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TECHNICAL ARTICLE

A PDP Approach to Localized Fractal
Dimension Computation with
Segmentation Boundaries
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and
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Carey E. Priebe
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A parallel distributed processing approach
to the computation of localized fractal
dimension values in imagery is pre-
sented. This approach is a further
development of the covering method which
requires only nearest neighbor commu-
nication. A major benefit of our approach
is the ability to readily incorporate any
boundary information that may be
available. Man y fractal textures or
surfaces are fractal only in distribution.
With this in mind, we show that compari-
son of the fractal dimension distribrctions
via Kullback-Leibler can give an improved
texture discrimination capability over
comparison of computed fractal
dimension. Results are presented for a set
of textures.
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Introduction

An automated texture recognition/classification
capability is an important component of any artificial
vision system. One approach to this segment of the
vision problem which has shown promise is based on
the computation of fractal dimension (fd) and/or
related power law features [6,7,11,12].
A two-dimensional grayscale image can be thought

of as a manifold embedded in a three-dimensional

space. From this viewpoint, we can consider the
image to have a fd that is somewhere between the
images topological dimension of two and the dimen-
sion of the embedding space, resulting in a value
between two and three. The fd is thus a characteriza-
tion of roughness. For our purposes, the defining
equation for the fd of an image is Richardson’s law
[5]. This law describes the manner in which a mea-
sured property of a fractal varies as a function of the
scale of the measuring device. It is given by

where M(E) is the measured property of the fractal at
scale E, K is a constant of proportionality, d is the
topological dimension, and D is the fractal dimen-
sion. The measured property varies as a power of the
scale. Hence, this is a power law relationship and we
term features derived from Eq. (1) as &dquo;power law
features.&dquo;
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If we take the logarithm of Eq. (1) we obtain a
linear relationship between the log(M(F,)) and D,

which is the equation of a straight line with slope
(d-D) from which D can be recovered. While exact
fractals will, in principle, conform to Richardson’s
law, texture analysis has as its idealization the
concept of &dquo;statistical fractals&dquo; [12]. For statistical
fractals the straight line relationship given in Eq. (2)
holds only in distribution and a least squares regres-
sion can be used to find the best linear fit to a par-
ticular set of observations {£j1 M (c;) }. The fd is
estimated by the slope provided by this linear
regression. In addition to the slope, regression also
yields the y-intercept, log(K). Furthermore, for
objects that do not strictly obey Eq. (2), a measure of
the goodness of fit based on an F-test provides a third
useful feature. The fd, the y-intercept, and the F-test
constitute three fractal dimension based power law
features that are useful features for texture discrimi-
nation [11].
Methods of estimating fd from Richardson’s law

use the measured property as a function of scale to
estimate D. Two statistical fractal objects may have
the same fd but different statistical distributions of
the estimate of D. Similarly, two fractal objects may
have the same fd but different values of K, or the
same mean K values but different distributions.

Finally, most objects are either non-fractal or fractal-
like (obey Richardson’s law) only over some limited
range of scales, which makes the F-test value/
distribution an important feature for texture dis-
crimination, similar in concept to the so-called
lacunarity [13]. In order to most fully characterize
textures in terms of Richardson’s law, one should
compare the computed distributions of the power
law features instead of just the mean values. With
this in mind, we present an alternate method of
computing fd derived power law features that
generalizes the covering method approach of Peli [7]
while requiring only nearest neighbor communica-
tion at all stages of the computation. We also present
methods of estimating and comparing the resulting
distributions.
We are motivated for this alternate approach by the

need to perform texture computations in near real
time as well as to readily be able to incorporate any
a priori segmentation or boundary information that
may be available. This has led us to develop a
formulation suitable for a massively parallel imple-
mentation.

