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Maximum Lq-Likelihood Estimation via the
Expectation-Maximization Algorithm: A Robust

Estimation of Mixture Models
Yichen QIN and Carey E. PRIEBE

We introduce a maximum Lq-likelihood estimation (MLqE) of mixture models using our proposed expectation-maximization (EM) al-
gorithm, namely the EM algorithm with Lq-likelihood (EM-Lq). Properties of the MLqE obtained from the proposed EM-Lq are studied
through simulated mixture model data. Compared with the maximum likelihood estimation (MLE), which is obtained from the EM algorithm,
the MLqE provides a more robust estimation against outliers for small sample sizes. In particular, we study the performance of the MLqE
in the context of the gross error model, where the true model of interest is a mixture of two normal distributions, and the contamination
component is a third normal distribution with a large variance. A numerical comparison between the MLqE and the MLE for this gross error
model is presented in terms of Kullback–Leibler (KL) distance and relative efficiency.

KEY WORDS: Gross error model; Robustness.

1. INTRODUCTION

Maximum likelihood is among the most commonly used es-
timation procedures. For mixture models, the maximum likeli-
hood estimation (MLE) via the expectation-maximization (EM)
algorithm introduced by Dempster, Laird, and Rubin (1977) is
a standard procedure. Recently, Ferrari and Yang (2010) in-
troduced the concept of maximum Lq-likelihood estimation
(MLqE), which can yield robust estimation by trading bias for
variance, especially for small or moderate sample sizes. This
article combines the MLqE with the EM algorithm to obtain the
robust estimation for mixture models, and studies the perfor-
mance of this robust estimator.

In this article, we propose a new EM algorithm—namely an
expectation-maximization algorithm with Lq-likelihood (EM-
Lq) which addresses MLqE within the EM framework. In the
EM-Lq algorithm, we propose a new objective function at each
M-step which plays the role that the complete log-likelihood
plays in the traditional EM algorithm. By doing so, we inherit
the robustness of the MLqE and make it available for mixture
model estimation.

Our study focuses on the performance of the MLqE for esti-
mation in a gross error model f ∗

0 (x) = (1 − ε)f0(x) + εferr(x),
where f0(x) is what we are interested in estimating and ferr(x)
is the measurement error component. For simplicity, we con-
sider the object of interest f0(x) to be a mixture of two normal
distributions. And ferr(x) is a third normal distribution with a
large variance. We will examine the properties of the MLqE,
in comparison to that of the MLE, at different levels of the
contamination ratio ε.

The measurement error problem is one of the most practical
problems in Statistics. Let us consider that some measurements
X = (X1, X2, . . . , Xn) are produced by a scientific experiment.

Yichen Qin is PhD student (E-mail: yqin2@jhu.edu) and Carey E. Priebe
is Professor (E-mail: cep@jhu.edu), Department of Applied Mathematics and
Statistics, Johns Hopkins University, 100 Whitehead Hall, 3400 North Charles
Street, Baltimore, MD 21210. This work is partially supported by National
Security Science and Engineering Faculty Fellowship (NSSEFF) and Johns
Hopkins University Human Language Technology Center of Excellence (JHU
HLT COE). The authors thank the associate editor and two referees for insightful
comments that greatly improved the article.

X has a distribution fθ with a interpretable parameter θ that
we are interested in. However, we do not observe X directly.
Instead, we observe X∗ = (X∗

1, X
∗
2, . . . , X

∗
n) where most of the

X∗
i = Xi , but there are a few outliers. In other words, X∗ is X

contaminated with gross errors which are mostly due to either
human error or instrument malfunction. But fθ is still the target
of our estimation (Bickel and Doksum (2007)). To overcome
this problem and still be able to do statistical inference for fθ

in the mixture model case, we come up with this idea of the
EM-Lq.

There has been an extensive amount of early work on robust
estimation of mixture models and clustering. For example, Peel
and McLachlan (2000) used t distributions instead of normal
distributions to incorporate the phenomena of fat tails, and gave
a corresponding expectation/conditional maximization (ECM)
algorithm which was originally introduced by Meng and Rubin
(1993). McLachlan, Ng, and Bean (2006) further formalized
this idea and applied it to robust cluster analysis. Tadjudin and
Landgrebe (2000) made a contribution on robust estimation of
mixture model parameters by using both labeled and unlabeled
data, and assigning different weights to different data points.
Garcia-Escudero and Gordaliza (1999) studied the robustness
properties of the generalized k-means algorithm from the influ-
ence function and the breakpoint perspectives. Finally, Cuesta-
Albertos, Matran, and Mayo-Iscar (2008) applied the trimmed
subsample of the data for fitting mixture models and iteratively
adjusted the subsample after each estimation.

The remainder of this article is organized as follows. Section
2 gives an introduction to the MLqE along with its advantages
compared to the MLE. Properties of the MLqE for mixture
models are discussed in Section 3. In Section 4, we present our
EM-Lq, and explain the rationale behind it. The application of
the EM-Lq in mixture models is introduced and discussed in
Section 5. The comparisons of the MLqE (obtained from the
EM-Lq) and the MLE based on simulation as well as real data
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are presented in Section 6. We address the issue of tuning param-
eter q in Section 7. We conclude with a discussion and directions
for future research in Section 8, and relegate the proofs to
Section Appendix.

2. MAXIMUM Lq-LIKELIHOOD ESTIMATION

2.1 Definitions and Basic Properties

First, let us start with the traditional maximum likelihood es-
timation. Suppose data X follows a distribution with probability
density function fθ parameterized by θ ∈ � ⊂ Rd . Given the
observed data x = (x1, . . . , xn), the maximum likelihood esti-
mate is defined as θ̂MLE = arg maxθ∈�{∑n

i=1 log f (xi ; θ )}. Sim-
ilarly, the maximum Lq-likelihood estimate (Ferrari and Yang
2010) is defined as

θ̂MLqE = arg max
θ∈�

n∑
i=1

Lq(f (xi ; θ )),

where Lq(u) = (u1−q − 1)/(1 − q) and q > 0. By L’Hopital’s
rule, when q → 1, Lq(u) → log(u). The tuning parameter q is
called the distortion parameter, which governs how distorted
Lq is away from the log function. Based on this property, we
conclude that the MLqE is a generalization of the MLE.

Define U (x; θ ) = ∇θ log f (x; θ ) = f ′
θ (x; θ )/f (x; θ ) and U ∗

(x; θ, q) = ∇θLq(f (x; θ )) = U (x; θ )f (x; θ )1−q , we know that
θ̂MLE is a solution of the likelihood equation 0 = ∑n

i=1 U (xi ; θ ).
Similarly, θ̂MLqE is a solution of the Lq-likelihood equation

0 =
n∑

i=1

U ∗(xi ; θ, q) =
n∑

i=1

U (xi ; θ )f (xi ; θ )1−q . (1)

It is easy to see that θ̂MLqE is a solution to a weighted version
of the likelihood equation that θ̂MLE solves. The weights are pro-
portional to the power transformation of the probability density
function, f (xi ; θ )1−q . When q < 1, the MLqE puts more weight
on the data points with high likelihoods, and less weight on the
data points with low likelihoods. The tuning parameter q adjusts
how aggressively the MLqE distorts the weight allocation. The
MLE can be considered as a special case of the MLqE with
equal weights.

