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a b s t r a c t

Given that r and s are natural numbers and X ∼ Binomial(r, q) and Y ∼ Binomial(s, p)
are independent random variables where q, p ∈ (0, 1), we prove that the likelihood ratio
of the convolution Z = X + Y is decreasing, increasing, or constant when q < p, q > p or
q = p, respectively.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let r, s ∈ N, z ∈ {0, . . . , r+ s}, and q, p ∈ (0, 1). Let X ∼ Binomial(r, q) and Y ∼ Binomial(s, p) be independent random
variables. Let Pr,s(z) denote the likelihood function of the convolution Z = X + Y , so that

Pr,s(z) =
r∑
k=0

( r
k

)( s
z − k

)
qk(1− q)r−kpz−k(1− p)s−z+k.

We will show that the ratio

Pr+1,s−1(z)
Pr,s(z)

is increasing, decreasing or constant – with respect to z – when q < p, q > p or q = p, respectively. Moreover, this result is
obtained by only appealing to elementary combinatorial identities.
This same ratio has been analyzed for its monotone likelihood ratio (MLR) properties with respect to fixed z (Ghurye and

Wallace [2], Grayson [3], Huynh [4]). Our main result is that the family of convolutions of independent binomial random
variables indexed by parameters r, swith r + s = c constant is a MLR family in z.
In statistical inference, MLR families give rise to uniformly most powerful tests — for a given null hypothesis, the same

test statistic is known to be optimal (in terms of statistical power) across an entire composite alternative hypothesis (Bickel
and Doksum [1], Section 4.3). Our result demonstrates that, for r + s = c constant and q > p, rejecting H0 : r = 0 for large
values of the test statistic Z is most powerful against any alternative HA : r = r ′ > 0.
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2. Main result

Theorem. The ratio
Pr+1,s−1(z)
Pr,s(z)

is increasing, decreasing or constant – with respect to z – when q < p, q > p or q = p, respectively.

Proof. Fix r, s ∈ N and p, q ∈ (0, 1). We are considering the likelihood

Pr,s(z) =
r∑
k=0

( r
k

)( s
z − k

)
qk(1− q)r−kpz−k(1− p)s−z+k

or equivalently

Pr,s(z) = [(1− q)r(1− p)s]
(
p
1− p

)z
Sr,s(z)

where

Sr,s(z) =
r∑
k=0

( r
k

)( s
z − k

)
αk

and α = q(1−p)
p(1−q) .

In particular, for 1 ≤ z ≤ r + s, we are interested in the difference of the likelihood ratios

Pr+1,s−1(z)
Pr,s(z)

−
Pr+1,s−1(z − 1)
Pr,s(z − 1)

=

(
1− q
1− p

)(
Sr+1,s−1(z)Sr,s(z − 1)− Sr+1,s−1(z − 1)Sr,s(z)

Sr,s(z)Sr,s(z − 1)

)
.

Let

1r,s(z) = Sr+1,s−1(z)Sr,s(z − 1)− Sr+1,s−1(z − 1)Sr,s(z).

We will show that1r,s(z) vanishes, is positive, or is negative when p = q, q > p, or q < p, respectively.
For legibility, we will use the notation a = s− 1, b = z − j, c = z − l+ j, and d = z − k.
First, we will rewrite the quantity 1r,s(z) in terms of powers of α, and apply an elementary combinatorial identity on

selected terms:

1r,s(z) =
r+1∑
j=0

r∑
k=0

(
r + 1
j

)( r
k

) [(a
b

)(a+ 1
d− 1

)
−

(
a

b− 1

)(
a+ 1
d

)]
αj+k

=

r+1∑
j=0

r∑
k=0

(
r + 1
j

)( r
k

) [(a
b

) [( a
d− 1

)
+

(
a

d− 2

)]
−

(
a

b− 1

)[(a
d

)
+

(
a

d− 1

)]]
αj+k

and thus for each l ∈ {0, 1, . . . , 2r + 1}we can express the coefficient of αl as
r+1∑
j=0

(
r + 1
j

)(
r
l− j

)[(a
b

) [( a
c − 1

)
+

(
a
c − 2

)]
−

(
a

b− 1

)[(a
c

)
+

(
a
c − 1

)]]
.