The bounding surfaces used in the covering
method of computing fd are computed at each point
(pixel) based on the characteristics of the image in
some neighborhood of that point. The presence of a
boundary between textures in this neighborhood can
result in a greatly perturbed set of bounding surfaces,
especially if there is a large difference in luminance
between the two textures. This in turn can substan-

tially perturb the computed fd. Segmentation
schemes generally include the goal of detecting
boundaries between texture types. This raises the
question of how to incorporate any segmentation
information that may be available into the texture
feature computation so as to avoid basing features on
both textures (as well as the luminance difference)
near a boundary.
In this paper we present a formulation based on

work by Rogers et al. [9] that addresses both of these
concerns simultaneously. We begin by presenting
this formulation in the next section. We next describe
the statistical methods we use to analyze the fractal
based features extracted using this new method. This
is followed by a section showing some results based
on this approach, with the final section devoted to
some concluding remarks.

2. Formulation of the Covering Method with
Boundary Incorporation

In this section we develop our implementation of
the covering method. By basing the implementation
on local (nearest neighbor) computations at each
step, we have a method that easily incorporates any
a priori boundary information. The method results in
a distribution of values for each of the power law
features.

In order to use Richardson’s law to estimate the fd
of an image we follow the covering method of Peli [7]
to estimate the surface area of the image in a window
about a given pixel. This method makes use of
dilation and erosion operators which act recursively
to bound the surface above and below at progres-
sively larger scales. This results in a set of volume
approximations at different scales which allow us to
obtain estimates of the surface area as a function of
scale. In order to take a potentially irregular segmen-
tation boundary into account, we introduce the
following modification. Assume that a segmentation
map M(i,j) is given where M(i,j)=0 on a boundary and
M(i,j)=l for all pixels not on a boundary. Let the
dilation and erosion operators for the pixel (i,j) at
scale e be denoted by 14ij;c) and L(i,j;~), respectively.
Then we introduce the new recursion relations
where the zero level recursions are defined as ~i,j;0)
= L(i,j;0) = G(i,j) for an original image grayscale value
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and

G(i,j). In Eqs. (3) and (4), the segmentation map
prevents values on the boundary from being used
outside the boundary. For example, if the (i+l,j) pixel
is on a boundary, while the (i,j) pixel is not, the
14i,j;c) value is substituted for the gi+lj,p-) value.
Hence, the ú(i+ l,j,£) value will not affect the compu-
tation of 14ij,e+l). Since the operators only involve
nearest neighbors, we are guaranteed that no infor-
mation will cross a continuous segmentation bound-
ary at this stage of the computation. With M(i,j)=1 for
all pixels, these expressions reduce to the previous
versions [7,11].
Many segmentation approaches yield boundaries

with an associated strength or degree of certainty.
Instead of thresholding such a segmentation map to
obtain a binary segmentation map we can simply use
the continuous values if they are mapped to the unit
interval. The continuous segmentation map can then
be used for M in Eqns. (3,4) as well as in the steps to
follow.
Once the upper and lower surfaces at a given scale

have been computed, the bounding area is given by

This method can only be expected to give the
correct fd in distribution. Hence it has been custom-
ary to average over the entire patch of texture [6] or
over a window [7,11] as in

where W(i,j) is some window about (i,j) and c is a
constant for all scales that can be used for normaliza-
tion, if desired. The fd can then be estimated on a
pixel by pixel basis as a regression of log[A(E)] versus
log[E] as indicated by Richardson’s law Eq. (1).
The method of computing the areas embodied in

Eq. (6) using a fixed window does not readily accom-
modate the incorporation of segmentation bound-
aries. If used with boundaries, it will average across
the boundary with attendant undesired effects. This
problem has led us to introduce a method of averag-
ing that is based on the physics of a resistive grid.