In particular, when f is a normal distribution, our μ̂MLqE and
σ̂ 2

MLqE satisfy

μ̂MLqE = 1∑n
i=1 wi

n∑
i=1

wixi, (2)

σ̂ 2
MLqE = 1∑n

i=1 wi

n∑
i=1

wi(xi − μ̂MLqE)2, (3)

where wi = ϕ(xi ; μ̂MLqE, σ̂ 2
MLqE)1−q and ϕ is a normal proba-

bility density function.
From Equations (2) and (3), we conclude that the MLqE of

the mean and the variance of a normal distribution are just the
weighted mean and weighted variance. When q < 1, the MLqE
gives smaller weights for data points lying in the tail of the
normal distribution, and puts more weights on data points near
the center. By doing so, the MLqE becomes less sensitive to
outliers than the MLE at the cost of introducing bias into the
estimation. A simple and fast reweighting algorithm is available

for solving Equations (2) and (3). Details of the algorithm are
described in Section 8.

2.2 Consistency and Bias-Variance Tradeoff

Before discussing the consistency of the MLqE, let us look at
the MLE first. It is well studied that the MLE is quite gen-
erally a consistent estimator. Suppose, the true distribution
f0 ∈ F , where F is a family of distributions; we know that
f0 = arg maxg∈F Ef0 log g(X), which shows the consistency of
the MLE. However, when we replace the log function with the
Lq function, we do not have the same property.

We first define f (r), a transformed distribution of f called the
escort distribution, as

f (r) = f (x; θ )r∫
f (x; θ )rdx

. (4)

We also define F to be a family of distributions that is closed
under such a transformation (i.e., ∀f ∈ F , f (r) ∈ F). Equipped
with these definitions, we have the following property:

f
(1/q)
0 = arg max

g∈F
Ef0Lq(g(X)).

Thus we see that the maximizer of the expectation of Lq-
likelihood is the escort distribution (r = 1/q) of the true density
f0. To also achieve consistency for the MLqE, Ferrari and Yang
(2010) let q tend to 1 as n approaches infinity.

For a parametric distribution family G = {f (x; θ ) : θ ∈ �},
suppose it is closed under the escort transformation (i.e.,
∀θ ∈ �, ∃θ ′ ∈ �, s.t. f (x; θ ′) = f (x; θ )(1/q)). We have a simi-
lar property, θ̃ = arg maxθ∈� Eθ0Lq(f (X; θ )), where θ̃ satisfies
f (x; θ̃ ) = f (x; θ0)(1/q)

We now understand that, when maximizing the Lq-likelihood,
we are essentially finding the escort distribution of the true den-
sity, not the true density itself, so our MLqE is asymptotically
biased. However, this bias can be compensated by variance re-
duction if the distortion parameter q is properly selected. Take
the MLqE for the normal distribution for example. With an ap-
propriate q < 1, the MLqE will partially ignore the data points
on the tails while focusing more on fitting data points around
the center. The MLqE obtained this way is possibly biased (es-
pecially for the scale parameter), but will be less volatile to a
significant change of data on the tails, hence, a good example of
bias-variance tradeoff. q can be considered as a tuning parameter
that adjusts the magnitude of the bias-variance tradeoff.

2.3 Confidence Intervals

There are generally two ways to construct confidence inter-
vals for the MLqE. One is parametric, the other is nonparametric.
In this section, we discuss the univariate case. The multivariate
case can be extended naturally.

For the parametric way, we know that the MLqE is an M-
estimator, whose asymptotic variance is available. To have the
asymptotic variance be valid, we need the sample size to be
reasonably large so that the central limit theorem works. How-
ever, in our application, the MLqE deals with small or moderate
sample sizes in most cases. So the parametric way is not ideal,
but it does provide a guideline to evaluate the estimator.

The second way is the nonparametric bootstrap method. We
create bootstrap samples from the original sample, calculate
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their MLqEs for all bootstrap samples. We further calculate
the lower and upper quantiles of these MLqEs, and call these
quantiles the lower and upper bounds of the confidence interval.
This method is model agnostic, and works well with the MLqE.

3. MLqE OF MIXTURE MODELS

We now look at the problem of estimating mixture mod-
els. A mixture model is defined as f (x) = ∑k

j=1 πjfj (x; θj ).
Unlike the exponential family, which is proved to be closed
under the escort transformation (Equation (4)), the mixture
model family is not closed under such a transformation.
For example, consider a mixture model with the complex-
ity k = 2. The escort transformation with 1/q = 2 of this
distribution is f (x)(1/q) ∝ (π1ϕ1(x) + π2ϕ2(x))2 = π2

1 ϕ1(x)2 +
π2

2 ϕ2(x)2 + 2π1π2ϕ1(x)ϕ2(x), which is a mixture model with
three components.

More generally, suppose f0 ∈ F , where F is a mixture model
family with complexity k. Since f

(1/q)
0 /∈ F , we know that

f
(1/q)
0 �= g̃ := arg max

g∈F
Ef0Lq(g(X)),

where g̃ can be considered as the projection of f
(1/q)
0 onto F .

Again, the MLqE of mixture models brings more bias to the
estimate. This time, the new bias is a model bias as opposed
to the estimation bias which we have discussed in the previous
section. When estimating mixture models using the MLqE, we
carry two types of bias: estimation bias and model bias. The
distortion parameter q now adjusts both of them. This idea is
illustrated in Figure 1(a).

There is a simple way to partially correct the bias. Since
we know that the MLqE is unbiased for the escort distribu-
tion of the true distribution. After we obtain the MLqE from
data, f̂MLqE, we can blow it up by a power transformation
g = f̂

q
MLqE/

∫
f̂

q
MLqEdx to get a less biased estimate. However,

this only partially corrects the bias since the projection from
the escort distribution onto the mixture model family cannot be
recovered by this transformation.

Because the MLqE has the desirable property of being robust
against outliers, we introduce the gross error model to evaluate
the MLqE’s performance. A gross error model is defined as
f ∗

0 (x) = (1 − ε)f0(x) + εferr(x), where f0 is a mixture model
with complexity k, ferr can be considered as a measurement
error component, and ε is the contamination ratio. Hence, f ∗

0
is also a mixture model with complexity k + 1. The gross error
density f ∗

0 can be considered as a small deviation from the target
density f0. To build an estimator for f0 that is robust against
ferr, we apply the MLqE. Generally, there are two ways to apply
the MLqE in this situation.

First, we can directly use a mixture model with complexity
k to estimate f0 based on data from f ∗

0 . We call this approach
the direct approach. This time the model is more complex than
before. The idea is illustrated in Figure 1(b). Suppose, F is a
mixture model family with complexity k, and f0 ∈ F , f ∗

0 /∈ F ,
f

∗(1/q)
0 /∈ F . We obtain the MLqE of f0(x), g̃, by

f
∗(1/q)
0 �= g̃ := arg max

g∈F
Ef ∗

0
Lq(g(X)).

Figure 1. Illustration of the MLqE of mixture models: (a) shows
the usual case, which is the MLqE of mixture models with correctly
specified models, (b) shows the MLqE of nonmeasurement error com-
ponents f0 within the gross error model f ∗

0 using the misspecified
model, and (c) shows the MLqE of nonmeasurement error components
f0 within the gross error model f ∗

0 using the correctly specified model.

Here we use the estimation bias and the model bias to offset the
measurement error effect on f0. Please note that this approach
is essentially an estimation under the misspecified model.

The second approach is that we use a mixture model with
complexity k + 1 to estimate f ∗

0 and project the estimate to
the k component mixture model family by removing the largest
variance component (i.e., the measurement error component)
and normalizing the weights. We call this approach the indirect
approach. The projected model is our estimate for f0. In this
case, we essentially treat the parameters of the measurement
error component as nuisance parameters. This idea is illustrated
in Figure 1(c). In Figure 1(c), g̃ is our estimate of f ∗

0 . And g̃0,
the projection of g̃ onto F0, is our estimate of f0. This approach
is an estimation conducted under the correctly specified model.
Although the model is correctly specified, we may have higher
estimation variance as we estimate more parameters.

