid with linear com-
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of the (simulated) analog VLSI implementation on this wavelet
is depicted in Figs. 6(a) and 6(b). Figure 6(a) shows the
discontinuous input, while Fig. 6(b) compares the i(x)
function corresponding to the linear case and the nonlinear
theory. The effect of this adaptive wavelet amounts to a
segmentation effect in the case where a sharp discontinuity
exists (an edge) in the input, such as in Fig. 6(a). That these

____________________ _____________________ nonlinear effects allow for an automatic segmentation has
been demonstrated previously in the ability of the resistive
grid kernel estimator to model discontinuities in probability

) 51 102 153 204 255 density functions while maintaining an otherwise smooth
estimate (see Figs. 7 and 8).8

Previous work has detailed the application of wavelets
to image segmentation.9'10 The resistive elements in the
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Fig. 7 Linear resistive grid kernel approximation of a probability den-
sity function that contains a jump discontinuity.

V

C

Fig. 8 Nonlinear resistive grid kernel approximation of a probability
density function that contains a jump discontinuity.

nonlinear resistive grid have variable conductance values.
By producing a conductance map of the resistive grid, a
natural segmentation occurs, which can be seen in Figs. 9(b)
and 10(b), corresponding to the input images Figs. 9(a) and
10(a), respectively. The dark areas in Figs. 9(b) and 10(b)
correspond to drastically reduced conductance values pro-
duced by the nonlinearity inherent in the horizontal resistor
circuits. Note that this segmentation produced by these re-
duced conductance values is part of the natural operation
of the device. Also, these reduced conductance values serve
to greatly limit the contribution of one texture type to the
wavelet coefficients centered in an adjacent texture type—
exactly the effect seen in Fig. 6(b).

The qualitative behavior of the nonlinear approach can
best be illustrated with the help of a 1-D example. The top
curve of Fig. 11 is a vertical slice down the center of the
image, i.e., bushes to turret to tread to grass, depicted in
Fig. 9(a). This slice crosses the three different textures of
the tank image. As is apparent from an examination of the
curve, some variance of signal structure exists in each of
the three regions, however, most of the large jumps occur
at the texture boundaries. The remaining curves in the figure
portray the multiresolution approximation L(x) to the orig-
inal function at scale values of 2, 4, 8, 16, and 32. As is
appropriate in a multiresolution approximation, we see a
gradual loss of detail in the subsequent functional approx-

Fig. 9 (a)Tank image input to a nonlinear 2-D resistive grid and
(b) the resultant conductance map for the tank image for a moderate
nonlinearity setting. The conductance map has performed segmen-
tation at all of the higher contract boundaries.

imations as we proceed from top to bottom in the figure.
As discussed previously, we note that there is little mixing
across texture boundaries in the multiresolution approxi-
mations.

Figure 12 shows the original function along with the
wavelet coefficients F3(x) obtained by differencing L3 and
L3 —1. These coefficients have a large magnitude in those
regions where a large loss of signal detail exists between
scale number i and i —1. As with the multiresolution ap-
proximations, the nonlinearity helps ensure the lack of con-
tamination of these coefficients at the texture boundaries.

Next, we illustrate the actual texture features that are
extracted from the wavelet coefficients. We seek to extract
features that are relatively constant for a given texture type.
Considering the deviations of F(x) from a smoothed regres-
sion v3(x) of F3(x) (Fig. 13), a quantity analogous to the
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95.8 191.6 287.4 383.2 479.0

Fig. 13 Top to bottom: analog regression coefficients for increasing
scale. Each output has been offset vertically for clarity.

Fig. 15 Sixteen patch texture quilt. Numbered as shown in the dia-
gram.
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Figure 16 shows the degree of separation obtained for
the 16 classes in a feature space derived from our eight first-
and second-order energy variances. Each class is repre-
sented by 250 points randomly chosen in a 100 x 100 square
positioned so its center is coincident with the center of the
patch. As can be seen from Fig. 16, a high degree of Se-
parability exists for most of the classes. Nonparametric dis-
criminant analysis results already show a marked improve-
ment over results that have been obtained using traditional
power law features, and the nonlinear segmentation effects
appear to be central to these results.

Feature analysis has shown that the first- and second-
order variance features are of equal relative importance in
the texture discrimination. Note also that those classes that
are overlapping in this projection can be separated in some
of the other 3-D-derived feature spaces. In fact, it is our
conjecture that near-perfect discrimination results could be

obtained on these interior data sets using state-of-the-art
classification procedures.

4 Conclusion
Our approach seems to be a powerful tool in identifying
features useful in texture representation for (one type of)
machine vision. Our approach differs from the standard
wavelet approach in several key ways. First, we use an
analog-derived exponential basis function. Second, we fully
sample the resultant multiresolution approximations and
wavelet coefficients. Third, we employ a nonlinear proce-
dure to prevent contamination of features from nearby re-
gions.

We have presented a hybrid optoelectronic design for
near real-time processing to obtain wavelet coefficients and!
or texture features. We have presented simulation results

OPTICAL ENGINEERING / September 1992 / Vol. 31 No. 9 / 1891
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Fig. 14 Top to bottom: second-order analog regression coefficients
for increasing scale. Each output has been offset vertically for clarity.

Fig. 16 Separation of the 16 quilt patches in a derived feature space.
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that show that the nonlinear data-driven character of the
wavelets obtained from nonlinear resistive grids can be an
advantage rather than a disadvantage, especially where a
high-contrast boundary separates different textures. The
conversion of the wavelet coefficient maps to local power
or variance features has been demonstrated to yield a useful
set of features for texture discrimination.

Future work will address the need for the comparison of
our technique with more conventional wavelet techniques
for texture discrimination and image segmentation. This will
be augmented by analytical work focusing on the nonlinear
nature of our pseudowavelets.
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