In this method, we model each pixel as though it is
connected to its four nearest neighbors by fixed
conductances and to a voltage source through a .

resistance. This is depicted in Figure 1. In order to
account for a regular or irregular segmentation
boundary we set all conductances to zero that connect
to a pixel on the boundary. The circuit simulation
then can be viewed as adapting the effective kernel
associated with each pixel so as to account for the
segmentation boundaries.
The circuit equations can be easily written as

where the indexing scheme is that of Figure 1 and Vin
is given by

This presents us with a coupled set of difference
equations that model a discrete anisotropic diffusion
problem. Standard relaxation methods [2] can be used
to obtain a solution. Two updating methods are
commonly used. The Jacobi method updates each
value based on the values from the previous iteration
while the Gauss-Seidel method sequentially updates
each value based on the current mix of new/old
values. While the Gauss-Seidel method is the method
of choice for a uniprocessor computer, the Jacobi
method corresponds to a massively parallel imple-
mentation where each value is to be updated synchro-
nously. We chose to solve the equations using a
successive overrelaxation (SOR) [2] version of the
Jacobi method. This method simulated a massively
parallel implementation. For a relaxation parameter
value of (1/2), convergence to several significant
figures always occurred in less than 2000 steps for an
effective decay length of L = (GR)1/2 = 16. For smaller
decay lengths the convergence is faster. After conver-
gence, we set
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Figure 1. The resistive grid along with the detailed circuit model associated with a single pixel.

Figure 2. A block diagram of the power law feature computation at each pixel /processor.
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for scale e. Thus, the computation defined by the set
of Eqs. (5,8-9) replaces the computation embodied in
Eq. (6).
The final step in obtaining fd or the associated

power law features is to perform a regression on
log[A(i,j;£)J against log[c] to find the slope for each
pixel. This is a local computation (no communication
required). The quantity (2 - slope) gives the fd while
the y-intercept and the F-test of the regression
provide the two additional power law features [11].
The computation is depicted schematically in

Figure 2 for a massively parallel implementation
where one processor is dedicated to each pixel.
Global communication is only required to distribute
the image and the segmentation map, and to output
the results. As can be seen from Figure 2, each pixel
is acted on independently. During the course of the
computation only nearest neighbor communication is
required and local memory requirements are mini-
mal. The same operation is performed in parallel on
every element in the data set, making this algorithm
appropriate for massively parallel architectures.
A massively parallel implementation [3] of the

power law feature computation [11] has been carried
out on a Connection Machine. This study yielded real
time performance on that method. Based on this
result, it is anticipated that the entire power law
algorithm presented here could be processed in a
similar parallel environment yielding results in a
sub-second processing time for an image.

3. Adaptive Mixture Model Probability Den-
sity Estimation

Adaptive mixtures [8] is a recursive nonparametric
algorithm for the estimation of probability density
functions (pdfs). It estimates the density of the data
as a mixture of normals, and chooses the number of
components in a data driven manner.
The adaptive mixtures estimator is related to both

the kernel estimator and to finite mixture models. For
the kernel estimator, a fixed kernel is placed at each
point in the data, in effect convolving the data with
the kernel. One of the problems with the kernel
estimator is the computational and storage require-
ments, particularly for large data sets. Finite mixture
models consist of a fixed number of (usually
Gaussian) kernels where the parameters (means,
variances, etc.) are updated via the EM (for Expecta-
tion/Maximization) algorithm which is based on
maximum likelihood. The major problems associated
with finite mixture models are the fixed, parametric
nature and the susceptibility of the EM algorithm to
get trapped in local maxima.

The adaptive mixtures estimator addresses these
problems by adding terms within the mixture model
frame-work in a data driven manner. The ability to
add terms allows the escape from local likelihood
maxima. The creation of new terms occurs at a much
slower rate than with the kernel estimator. This
results in a robust density estimator with nonpara-
metric capability and only moderate complexity.
Adaptive mixtures process each observation se-

quentially and either update the parameter values
according to a recursive version of the EM algorithm,
or add a new term to the model. The decision to add a
new component rather than update the old ones is
based on the determination that the latest observation
is not well explained by the current mixture. If a point
has a low likelihood for each component, that is, is an
outlier of each component, then the algorithm adds a
component centered at the new data point. This
approach results in a robust but generally
overdetermined mixture model estimate of the

density, giving it the flexibility of a nonparametric
approach but with the complexity of a parametric
one.