In this article, we will study the MLqE using the above two
approaches.

Please note that, when q �= 1, the MLqE is an inconsistent
estimator. Ferrari and Yang (2010) let q → 1 as n → ∞ to force
the consistency. In our case, we allow the MLqE to be incon-
sistent because our data are contaminated. We are no longer
after the true underlying distribution f ∗

0 that generates the data,
but are more interested in estimating the nonmeasurement error
components f0 using the contaminated data. Since the goal is
not to estimate f ∗

0 , being consistent will not help the estimator
in terms of robustness.
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4. EM ALGORITHM WITH Lq-LIKELIHOOD

We now propose a variation of the EM algorithm—the ex-
pectation maximization algorithm with Lq-likelihood (EM-Lq),
which gives the local maximum Lq-likelihood. Before introduc-
ing our EM-Lq, let us briefly review the rationale of the EM.
Throughout this article, we use X, Z, Z for random variables
and vectors, and x, z, z for realizations.

4.1 Why Does the EM Algorithm Work?

The EM algorithm is an iterative method for finding a local
maximum likelihood by making use of observed data X and
missing data Z. The rationale behind the EM is that

n∑
i=1

log p(xi ; �) =
n∑

i=1

E�old [log p(X,Z; �)|X = xi]︸ ︷︷ ︸
J (�,�old)

−
n∑

i=1

E�old [log p(Z|X; �)|X = xi]︸ ︷︷ ︸
K(�,�old)

,

where J (�,�old) is the expected complete log-likelihood,
and K(�,�old) takes its minimum at � = �old and
∂

∂�
K(�,�old)|�=�old = 0. Standing at the current estimate

�old, to climb uphill on
∑n

i=1 log p(xi ; �) only requires us
to climb J, and K will automatically increase. Meanwhile,
the incomplete log-likelihood and the expected complete log-
likelihood share the same derivative at � = �old, that is,

∂

∂�

n∑
i=1

log p(xi ; �)|�=�old = ∂

∂�
J (�,�old)|�=�old . (5)

This is also known as the minorization-maximization algorithm
(MM). A detailed explanation of the algorithm can be found
in Lange, Hunter, and Yang (2000). Our algorithm presented in
the next section is essentially built on Lange, Hunter, and Yang
(2000) with variation made for the Lq-likelihood.

4.2 EM Algorithm With Lq-Likelihood

Having the idea of the traditional EM in mind, let us maximize
the Lq-likelihood

∑n
i=1 Lq(p(xi ; �)) in a similar fashion. For

any two random variables X and Z, we have

Lq(p(X; �)) = Lq

(
p(X,Z; �)

p(Z|X; �)

)
= Lq(p(X,Z; �)) − Lq(p(Z|X; �))

p(Z|X; �)1−q
,

where we have used Lq(a/b) = [Lq(a) − Lq(b)]/b1−q (Lemma
1, part (iii) in Section 8). Applying the above equation on data
x1, . . . , xn, and taking expectation (under �old) given observed
data x1, . . . , xn, we have

n∑
i=1

E�old [Lq(p(X; �))|X = xi]

=
n∑

i=1

E�old

[
Lq(p(X,Z; �)) − Lq(p(Z|X; �))

p(Z|X; �)1−q

∣∣∣∣X = xi

]
,

n∑
i=1

Lq(p(xi ; �))

=
n∑

i=1

E�old

[(
p(Z|X; �old)

p(Z|X; �)

)1−q (
Lq(p(X,Z; �))

p(Z|X; �old)1−q

− Lq(p(Z|X; �))

p(Z|X; �old)1−q

) ∣∣∣∣X = xi

]
,

where we multiply and divide P (Z|X,�old)1−q in the numerator
and the denominator.

Define

A(�,�old) =
n∑

i=1

E�old

[
Lq(p(X,Z; �))

p(Z|X; �old)1−q

− Lq(p(Z|X; �))

p(Z|X; �old)1−q

∣∣∣∣X = xi

]
,

B(�,�old) =
n∑

i=1

E�old

[
Lq(p(X,Z; �))

p(Z|X; �old)1−q

∣∣∣∣X = xi

]
,

C(�,�old) = −
n∑

i=1

E�old

[
Lq(p(Z|X; �))

p(Z|X; �old)1−q

∣∣∣∣X = xi

]
,

⇒ A(�,�old) = B(�,�old) + C(�,�old). (6)

Based on the definitions above, we have the following theorems.

Theorem 1. C(�,�old) takes its minimum at � = �old, that
is, C(�old, �old) = min� C(�,�old).

Proof.

C(�old, �old) − C(�,�old)

=
n∑

i=1

E�old

[
Lq

(
p(Z|X; �)

p(Z|X; �old)

) ∣∣∣∣X = xi

]

≤
n∑

i=1

E�old

[
p(Z|X; �)

p(Z|X; �old)
− 1

∣∣∣∣X = xi

]

=
n∑

i=1

∑
z

(
p(z|xi ; �)

p(z|xi ; �old)
− 1

)
p(z|xi ; �

old) = 0,

where the inequality comes from the fact that Lq(u) ≤ u − 1
(Lemma 1, part (iv) in Section 8). The above inequality becomes
equality only when � = �old. �

Theorem 2. When A, B, and C are differentiable with respect
to �, we have

∂

∂�
C(�,�old)|�=�old = 0,

∂

∂�
A(�,�old)|�=�old = ∂

∂�
B(�,�old)|�=�old . (7)

Proof. The first part is a direct result from Theorem 1. By
Equation (6) and the first part of the theorem, we have the
second part. �

Comparing Equation (7) with Equation (5), we can think of B
as a proxy of the complete Lq-likelihood (i.e., J), A as a proxy
of the incomplete Lq-likelihood, and C as a proxy of K.

We know that A is only an approximation of
∑n

i=1
Lq(p(xi ; �)) due to the factor of (p(Z|X; �old)/p(Z|X; �))1−q .
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However, at � = �old, we do have

A(�,�old)|�=�old =
n∑

i=1

Lq(p(xi ; �))|�=�old . (8)

A will be a good approximation of
∑n

i=1 Lq(p(xi ; �)) be-
cause that (1) within a small neighborhood Nr (�old) = {� :
d(�,�old) < r}, p(Z|X; �old)/p(Z|X; �) is approximately
1; (2) due to the transformation y = x1−q , (p(Z|X; �old)/
p(Z|X; �))1−q gets to be pushed toward 1 even further when q
is close to 1; and (3) even if (p(Z|X; �old)/p(Z|X; �))1−q is
far from 1, because we sum over all the xis, we still average out
these poorly approximated data points.

Given that C achieves minimum at �old, starting at �old and
maximizing A requires only maximizing B. To take advantage
of this property, we use A to approximate

∑n
i=1 Lq(p(xi ; �))

at each iteration, and then maximize B to maximize A, and
eventually to maximize

∑n
i=1 Lq(p(xi ; �)). B is usually easy to

maximize. Based on this idea, we build our EM-Lq as follows:

1. E-step: Given �old, calculate B.
2. M-step: Maximize B and obtain �new = arg max�

B(�,�old).
3. If �new converges, we terminate the algorithm. Otherwise,

we set �old = �new, and return to step 1.

4.3 Monotonicity and Convergence

In this section, we will discuss the monotonicity and the
convergence of the EM-Lq. We start with the following theorem.

Theorem 3. For any �, we have the lower bound of the Lq-
likelihood function

n∑
i=1

Lq(p(xi ; �)) ≥ B(�,�old) + C(�old, �old). (9)

When � = �old, we have

n∑
i=1

Lq(p(xi ; �
old)) = B(�old, �old) + C(�old, �old).

