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A Deterministic Method for Robust 
Estimation of Multivariate 

Location and Shape 

Wendy L. POSTON, Edward J. WEGMAN, 
Carey E. PRIEBE, and Jeffrey L. SOLKA 

The existence of outliers in a data set and how to deal with them is an important 
problem in statistics. The minimum volume ellipsoid (MVE) estimator is a robust es- 
timator of location and covariate structure; however its use has been limited because 
there are few computationally attractive methods. Determining the MVE consists of two 

parts-finding the subset of points to be used in the estimate and finding the ellipsoid that 
covers this set. This article addresses the first problem. Our method will also allow us to 

compute the minimum covariance determinant (MCD) estimator. The proposed method 
of subset selection is called the effective independence distribution (EID) method, which 
chooses the subset by minimizing determinants of matrices containing the data. This 
method is deterministic, yielding reproducible estimates of location and scatter for a 

given data set. The EID method of finding the MVE is applied to several regression 
data sets where the true estimate is known. Results show that the EID method, when 
applied to these data sets, produces the subset of data more quickly than conventional 
procedures and that there is less than 6% relative error in the estimates. We also give 
timing results illustrating the feasibility of our method for larger data sets. For the case 
of 10,000 points in 10 dimensions, the compute time is under 25 minutes. 

Key Words: Minimum covariance determinant; Minimum volume ellipsoid; Outliers; 
Robust estimators; Subset selection. 

1. INTRODUCTION 

An important area of research in statistics is the robust estimation of location and 
covariance structure for a set of data. In this article, robust estimation will refer to those 

estimators that have high breakdown points (Rousseeuw and Leroy 1987) or estimators 
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that will tolerate a large number of outliers before the estimate is affected. The estimator 
of interest here is called the minimum volume ellipsoid (MVE), an estimator that has 
desirable robustness properties due to its optimal breakdown point of 50% (Woodruff 
and Rocke 1993). No computationally reasonable deterministic methods of calculating 
the MVE exist, especially in high dimensions and for large sample sizes, making the 
MVE impractical for frequent use by statisticians. 

The MVE of a given data set is determined by a subset of m points subject to 
the constraint that the ellipsoid that covers the points has minimum volume among 
all ellipsoids constructed using m points (Hawkins 1993; Rousseeuw 1985; Woodruff 
and Rocke 1993). The size of the subset is a function of the number of data points 
n and the dimensionality p and is chosen to give an estimate with a breakdown point 
of 50%. From this description of the MVE, it is apparent that finding a value of the 
estimator for a given data set has two parts. The first is to find the subset of data that 
is to be included in the estimate, and the second is to calculate the covering ellipsoid. 
A computationally efficient algorithm (relative to the expense of finding the set of m 

points) has been published (Cook, Hawkins, and Weisberg 1993) that will find the exact 

covering ellipsoid for a set of points. However, finding the MVE still requires exhaustive 

specification of all possible subsets of size m, making it computationally intractable for 

large data sets. Thus, the subset selection problem is the more computationally intensive 
of the two problems, and the one that remains to be solved. It is this issue that will be 
addressed in this article. 

Current methods of subset selection include the basic resampling method described 

by Rousseeuw and Leroy (1987), which randomly chooses subsets and then retains the 
one yielding the minimum volume. Improvements on this resampling method include 
heuristic search algorithms investigated by Woodruff and Rocke (1993). These include 
simulated annealing, tabu search, and genetic algorithms. Another approach to finding 
the MVE is that of Hawkins (1993) called the feasible solution algorithm (FSA). These 
methods are random in that they rely on random starting points and random searches, and 

they are not guaranteed to find the exact MVE for any finite amount of sampling. Clearly, 
none of these methods provide reproducible estimates of the MVE for a given data set, 
unless the methods are implemented with the same random number generator and seed. 

Additionally, these methods are computationally intensive because one would repeat 
these for several random starting points and taking the smallest ellipsoid as the MVE. 

Finally, another problem with the heuristic algorithms is that each one involves several 

parameters that affect their performance and must be determined for each application. 
The effective independence distribution (EID) method (Poston 1994) is proposed as 

a new solution to the subset selection problem in estimating the MVE. As with the other 
methods, it may not provide the exact MVE. However, we present results indicating that 
it does pick subsets that yield ellipsoids approaching the true MVE. Other aspects that 
make it particularly appealing are the repeatability of an estimate for a given data set due 
to its deterministic nature, and the fact that it is computationally tractable even for large 
data sets and high-dimensional problems. Also, one does not have to determine optimal 
algorithm parameters to implement it. 

Section 2 provides some background information on the MVE estimator and de- 
scribes the algorithm for finding the minimum covering ellipsoid. Section 3 introduces 
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the EID method for selecting the subset to be covered, and Section 4 describes the pro- 
cedure for finding the MVE. Section 5 presents results that show the relative error in 
the volume of the ellipsoid obtained using the EID approach for several regression data 
sets where the true MVE is known. We also present results indicating the computational 
feasibility of the algorithm as a function of the sample size and the dimensionality of the 
data. 