4. Kullback-Leibler Information for Density
Comparison
There are many approaches to determining how

different two densities are. The one used in this work,
the Kullback-Leibler (KL) information [4], is designed
to give a measure of discriminatory power. The
formula for the KL information of density f compared
to density g is:

The log of the likelihood ratio, log ( (f (x) ) / (g (x) ) ),
is the information at x for discrimination in favor of f

against g. Thus, the KL information is the expected
disciminatory information and hence a measure of the
overall discriminatory power of f against g. This gives
a single number to use in comparing the two densities
and comparing different estimates of a single density.
Since the KL information is nonsymmetric (in

general, KL(f,g) # KL(g,f)), we actually get two
numbers from the KL processing. As described above,
KL(f,g) is the information in f for discriminating
against g. Similarly, KL(g,f) is the information in g for
discriminating against f.
The KL information gives us a tool for comparing fd

probability density estimates corresponding to
different texture patches.
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5. Results

In this section we examine the application of the
diffusion based averaging feature extraction method
to do texture analysis. Figure 3 shows a quilt of
textures [1] used for this analysis. The numbering
scheme for the patches used here is the column plus
four times the row index. Thus, the texture numbers
run from zero to fifteen.
We begin by analyzing the discrimination informa-

tion in features extracted from two textures in the

quilt, textures #9 and #10. These textures are repli-
cated, with a linear boundary, in Figure 4a.
Figures 4b and 4c demonstrate the difference in the

computed bounding area (at scale c = 5) with and
without segmentation, respectively. The segmenta-
tion boundary, which was assigned a priori, is de-
noted by the black line in Figure 4c. Clearly, there is a
significant blending of the computed area in the
region about the texture interface in Figure 4b which
is not experienced in Figure 4c.

In Figures 5 and 6 we present scatter plots of slope
versus y-intercept. Figure 5 shows results with no
segmentation. The effect of including segmentation is
readily apparent in the greater feature space separa-
tion of the textures in Figure 6. It is obvious that the
information available for discrimination between
these two textures (or the detection of a spatial

; change point) is much greater for the case presented
in Figure 6, which has had the segmentation informa-
tion incorporated into the feature extraction algo-
rithm.

Figure 7 shows the results of the adaptive mixtures
probability density estimate procedure for fd features
extracted from all 16 textures from Figure 3. The pdfs
are based on the fd estimates for those pixels at least
one decay length (16 pixels) away from the bound-
aries of the texture so as to minimize edge effects.
Exact segmentation boundaries between textures
were used. The nonnormality of these pdfs is note-
worthy. In particular it should be noted that there are
textures which might have a very similar mean fd
(say, textures #3 and #4) but which have quite
distinct pdfs and could therefore be discriminated if
one used the densities rather than mean values.
To support the conjecture that the current approach

provides results that are comparable with those
previously reported in the literature (Table 3 of
Sarkar & Chaudhuri [10]) we also show in Figure 7
the calculated fd for those textures for which Sarkar
& Chaudhuri report values using five different
fractal calculation methods. These reported results
lie, for the most part, in the support of our probabil-
ity density estimates.