Proof. See Section 8 for proof. �

From Theorem 3, we know that, at each M-step, as long as
we can find �new that increases B, that is, B(�new, �old) >

B(�old, �old), we can guarantee that the Lq-likelihood will also
increase, that is,

∑n
i=1 Lq(xi ; �new) >

∑n
i=1 Lq(xi ; �old). It is

because

n∑
i=1

Lq(p(xi ; �
new)) ≥ B(�new, �old) + C(�old, �old)

> B(�old, �old) + C(�old, �old)

=
n∑

i=1

Lq(p(xi ; �
old)).

Thus, we have proved the monotonicity of our EM-Lq algorithm.

Based on Theorem 3, we can further derive the following
theorem.

Theorem 4. For our EM-Lq algorithm, when A, B, and the
Lq-likelihood are differentiable with respect to �, it holds that

∂

∂�

n∑
i=1

Lq(p(xi ; �))|�=�old

= ∂

∂�
B(�,�old)|�=�old = ∂

∂�
A(�,�old)|�=�old ,

n∑
i=1

Lq(P (xi ; �))|�=�old = A(�,�old)|�=�old .

Proof. See Section 8 for proof. �

It becomes clear that A is not only just a good approximation
of, but also the first order approximation of,

∑n
i=1 Lq(p(xi ; �)).

One good thing following from the property of the
first order approximation is that, when we have a fixed
point, meaning that A(�old, �old) = max� A(�,�old), then we
know ∂

∂�
A(�,�old)|�=�old = ∂

∂�

∑n
i=1 Lq(p(xi ; �))|�=�old =

0, which means that
∑n

i=1 Lq(p(xi ; �)) takes its local maxi-
mum at the same place that A(�,�) does. So as long as we
achieve the maximum of A, we simultaneously maximize the
incomplete Lq-likelihood

∑n
i=1 Lq(p(xi ; �)).

By Theorem 4, we know that, as long as ∂
∂�

B(�,�old)|�=�old

�= 0, we can always find a �new, such that
∑n

i=1 Lq(p(xi ; �new))
>

∑n
i=1 Lq(p(xi ; �old)). Hence, our EM-Lq can be considered

as a generalized EM algorithm (GEM) for Lq-likelihood. Wu
(1983) has proved the convergence of the GEM from a pure
optimization approach (Global Convergence Theorem, Theorem
1 and Theorem 2 of Wu, 1983, pp. 97–98), which we can directly
use to prove the convergence of the EM-Lq.

In our simulation results, the converging point of the EM-Lq
is always the same as the true maximizer of the Lq-likelihood
which is obtained from the optimization package fmincon()
in Matlab. We also try to move a small step away from the
solution given by the EM-Lq to check whether the Lq-likelihood
decreases. It shows that a small step in any directions will cause
the Lq-likelihood to decrease, which numerically demonstrates
that the solution is a local maximizer.

5. EM-Lq ALGORITHM FOR MIXTURE MODELS

5.1 EM-Lq for Mixture Models

Returning to our mixture model, suppose the observed data
x1, . . . , xn are generated from a mixture model f (x; �) =∑k

j=1 πjfj (x; θj ) with parameter � = (π1, . . . , πk−1, θ1, . . . ,

θk). The missing data are the component labels [z1, . . . , zn],
where zi = (zi1, . . . , zik) is a k-dimensional component label
vector with each element zij being 0 or 1 and

∑k
j=1 zij = 1.

In this situation, we have

p(x, z; �) =
k∏

j=1

(πjfj (x; θj ))zj , (10)

p(z|x; �) =
k∏

j=1

p(zj |x; �)zj =
k∏

j=1

(
πjfj (x; θj )

f (x; �)

)zj

, (11)
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where x is an observed data point, and z = (z1, . . . , zk) is a com-
ponent label vector. Substituting these into B and reorganizing
the formula, we have:

Theorem 5. In the mixture model case, B can be expressed as

B(�,�old) =
n∑

i=1

k∑
j=1

τj (xi,�
old)qLq(πjfj (xi ; θj )),

where τj (xi,�
old) = E�old [Zij |X = xi], that is, the soft label in

the traditional EM.

Proof. See Section 8 for proof. �
We define new binary random variables Z̃ij whose expecta-

tion is τ̃j (xi,�
old) = E�old [Z̃ij |X = xi] = E�old [Zij |X = xi]q .

Z̃ij can be considered as a distorted label as its probability distri-
bution is distorted (i.e., P�old (Z̃ij = 1|xi) = P�old (Zij = 1|xi)q).
Please note that, for Z̃ij , we no longer have

∑k
j=1 τ̃j (xi,�

old) =
1. After replacement, B becomes

B(�,�old) =
n∑

i=1

k∑
j=1

τ̃j (xi,�
old)Lq(πjfj (xi ; θj )).

To maximize B, we apply the first order condition and obtain
the following theorem.

Theorem 6. The first-order condition of B with respect to θj

and πj yields

0 = ∂

∂θj

B(�,�old) ⇒

0 =
n∑

i=1

τ̃j (xi,�
old)

∂
∂θj

fj (xi ; θj )

fj (xi ; θj )
fj (xi ; θj )1−q, (12)

0 = ∂

∂πj

B(�,�old) ⇒

πj ∝
[

n∑
i=1

τ̃j (xi,�
old)fj (xi ; θj )1−q

] 1
q

. (13)

Proof. See Section 8 for proof. �
Recall that the M-step in the traditional EM solves a similar

set of equations,

0 = ∂

∂θj

J (�,�old) ⇒ 0 =
n∑

i=1

τj (xi,�
old)

∂
∂θj

fj (xi ; θj )

fj (xi ; θj )
, (14)

0 = ∂

∂πj

J (�,�old) ⇒ πj ∝
n∑

i=1

τj (xi,�
old). (15)

Comparing Equations (14) and (15) with Equations (12) and
(13), we see that (1) θnew

j of the EM-Lq satisfies a weighted
likelihood equation, where the weights contain both the dis-
torted soft label τ̃j (xi,�

old) and the power transformation of
the individual component density function, fj (xi ; θj )1−q ; and
(2) πj is proportional to the summation of the distorted soft
label τ̃j (xi,�

old) adjusted by the individual density function.

5.2 EM-Lq for Gaussian Mixture Models

For a Gaussian mixture model with parameter � = (π1, . . . ,

πk−1, μ1, . . . , μk, σ
2
1 , . . . , σ 2

k ). At each E-step, we calculate

τ̃j (xi,�
old) = [

πold
j ϕ(xi ;μold

j ,σ 2old
j )

f (xi ,�old) ]q . At each M-step, we solve
Equations (12) and (13) to yield

μnew
j = 1∑n

i=1 w̃ij

n∑
i=1

w̃ij xi, (16)

σ 2
j

new = 1∑n
i=1 w̃ij

n∑
i=1

w̃ij

(
xi − μnew

j

)2
, (17)

πnew
j ∝

[
n∑

i=1

τ̃j (xi,�
old)ϕ

(
xi ; μ

new
j , σ 2

j

new)1−q

] 1
q

,

where w̃ij = τ̃j (xi,�
old)ϕ(xi ; μnew

j , σ 2
j

new
)1−q . The same itera-

tive reweighting algorithm designed for solving Equations (2)
and (3) can be used to solve Equations (16) and (17). Details of
the algorithm is shown in Section 8.

At each M-step, it is feasible to replace w̃ij with w̃∗
ij = τ̃j

(xi,�
old)ϕ(xi ; μold

j , σ 2
j

old
)1−q , which only depends on the �old,

to improve the efficiency of the algorithm. Thus we can avoid the
re-weighting algorithm at each M-step. This replacement will
simplify the EM-Lq algorithm significantly. We have done the
simulation to show that this modified version of the algorithm
also gives same solutions as the original EM-Lq algorithm.