We will split this coefficient into a pair of sums
l+1∑
j=0

(
r + 1
j

)(
r
l− j

)[(a
b

)( a
c − 2

)
−

(
a

b− 1

)(
a
c − 1

)]

+

l∑
j=0

(
r + 1
j

)(
r
l− j

)[(a
b

)( a
c − 1

)
−

(
a

b− 1

)(a
c

)]
and separately analyze each sum in this pair of sums.
Note that twice the first of these sums can be expressed as

l+1∑
j=0

(
r + 1
j

)(
r
l− j

)[(a
b

)( a
c − 2

)
−

(
a

b− 1

)(
a
c − 1

)]

+

l+1∑
j=0

(
r + 1
l+ 1− j

)(
r
j− 1

)[(
a
c − 1

)(
a

b− 1

)
−

(
a
c − 2

)(a
b

)]
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which equals
l+1∑
j=0

[(
r + 1
j

)(
r
l− j

)
−

(
r + 1
l− j+ 1

)(
r
j− 1

)][(a
b

)( a
c − 2

)
−

(
a

b− 1

)(
a
c − 1

)]
.

Twice the second of these sums can be expressed as
l∑
j=0

(
r + 1
j

)(
r
l− j

)[(a
b

)( a
c − 1

)
−

(
a

b− 1

)(a
c

)]
+

l∑
j=0

(
r + 1
l− j

)(
r
j

)[(
a

b− 1

)(a
c

)
−

(a
b

)( a
c − 1

)]
which equals

l+1∑
j=0

[(
r + 1
j

)(
r
l− j

)
−

(
r + 1
l− j

)(
r
j

)][(a
b

)( a
c − 1

)
−

(
a

b− 1

)(a
c

)]
.

Thus, twice the entire coefficient of the αl term can be expressed as the following new pair of sums:

2[α]l = S
(l)
1 + S

(l)
2 =

l∑
j=0

[(
r + 1
j

)(
r
l− j

)
−

(
r + 1
l− j+ 1

)(
r
j− 1

)][(a
b

)( a
c − 2

)
−

(
a

b− 1

)(
a
c − 1

)]

+

l∑
j=0

[(
r + 1
j

)(
r
l− j

)
−

(
r + 1
l− j

)(
r
j

)][(a
b

)( a
c − 1

)
−

(
a

b− 1

)(a
c

)]
.

For l ∈ {0, . . . , 2r}, let T (l) = −S(l+1)2 + S(l)2 . From the identity(
r + 1
j

)(
r
l− j

)
−

(
r + 1
l− j+ 1

)(
r
j− 1

)
= −

[(
r + 1
j

)(
r

l− j+ 1

)
−

(
r + 1
l− j+ 1

)(
r
j

)]
,

we have

1r,s(z) =
(
1
2

)[ 2r∑
l=0

T (l)αl + (S(2r+1)1 + S(2r+1)2 )α2r+1

]
.

Since S(2r+1)1 = S(0)2 = 0, we can rewrite1r,s(z) as(
α − 1
2

) 2r∑
j=0

S(j+1)2 αj

which vanishes, is positive, or is negative when p = q, q > p, or q < p, respectively, due to the fact that each of the S(l)2
terms are non-negative. �

3. Example

Consider as an illustrative example the application of statistical inference to random graphs — for instance, social
network analysis. Let G = (V , E) be a random graph on the n vertices {1, . . . , n}. Assume that the

( n
2

)
random variables

Xi,j = [edge(i, j) ∈ E] for i, j ∈ V are independent Bernoulli(pi,j). A simplest null hypothesis is homogeneity– pi,j = p ∈ [0, 1)
for all i, j ∈ V (Erdos–Renyi) – and a corresponding alternative hypothesis is that some subset VA ⊂ V with 1 < |VA| ≤ n
has the property that i, j ∈ VA ⇒ Xi,j ∼ Bernoulli(q)while all remaining edges are Bernoulli(p), with q > p. Assuming that
one observes only the size of the graph, z = |E|, our MLR result shows that the uniformlymost powerful test rejects the null
hypothesis for large values of z.
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