We now turn our attention to comparison of the
fractal dimension pdfs. The overlap between the
probability density estimates/, and f for each pair of
textures is measured via the Kullback-Leibler infor-
mation. The smaller the overlap of the density
estimates the greater the KL number. Figure 8 gives a
pictorial representation of KL(texture #i, texture #j).
The values are zero (light gray) on the diagonal, and
the darker values indicate large KL numbers corre-
sponding to more discriminable pairs of textures.
Figure 9 considers a more detailed analysis of

boundary effects on texture # 10. This figure shows
both the edge effects and the boundary effects for the
texture with the largest pdf differences due to these
effects. For each segmentation case, the &dquo;entire&dquo; pdf
shows the density based on the computed fd from all
pixels of the texture. The &dquo;interior&dquo; pdf shows the
density based on the computed fd from only those
pixels at least one decay length (sixteen pixels) from
the texture boundaries. Figure 9a shows the pdfs for
the full segmentation scheme. While there are
differences between the &dquo;entire&dquo; and &dquo;interior&dquo; pdfs,
they are reasonably small. For the partial (grayscale)
segmentation shown in Figure 9b we see that the
pdfs have been degraded significantly from the full
segmentation version, with the pdf built from the
entire patch preserving even less of the structure
than that built on just the interior observations. The
no segmentation results depicted in Figure 9c show
even more degradation. The large tails for these latter
two estimates, especially on the left, mean the
discrimination capabilities between this texture and
the others will be significantly reduced. Thus, the
calculation of the texture features with boundaries

incorporated can be a major advantage.

6. Conclusions

The diffusion equation based covering method
described in this paper constitutes a boundary gated
fd algorithm that produces estimates that are in
general agreement with previously published values
[10]. The largest discrepancies occur for textures #0,
#2, and #7 of the quilt. All three of these textures
tend to vary significantly only at scales larger than
the scales of 3, 4, and 5 pixels used in this work to
estimate the fd. Thus, these three textures should all
yield low estimates of the fd at these scales due to
relatively large scale of variation. In the other cases
(and including texture #0) the mean of the fractal
dimension pdf is within the range of fd values
reported in earlier work.

If the averaging step is left out, the density func-
tions are much more spread out and discrimination
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Figure 3. The quilt of textures used in this paper.

Figure 4. The two textures (#9 & #10) used in the first example are depicted in (a). The area map is shown with no
boundary (b) and with boundary (c). In (c), the boundary is shown in black.
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Figure 5. The y-intercept is plotted against the slope for each pixel of the two preceding texture patches with no
segmentation.

Figure 6. The y-intercept is plotted against the slope for each pixel of the two preceding texture patches with no
segmentation.
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between them becomes much more difficult. The

greater the degree of local averaging, the greater the
compactness of the resulting density estimates until,
in the limit of a global average, the estimate reduces
to a single value. Thus, by varying the decay length
and hence the degree of local averaging, we will
affect the computed densities. This in turn gives us
the freedom to choose a decay length that will
enhance differences in the densities corresponding to
different textures.

Kullback-Leibler information numbers, computed
from the texture fractal dimension pdfs, give a
convenient means for quantifying the similarity or
difference between pdfs. For non-normal distribu-
tions, pdf comparison is a more powerful tool for
pattern recognition than simply comparing the
distribution means.
The incorporation of known segmentation bound-

aries can lead to a dramatic reduction in the tail and
variance of the fd distribution. This in turn can lead

Figure 7. The probability density functions (pdfs) for the fractal dimension (fd) for all sixteen textures.
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Figure 8. Kullback-Leibler Number grayscale matrix plot that shows the relative Kullback-Leibler numbers comparing
different textures.

Figure 9. Edge and boundary effects for fractal dimension probability density functions (pdfs) for textures #10. The cases
are (a) full segmentation (b) partial segmentation and (c) no segmentation.

 at JOHNS HOPKINS UNIV on December 13, 2010sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


36

to dramatic improvements in classification accuracy,
whether in terms of mean fd or distribution via
Kullback-Leibler numbers.

In the future we will report on ongoing work in
adaptive kernel based averaging methods for the
covering method as well as on applications to medi-
cal computer aided diagnosis.

Acknowledgments
This work was supported in part by the Office of

Naval Research (R&T #4424314) and the NSWCDD
Independent Research program. The authors grate-
fully acknowledge Halford Hayes for help with the
initial programming and Richard Lorey for his
careful reading of the paper and many helpful
suggestions.