5.3 Convergence Speed

We present a preliminary comparison of the convergence
speeds of the EM-Lq and the EM algorithm using a Gaus-
sian Mixture Model with complexity of 2 (2GMM), f (x) =
0.4ϕ(x; 1, 2) + 0.6ϕ(x; 5, 2), whose two components are in-
separable because of the overlap. Surprisingly, in this case, the
convergence of the EM-Lq is on average slightly faster than that
of the EM.

The comparison of the convergence speed is based on r, which
is defined as

r = ‖�(k) − �(k−1)‖
‖�(k−1) − �(k−2)‖ ,

where k is the last iteration of the EM-Lq or the EM algorithm.
The smaller r is, the faster the convergence is.

We simulate 1000 datasets according to the 2GMM, use the
EM-Lq (q = 0.8) and the EM to fit the data, and record the
convergence speed difference rMLqE − rMLE. The average con-
vergence speed difference is −0.012 with a standard error of
0.002, which means the negative difference in the convergence
speed is statistically significant. We note, however, that compar-
ing convergence speed can be misleading in such multimodel
situations.

However, if we change the 2GMM to a gross error model of
3GMM: f (x) = 0.4(1 − ε)ϕ(x; 1, 2) + 0.6(1 − ε)ϕ(x; 5, 2) +
εϕ(x; 3, 40), where the third component is an outlier compo-
nent, and still use a 2GMM to fit, the comparison of the conver-
gence speed becomes unclear. We have not fully understood the
properties of the convergence speed for the EM-Lq yet. How-
ever, we do believe the convergence speed is important, and is
an interesting topic for future research.

The fact that the convergence of the EM-Lq is a little faster (in
this particular case, at least) than that of the EM is closely related
to the concept of the information ratio mentioned in Redner
and Walker (1984) and Windham and Cutler (1992), where
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the convergence speed is connected to the missing information
ratio. In Lq-likelihood, since the two inseparable components
are pushed apart by the weights w̃ij , the corresponding concept
of the missing information ratio for the Lq-likelihood must be
relatively lower, thus, we have a faster convergence.

Although the convergence speed is faster for our example
for the EM-Lq, it is not necessary that the EM-Lq takes less
computer time than the EM. This is because at each M step in
the EM-Lq, we need to do another iterative algorithm to obtain
�new (i.e., the algorithm explained in Section 8), whereas the
EM needs only one step to obtain the new parameter estimate.

The advantage of the convergence speed of the EM-Lq has
been hinted by another algorithm called q-Parameterized Deter-
ministic Annealing EM algorithm (q-DAEM) previously pro-
posed by Guo and Cui (2008) in the signal processing and
statistical mechanics context. The q-DAEM can successfully
maximize the log-likelihood at a faster convergence speed, by
using a different but similar M steps as in our EM-Lq. Their M-
step includes setting q > 1 and β > 1 and dynamically pushing
q → 1 and β → 1 (β is an additional parameter for their deter-
ministic annealing procedure). On the other hand, our EM-Lq
maximizes the Lq-likelihood with a fixed q < 1. Although the
objective functions are different for these two algorithms, it is
obvious that the advantages on the convergence speed are due to
the tuning parameter q. It turns out that q > 1 (along with β > 1
in the q-DAEM) and q < 1 (in the EM-Lq) both help with the
convergence speed, even though they have different convergence
points. We have proved the first order approximation property
in Theorem 4, which leads to the proof of the monotonicity
and the convergence for the EM-Lq. For the q-DAEM, because
q ↓ 1 and β ↓ 1 make it reduce to the traditional EM, it also
converges. When β = 1 and q = 1, both algorithms reduce to
the traditional EM algorithm.

6. NUMERICAL RESULTS AND VALIDATION

Now we compare the performance of two estimators on mix-
ture models: (i) the MLqE from the EM-Lq; (ii) the MLE from
the EM. We set q = 0.95 throughout this section.

6.1 Kullback–Leibler Distance Comparison

We simulate data using a three component Gaussian mixture
model (3GMM)

f ∗
0

(
x; ε, σ 2

c

) = 0.4(1 − ε)ϕ(x; 1, 2) + 0.6(1 − ε)ϕ(x; 5, 2)

+ εϕ
(
x; 3, σ 2

c

)
. (18)

This is a gross error model, where the third term is the out-
lier component (or contamination component, or measurement
error component); ε is the contamination ratio (ε ≤ 0.1); σ 2

c
is the variance of the contamination component, and is usu-
ally very large (i.e., σ 2

c > 10). Equation (18) can be considered
as a small deviation from the 2GMM: f0(x) = 0.4ϕ(x; 1, 2) +
0.6ϕ(x; 5, 2).

As we mentioned in Section 3, there are two approaches for
estimating f0 based on data generated by f ∗

0 . We will investigate
them individually.

6.1.1 Direct Approach. We start with the direct approach.
First, we simulate data with sample size n = 200 according
to Equation (18), f ∗

0 (x; ε, σ 2
c = 20), at different contamination

levels ε ∈ [0, 0.1]. We fit the 2GMM using the MLqE and the
MLE. We repeat this procedure 10,000 times and then calculate
(i) the average KL distance between the estimated 2GMM and
f ∗

0 , and (ii) the average KL distance between the estimated
2GMM and f0. We summarize the results in Figure 2 (KL
against f ∗

0 ) and Figure 3 (KL against f0).
In Figure 2(a), we see that both KLMLqE and KLMLE increase

as ε increases, which means the performance of both MLqE and
MLE degrades as more measurement errors are present. KLMLqE

is always larger than and increases slightly faster than KLMLE. It
implies that the MLqE performs worse than, and degrades faster
than the MLE. Figure 2(b) shows their difference KLMLE −
KLMLqE which is negative and decreasing. This phenomena is
reasonable because, when estimating f ∗

0 using data generated
by f ∗

0 , the MLE is the best estimator (in terms of KL distance)
by definition. The MLqE’s bias-variance tradeoff does not gain
anything compared to the MLE.

Figure 2. Comparison between the MLqE and the MLE in terms of KL distances against f ∗
0 : (a) shows the KL distances themselves,

(b) shows their difference. The online version of this figure is in color.
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Figure 3. Comparison between the MLqE and the MLE in terms of KL distances against f0: (a) shows the KL distances themselves,
(b) shows their difference. The online version of this figure is in color.

On the other hand, Figure 3 shows an interesting phe-
nomenon. In Figure 3(a), we see that both KLMLqE and KLMLE

still increase as ε increases. However, when estimating the
nonmeasurement error components f0, KLMLqE increases more
slowly than KLMLE. The former starts above the latter but even-
tually ends up below the latter as ε increases, which means the
MLE degrades faster than the MLqE. Figure 3(b) shows their dif-
ference KLMLE − KLMLqE which starts in negative and increases
gradually to positive (changes sign at around ε = 0.025). This
means that our MLqE performs better than the MLE in terms

of estimating f0 when there are more measurement errors in the
data. Hence, we gain robustness from the MLqE.

The above simulation is done using the model f ∗
0 (x; ε, σ 2

c =
20). To illustrate the effect of σ 2

c on the performance
of the MLqE, we change model to f ∗

0 (x; ε, σ 2
c = 10) and

f ∗
0 (x; ε, σ 2

c = 30), and repeat the above calculation. The results
are shown in Figures 4 and 5.