References

1. Brodatz, P. 1966. Texture: A Photographic Album for
Artists and Designers. Dover, New York.

2. Golub, G. and J. M. Ortega. 1993. Scientific Computing:
An Introduction With Parallel Computing. Academic
Press, San Diego.

3. Hayes, H. I., J. L. Solka, and C. E. Priebe. 1993.
"Parallel Computation of Fractal Dimension." in
Adaptive and Learning Systems 11, F. A. Sadjadi, Ed.,
Proc. SPIE 1962: 219-230.

4. Kullback, S. 1959. Information Theory and Statistics.
Wiley, New York.

5. Mandelbrot, B. 1977. The Fractal Geometry of Nature.
W. H. Freeman and Company, New York.

6. Peleg, S., J. Naor, R. Hartley, and D. Avnir. 1984.
"Multiple Resolution Texture Analysis and Classifica-
tion." IEEE Trans. Pattern Anal. Macli. Intell. PAMI-6:

518-523.

7. Peli, T. 1990. "Multiscale fractal theory and object
characterization." Journal of the Optical Society of America
A, Vol. 7, no. 6: 1101-1112.

8. Priebe, C. E. 1994. "Adaptive Mixtures." Journal of Am.
Statist. Assoc., vol. 89: 796-806.

9. Rogers, G. W., C. E. Priebe, H. Hayes, and J. L. Solka.
1993. "A Parallel Distributed Processing Algorithm for
Power Law Features Which Requires Only Nearest
Neighbor Communication." Proc. Fifth Workshop on
Neural Networks, SPIE vol. 2204: 269-275.

10. Sarkar, N., and B. B. Chaudhuri. 1992. "An Efficient
Approach to Estimate Fractal Dimension of Textural
Images." Pattern Recognition, vol. 25, no. 9:1035-1041.

11. Solka, J. L., C. E. Priebe, and G. W. Rogers. 1992. "An
initial assessment of discriminant surface complexity
for power law features." SIMULATION, vol. 58, no. 5:
311-318.

12. Stein, M. C. 1987. "Fractal image models and object
detection." SPIE, vol. 845 Visual Comm. and Image Pro-
cessing II: 293-300.

13. Wu, C.-M., Y.-C. Chen, and K.-S. Hsieh. 1992. "Texture
features for classification of ultrasonic liver images."
IEEE Trans. Medical Imaging, vol.11, no. 2:141-152.

GEORGE W. ROGERS received his BS

degree in Physics from Georgia
Southern University in 1977 and the
PhD degree in Theoretical Physics from
the University of South Carolina in
1984. Since 1985 he has been employed
at the Dahlgren Division of the Naval
Surface Warfare Center, where he has
worked in the fields of orbit computa-
tion, artificial neural networks, and

computational statistics.

CAREY E. PRIEBE received his BS

degree in Mathematics from Purdue
University in 1984, his MS degree in
Computer Science from San Diego State
University in 1988, and his PhD in
Computational Statistics from George
Mason University in 1994. Since 1985
Dr. Priebe has been working in non-
parametric estimation and statistical
pat-tern recognition, first for the Naval

Ocean Systems Center, San Diego, CA, and the Naval
Surface Warfare Center, Dahlgren, VA, and currently as an
Assistant Professor at The Johns Hopkins University.

JEFFREY L. SOLKA earned the BS

degree in Mathematics and Chemistry
from James Madison University in 1978,
the MS in Mathematics from James
Madison University in 1981, the MS in
Physics from Virginia Polytechnic
Institute and State University in 1989
and his PhD in Computational Statistics
from George Mason University in 1995.
Since 1984, Dr. Solka has been working

in nonparametric estimation and statistical pattern
recognition for the Naval Surface Warfare Center.

 at JOHNS HOPKINS UNIV on December 13, 2010sim.sagepub.comDownloaded from 

http://sim.sagepub.com/