As we can see, σ 2
c has a big impact on the performance of

the estimator. As σ 2
c gets larger (i.e., more serious measurement

error problems), both the MLqE and the MLE degrade faster

Figure 4. Comparison between the MLqE and the MLE in terms of KL distances against f ∗
0 (left panel) and f0 (right panel) with the third

component variance σ 2
c being 10. The online version of this figure is in color.
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Figure 5. Comparison between the MLqE and the MLE in terms of KL distances against f ∗
0 (left panel) and f0 (right panel) with the third

component variance σ 2
c being 30. The online version of this figure is in color.

as the contamination ratio increases. This is why the slopes
of the KL distance curves become steeper with the higher σ 2

c .
However, the advantage of the MLqE over the MLE is more
obvious with the larger σ 2

c . The point where two KL distance
curves insect (in Figure 4(b) and 5(b)) moves to the left as σ 2

c
increases, which means the MLqE will beat the MLE at the
lower contamination ratio when the higher σ 2

c is used (i.e., the
higher variance of the measurement errors).

6.1.2 Indirect Approach. Now, let us take the indirect ap-
proach, which is to estimate f ∗

0 first and project it onto the
2GMM space. In this experiment, we let the data to be gener-
ated by f ∗

0 (x; ε, σ 2
c = 40) which has an even higher variance

of the measurement error component than the previous section.

We use a sample size of n = 200. We simulate data according to
f ∗

0 (x; ε, σ 2
c = 40), use the MLqE and the MLE to fit the 3GMM,

take out its component with the largest variance and normalize
the weights to get our estimate for f0. We repeat this procedure
10,000 times, and calculate the average KL distance between
our estimates (both the MLqE and the MLE) and f0. For the
comparison purpose, we repeat the calculation using the direct
approach on this simulation data as well, and summarize the
results in Figure 6.

In Figure 6(a), we see that, as ε increases, KL distances of
the indirect approach first increase and then decrease. The in-
creasing part suggests that a few outliers will hurt the estimation
of the nonmeasurement error component. The decreasing part
means that, after the contamination increases beyond certain

Figure 6. Comparison between the MLqE and the MLE in terms of KL distances against f0: (a) shows KL distances obtained from the indirect
approach, (b) shows KL distances obtained from the direct approach, and (c) shows both these two kinds of KL distances together to compare
their magnitude. The online version of this figure is in color.
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level (ε = 0.5%), the more contamination there is, the more ac-
curate our estimates are. This is because that, when the contami-
nation ratio is small, it is hard to estimate the measurement error
component as there are very few outliers. As the contamination
ratio gets larger, the indirect approach can more accurately es-
timate the measurement error component, hence provide better
estimates of the nonmeasurement error components. Please note
that our MLqE is still doing better than the MLE in this case. The
reason is that the MLqE successfully trades bias for variance to
gain in the overall performance. However, as ε increases, the
advantage of the MLqE gradually disappears. It is because that
when the contamination is obvious, the MLE will be more pow-
erful and efficient than the MLqE under the correctly specified
model.

In Figure 6(b), we present the results for the direct approach,
which is consistent with Figure 3(a). We notice that, when f ∗

0 has
a larger variance for the measure error component, the MLqE
beats the MLE at a lower contamination ratio (ε = 0.003). In
other words, as f ∗

0 is further deviated from f0 (in terms of the
variance of measurement error component), the advantage of
the MLqE becomes more significant.

In Figure 6(c), we plot KL distances of both approaches. It
is obvious that the indirect approach is not even comparable
to the direct approach until ε raises above 0.08. It is because
we estimate more parameters and have more estimation vari-
ance for the indirect approach. Although our model is correctly
specified, the estimation variance is so big that it dominates the
overall performance. To sum up, with the small contamination
ratio, we would be better off using the direct approach with the
misspecified model. When the contamination ratio is large, we
should use the indirect approach with the correctly specified
model.

The above comparison is done based on the KL distance
against f0. We repeat the above calculation to obtain the cor-
responding results for the KL distance against f ∗

0 . Note that
all the calculation is the same except we do not need to do the
projection from 3GMM to 2GMM, because f ∗

0 is 3GMM. The
results are shown in Figure 7.

As we can see from Figure 7(a), when the contamination ra-
tio increases, the KL distances against f ∗

0 (for both the MLqE
and the MLE) increase first and then decrease. It means that
as outliers are gradually brought into the data, they first under-
mine the estimation for the nonmeasurement error components,
and then help the estimation of the measurement error compo-
nent. The MLqE starts slightly above the MLE. When outliers
become helpful for the estimation (ε > 2%), the MLqE goes
below the MLE. As ε increases beyond 2%, the advantage of
the MLqE over the MLE first increases and then diminishes.
Figure 7(b) is also consistent with what we found in Figures
2(a), 4(a), and 5(a). In Figure 7(c), we see that the direct and
indirect approaches are in about the same range. They intersect
at around ε = 2%, which suggests that, when estimating f ∗

0 ,
we prefer the direct approach for the mildly contaminated data,
and prefer the indirect approach for the heavily contaminated
data.

6.2 Relative Efficiency

We can also compute the relative efficiency between the
MLE and the MLqE using the same model (Equation (18)),
f ∗

0 (x; ε, σ 2
c = 20).

At each level ε ∈ [0, 0.1], we generate 3000 samples with
sample size n = 100 according to Equation (18), f ∗

0 (x; ε, σ 2
c =

20), fit the 2GMM to the data using the MLqE, and calculate the
average KL against f0. We try the same procedure for the MLE,
and find the sample size nMLE(ε) at which the same average KL
is obtained by the MLE. We plot the ratio of these two sample
sizes nMLE(ε)/100 in Figure 8.

As we can see, the relative efficiency starts below 1, which
means, when the contamination ratio is small, it takes the MLE
fewer samples than the MLqE to achieve the same perfor-
mance. However, as the contamination ratio increases, the rel-
ative efficiency climbs substantially above 1, meaning that the
MLE will need more data than the MLqE to achieve the same
performance.

Figure 7. Comparison between the MLqE and the MLE in terms of KL distances against f ∗
0 : (a) shows KL distances obtained from the

indirect approach, (b) shows KL distances obtained from the direct approach, and (c) shows both these two kinds of KL distances together to
compare their magnitude. The online version of this figure is in color.
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Figure 8. Comparison of the MLE and the MLqE based on relative
efficiency. The online version of this figure is in color.

6.3 Gamma Chi-Square Mixture Model

We take a small digression and consider estimating a Gamma
Chi-square mixture model,

f ∗
0 (x) = (1 − ε) Gamma (x; p, λ) + εχ2(x; d), (19)

where the second component is the measurement error compo-
nent. We can think of our data being generated from the Gamma
distribution but contaminated with the Chi-square gross error.
In this section, we consider two scenarios:

Scenario 1 : p = 2, λ = 5, d = 5, ε = 0.2, n = 20

Scenario 2 : p = 2, λ = 0.5, d = 5, ε = 0.2, n = 20

In each scenario, we generate 50,000 samples according to
Equation (19), fit the Gamma distribution using both the MLqE
and the MLE, and compare these two estimators based on their
mean square error (MSE) for p and λ. For the MLqE, we adjust
q to examine the effect of the bias-variance tradeoff. The results
are summarized in Figure 9 (scenario 1) and Figure 10 (scenario
2). In Figure 9, We see that, by setting q < 1, we can successfully
trade bias for variance and obtain better estimation. In scenario 1,
since the Gamma distribution and the Chi-square distribution are

sharply different, the bias-variance trade off leads to a significant
reduction on the mean square error by partially ignoring the
outliers. However, in scenario 2, these two distributions are
similar (the mean and variance of the Gamma distribution are
4 and 8, the mean and variance of the Chi-square distribution
are 5 and 10). In this situation, partially ignoring the data points
on the tails will not help much, which is why the MSE of the
MLqE is always larger than the MSE of the MLE.

6.4 Old Faithful Geyser Eruption Data

We consider the Old Faithful geyser eruption data from
Silverman (1986). The original data are obtained from the R
package “tclust.” The data are univariate eruption time length
with sample size of 272. We sort these eruption lengths by their
times of occurrences, and lag these lengths by one occurrence
to form 271 pairs; thus we have two-dimensional data (i.e., cur-
rent eruption length and previous eruption length). This is the
same procedure as described in Garcia-Escudero and Gordaliza
(1999). For this two-dimensional data, they have suggested three
clusters. Since the “short followed by short” eruptions are not
usual, Garcia-Escudero and Gordaliza (1999) identified these
points in the lower left corner as outliers.

We plot the original data in Figure 11, fit the MLqE (q = 0.8)
and the MLE to the data, and plot the two standard deviation
ellipsoids. q is selected based on clustering outcome. As we can
see, there are a few outliers in the lower left corner. The MLE is
obviously affected by the outliers. The lower right component
of the MLE is dragged to the left to accommodate these outliers,
and thus misses the center of the cluster. Other components of
the MLE are also mildly affected. The MLqE, on the other hand,
overcomes this difficulty and correctly identifies the center of
each component. This improvement is especially obvious for
the lower right component: the fitted MLqE lies in the center
whereas the MLE is shifted to the left and has a bigger two
standard deviation ellipsoid.

Figure 9. Comparison of the MLE and the MLqE in terms of the MSE for p̂ (Figure (a)) and λ̂ (Figure (b)) in scenario 1 (p = 2, λ = 5,
d = 5, ε = 0.2, n = 20). The online version of this figure is in color.
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Figure 10. Comparison of the MLE and the MLqE in terms of the MSE for p̂ (Figure (a)) and λ̂ (Figure (b)) in scenario 2 (p = 2, λ = 0.5,
d = 5, ε = 0.2, n = 20). The online version of this figure is in color.

7. SELECTION OF q

So far in this article, we have fixed q in all the analysis. In
this section, we will discuss the selection of q.

The tuning parameter q governs the sensitivity of the estima-
tor against outliers. The smaller q is, the less sensitive the MLqE
is to outliers. If the contamination becomes more serious (i.e.,
larger ε and/or σ 2

c ), we should use a smaller q to protect against
measurement errors. There is no analytical relation between the
level of contamination and q, because it depends on the prop-
erties of the non-measurement error components, the contami-

Figure 11. Comparison between the MLqE and the MLE for the
Old Faithful geyser data: red triangles: MLqE means; red dashed lines:
MLqE two standard deviation ellipsoids; blue triangles: MLE means;
blue dashed lines: MLE two standard deviation ellipsoids. The online
version of this figure is in color.

nation ratio and the variance of the contamination component.
Furthermore, there is no guarantee that the measurement error
component is a Normal distribution. Since all these assumptions
can be easily violated, it is impossible to establish an analytical
relationship for q and the contamination level.

Generally, it is very hard to choose q analytically. Currently,
there is no universal way to do so. Instead, we here present an
example to illustrate the idea of selecting q. We generate one
dataset using Equation (18) f ∗

0 (x; ε = 0.1, σ 2
c = 40) with the

sample size n = 200. We will demonstrate how to select q for
this particular dataset.

First, we fit a 3GMM to the data using the MLE and get
f̂3GMM. We identify the component with the largest variance in
f̂3GMM as the contamination component. We extract the non-
measurement error components and renormalize weights to get
f̂3GMM→2GMM, which can be considered as the projection from
the 3GMM to the 2GMM space. We go back to f̂3GMM, use it to
perform a parametric bootstrap by generating many bootstrap

samples, and fit 2GMM to these datasets using MLqE (f̂ b
MLqE

2GMM)
with q varying between 0.7 and 1. We take q that minimizes the
average KL distance between the nonmeasurement error compo-

nents, f̂3GMM→2GMM, and the estimated 2GMM f̂ b
MLqE

2GMM from
the bootstrap samples. The average KL distance against q is
shown in Figure 12. From the figure, we estimate q to be 0.82.

This is a very simple way to select q. It is straightforward
and easy. However, there is a drawback of this method. When
the contamination ratio is very low (e.g., 1% or 2%) and the
sample size is small (n < 100), the estimated 3GMM f̂3GMM

will not be able to estimate the measurement error component
correctly since there are very few outliers. Thus, the parametric
bootstrap approach following that will become unreliable. We
have not found an effective way of selecting q with the small
contamination ratio.

In Ferrari and Yang (2010), they have mentioned using
asymptotic variance and asymptotic efficiency as criteria for
selecting q. However, obtaining asymptotic variance in the mix-
ture model case is also problematic and unreliable when sample
size is small.
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Figure 12. Selection of q based on average KL distance from the
bootstrap samples. The online version of this figure is in color.

To obtain an analytical solution for q is hard. Currently, we
have only some remedies under a few situations, and are still
looking for a universal way. However, we believe that selecting
q is a very important question and is one of major future research
directions.

8. DISCUSSION

In this article, we have introduced a new estimation procedure
for mixture models, namely the MLqE, along with the EM-Lq
algorithm. Our new algorithm provides a more robust estima-
tion for mixture models when measurement errors are present
in the data. Simulation results show superior performance of
the MLqE over the MLE in terms of estimating the nonmea-
surement error components. Relative efficiency is also studied
and shows superiority of the MLqE. Note that when q = 1, the
MLqE becomes the MLE, so the MLqE can be considered as a
generalization of the MLE.

Throughout this article, we see that the MLqE works well
with mixture models in the EM framework. There is a funda-
mental reason for such a phenomenon. Note that the M-step
of the traditional EM solves a set of weighted likelihood equa-
tions with weights being the soft labels. Meanwhile, the MLqE
solves a different set of weighted likelihood equations with
weights being f 1−q . Therefore, incorporating the MLqE in the
EM framework comes down to determining the new weights that
are consistent with both the soft labels and f 1−q . Furthermore,
we conjecture that, for any new types of estimators, as long as
they only involve solving sets of weighted likelihood equations,
they should be able to be smoothly incorporated in the mixture
model estimation using the EM framework.

To achieve consistency for the MLqE, we need the distortion
parameter q to approach 1 as the sample size n goes to infinity.
However, letting q converge to 1 will affect the bias-variance
tradeoff. So what is the optimal rate at which q tends to 1 as
n → ∞? Meanwhile, how to select q at different sample size
is also an interesting topic. The distortion parameter q adjusts
how aggressive or conservative we are toward eliminating the

effect of outliers. Tuning of the distortion parameter q will be a
fruitful direction for future research.

APPENDIX

Lemma 1. ∀m ∈ R and ∀a, b ∈ R+, it holds that

(i) Lq (ab) = Lq (a) + Lq (b) + (1 − q)Lq (a)Lq (b) = Lq (a) +
a1−qLq (b).

(ii) Lq (am) = Lq (a) 1−(a1−q )m

1−a1−q .

(iii) Lq ( a
b
) = ( 1

b
)1−q (Lq (a) − Lq (b)).

(iv) Lq (a) is a concave function and Lq (a) ≤ a − 1.

Proof.

(i) We know that Lq (ab) = (a1−q−1)+(b1−q−1)+(a1−q−1)(b1−q−1)
1−q

, which
proves (i).

(ii) Lq (am) = a1−q−1
1−q

(a1−q )m−1
a1−q−1

= Lq (a) 1−(a1−q )m

1−a1−q .

(iii) By (i), we have Lq (a/b) = Lq (a)/b1−q + Lq (1/b) =
[Lq (a) − Lq (b)]/b1−q .

(iv) We have ∂2Lq (a)/∂a2 = −qa−q−1 < 0, hence, Lq (a) is con-
cave. By the mean value theorem of concave function: Lq (a) −
Lq (1) ≤ (a − 1) ∂Lq (x)

∂x
|x=1 ⇒ Lq (a) ≤ a − 1. �

Reweighting Algorithm for MLqE. The reweighting algorithm for
solving the MLqE in general is described as follows.

To obtain θ̂MLqE, we start with an initial estimate θ (1) which could
be any sensible estimate, we usually use θ̂MLE as the starting point. For
each new iteration t (t > 1), θ (t+1) is computed via

θ (t+1) =
{

θ : 0 =
n∑

i=1

U (xi ; θ )f
(
xi ; θ

(t)
)1−q

}
,

where U (x; θ ) = ∇θ log f (x; θ ) = f ′
θ (x; θ )/f (x; θ ). The algorithm is

stopped when a certain convergence criterion is satisfied, for example,
the change in θ (t) is sufficiently small.

To obtain the MLqE for a normal distribution, the above algorithm
is simplified as follows:

μ̂(t+1) = 1∑n
i=1 w

(t)
i

n∑
i=1

w
(t)
i xi ,

σ̂ 2
(t+1) = 1∑n

i=1 w
(t)
i

n∑
i=1

w
(t)
i

(
xi − μ̂(t+1)

)2
,

where w
(t)
i = ϕ(xi ; μ̂(t), σ̂ 2

(t)
)1−q and ϕ is a normal probability density

function.
In the M-step of the EM-Lq algorithm, the above algorithm is further

modified as follows:

μ
(t+1)
j = 1∑n

i=1 w̃
(t)
ij

n∑
i=1

w̃
(t)
ij xi ,

σ 2
j

(t+1) = 1∑n
i=1 w̃

(t)
ij

n∑
i=1

w̃
(t)
ij

(
xi − μ

(t+1)
j

)2
,

where w̃
(t)
ij = τ̃j (xi, �

old)ϕ(xi ; μ
(t)
j , σ 2

j

(t))1−q . We iterate the above cal-

culation until μ
(t)
j and σ 2

j

(t) converge, and assign them to μnew
j and

σ 2
j

new.

Proof of Theorem 3.

n∑
i=1

Lq (p(xi ; �))

=
n∑

i=1

Lq

(∑
z

p(xi, z; �)

)
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=
n∑

i=1

Lq

(∑
z

p(z|xi ; �
old)

p(xi, z; �)

p(z|xi ; �old)

)
(A.1)

≥
n∑

i=1

∑
z

p(z|xi ; �
old)Lq

(
p(xi, z; �)

p(z|xi ; �old)

)
(A.2)

=
n∑

i=1

∑
z

p(z|xi ; �
old)

Lq (p(xi, z; �)) − Lq (p(z|xi ; �old))

p(z|xi ; �old)1−q

=
n∑

i=1

E�old

[
Lq (p(X,Z; �))

p(Z|X; �old)1−q
− Lq (p(Z|X; �old))

p(Z|X; �old)1−q

∣∣∣∣∣X = xi

]

= B(�, �old) + C(�old, �old),

where, from Equations (A.1) to (A.2), we have used Jensen’s inequality
on the Lq function due to its concavity (Lemma 1, part (iv) in Section
8). When � = �old, we have

B(�old, �old) + C(�old, �old) = A(�old, �old) =
n∑

i=1

Lq (p(xi ; �
old)).

Proof of Theorem 4. Define

D(�) =
n∑

i=1

Lq (p(xi ; �)) − (
B(�,�old) + C(�old, �old)

) ≥ 0.

(A.3)

By theorem 3, we know that D(�old) = 0 and D(�) ≥ 0, so D(�)
obtains its minimum at � = �old, that is,

∂

∂�
D(�)|�=�old = 0.

Take the derivative of both sides of (A.3), we have the first part of the
theorem. Together with Equations (7) and (8), we prove the rest of the
theorem.

Proof of Theorem 5. For mixture models, we plug Equations (10)
and (11) in B,

B(�, �old) =
n∑

i=1

E�old

⎡
⎢⎢⎢⎢⎢⎣

Lq

(∏k
j=1(πjfj (X; θj ))Zj

)
(∏k

j=1

(
πold

j fj (X;θold
j )

f (X;�old)

)Zj
)1−q

∣∣∣∣∣X = xi

⎤
⎥⎥⎥⎥⎥⎦

=
n∑

i=1

k∑
j=1

Lq (πjfj (xi ; θj ))

· p(Zj = 1, Z−j = 0|X = xi ; �old)

(
πold

j fj (xi ;θold
j )

f (xi ;�old)
)1−q

=
n∑

i=1

k∑
j=1

τj (xi, �
old)qLq (πjfj (xi ; θj )).

Proof of Theorem 6. Apply the first-order condition on B (note
πk = 1 − ∑k−1

j=1 πj ),

∂

∂θj

B(�,�old) =
n∑

i=1

τ̃j (xi, �
old)

∂
∂θj

fj (xi ; θj )

fj (xi ; θj )
(πjfj (xi ; θj ))1−q ,

(A.4)

∂

∂πj

B(�,�old) =
n∑

i=1

τ̃j (xi, �
old)

fj (xi ; θj )

(πjfj (xi ; θj ))q

−
n∑

i=1

τ̃k(xi,�
old)

fk(xi ; θk)

(πkfk(xk; θk))q

=
n∑

i=1

τ̃j (xi,�
old)fj (xi ; θj )1−q

π
q
j

−
n∑

i=1

τ̃k(xi, �
old)fk(xi ; θk)1−q

π
q
k

, (A.5)

⇒ 0 =
n∑

i=1

τ̃j (xi, �
old)

∂
∂θj

fj (xi ; θj )

fj (xi ; θj )
fj (xi ; θj )1−q

and πj ∝
[

n∑
i=1

τ̃j (xi, �
old)fj (xi ; θj )1−q

] 1
q

.

Proof of Theorem 4 for the mixture model case. By Equations (A.4)
and (A.5), the derivatives of B at � = �old are,

∂

∂θj

B(�,�old)|�=�old

=
n∑

i=1

(
π old

j fj

(
xi ; θold

j

)
f (xi ; �old)

)q

·
∂

∂θj
fj (xi ; θj )|θj =θold

j

fj

(
xi ; θold

j

) (
π old

j fj

(
xi ; θ

old
j

))1−q

=
n∑

i=1

π old
j

(
∂

∂θj
fj (xi ; θj )|θj =θold

j

)
f (xi ; �old)q

,

∂

∂πj

B(�, �old)|�=�old

=
n∑

i=1

(
π old

j fj

(
xi ; θold

j

)
f (xi ; �old)

)q
fj

(
xi ; θold

j

)1−q(
π old

j

)q

−
n∑

i=1

(
π old

k fk

(
xi ; θold

k

)
f (xi ; �old)

)q
fk

(
xi ; θold

k

)1−q(
π old

k

)q

=
n∑

i=1

fj

(
xi ; θold

j

) − fk

(
xi ; θold

k

)
f (xi ; �old)q

.

We calculate the derivatives of
∑n

i=1 Lq (p(xi ; �)) at � = �old,

∂

∂θj

n∑
i=1

Lq (p(xi ; �))|�=�old =
n∑

i=1

π old
j

(
∂

∂θj
fj (xi ; θj )|θj =θold

j

)
f (xi ; �old)q

,

∂

∂πj

n∑
i=1

Lq (p(xi ; �))|�=�old =
n∑

i=1

fj

(
xi ; θold

j

) − fk

(
xi ; θold

k

)
f (xi ; �old)q

.

By comparing the formulas above, we obtain the first equation of the
theorem. Together with Equations (7) and (8), we prove the rest of the
theorem.

[Received November 2011. Revised October 2012.]
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