2. MINIMUM VOLUME ELLIPSOID ESTIMATOR 

The problem of robust estimation of multivariate location and shape is: given a set 
of n p-dimensional observations, find an estimate of location and shape that is resistant 
to outliers or contaminated data. The MVE is one such estimator, and it is known that 
it has a breakdown point that approaches 50% as the number of points in the data set 
increases (Rousseeuw and van Zomeren 1990). This is the maximum possible breakdown 
point, and it means that approximately half of the data can be arbitrarily contaminated 
without affecting the estimate. 

The MVE is given by the ellipsoid (Hawkins 1993) 

(x - c)TFr-(x - c) = p, (2.1) 

where c and I are the location vector and scatter matrix respectively and p is the dimen- 
sion of the data. The location vector is a weighted mean calculated as 

h 

c wix:, (2.2) 
i=l 

and the covariance or scatter matrix is 

h 

Fr = wi( - c)(x; - c)T, (2.3) 
i=1 

where x? is a column vector denoting the ith observation in the subset of m points, wi 
is the weight for the ith observation, and h = [(n + p + 1)/2] (the brackets denote the 
greatest integer function). The volume of the covering ellipsoid will be proportional to 
the determinant of r. It is evident from these equations that to find the MVE one must 
determine which m points should be covered and the corresponding weights to ensure 
coverage of the points. 

The algorithm that will be used to find the weights is credited to Titterington (1975) 
and described by Hawkins (1993). It will be referred to within as Titterington's algorithm. 
All of the weights are initially set to w () = l/h, i - 1,..., h, which is the usual weight 
given to points when calculating the sample mean of a data set of size m. Then, at each 
iteration k, calculate the weighted mean and covariance from Equations (2.2)-(2.3) and 
the Mahalanobis distances for each observation given by 

D) - (x - c(k)) r- k)) (2.4) 
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If D <k) < p for every i, then the current ellipsoid using c() and r) is the MVE 

covering the m observations. If the Mahalanobis distance for any of the observations 
exceeds p, then the weights must be adjusted using the following 

w(k+l) = (k) Dk (2.5) it =wi U , (2.5) 

and the calculations of Equations (2.2)-(2.4) are repeated until all of the distances are 
less than p. This procedure enlarges the ellipsoid until all of the m points are covered. 

The algorithm for finding the weights can be somewhat computationally intensive for 
some data sets. Another method for estimating the weights can be found in Rousseeuw 
and van Zomeren (1990); it is quicker than Titterington's algorithm, but it does not yield 
the exact minimum covering ellipsoid for a given data set. However, it should be apparent 
that the real computational burden arises from the determination of which points must 
be covered by the ellipsoid. The brute force method of exhaustive enumeration is of 

computational complexity 0 (( )) The EID algorithm is presented as a means of 

addressing this problem. 

3. EFFECTIVE INDEPENDENCE DISTRIBUTION 

The derivation of the EID provided here was first given by Kammer (1991). The 
EID provides a ranking of each point according to its contribution to the eigenvalues, 
and hence to the determinant of the information matrix which is defined in the following. 
It will be shown that the EID offers a direct relationship between the determinants of the 
information matrix as points are removed from the data set, and can be used to optimize 
the determinant. It was orignially stated by Kammer (1991) that choosing points based 
on the EID values will yield the most linearly independent subset of observations. Poston 

(1995) showed that the EID values rank points in a data set according to how much each 
one contributes to the linear independence of the parameter space. Thus, the motivation 
for the name effective independence distribution. 

The EID is developed from the set of equations familiar from regression theory 
(Rousseeuw and Leroy 1987). These are 

y=X/ 3+ , (3.1) 

where y is an n-dimensional vector of responses, X is an n x p matrix of predictor 
variables with each column linearly independent, /3 is a p-dimensional column vector of 
unobservable parameters that must be estimated from the data, and e denotes the noise in 
the measurements. It is further assumed that ,t = E[e ] = 0 and E = E[(E - pt )T(E - 

Mp)] = E[ETE]. The information matrix is then given by FIM = XTX . 
The EID is an n-dimensional vector where each element corresponds to one mea- 

surement location. The development of the EID method given here will show that the ith 
term of the EID vector is the contribution of the ith data point to all of the eigenvalues 
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of the information matrix. Because 

p 

IFIMI = HAj, (3.2) 
j=1 

where (I * I) denotes the determinant, then the eigenvalues are also a measure of the infor- 
mation and indicate the contribution of a data point to the determinant of the information 
matrix. 

The EID can be derived from the following eigenvalue problem 

(FIM - AjI)Tj = 0, (3.3) 

where I is a pxp identity matrix, Aj is the jth eigenvalue, and 9j is the jth eigenvector. It 
follows from the definition that the information matrix is symmetric. Because the columns 
of X are linearly independent, this implies that it is also positive definite. Therefore, the 

eigenvector Ij can be chosen to be orthonormal, and we will denote the matrix of 

eigenvectors as I. 
It can be shown that the jth eigenvalue has the form 

n /P \2 

Aj = 
E E xikkj j =1,...,P. (3.4) 
i= j1 j= / 

The eigenvectors of the information matrix span the p-dimensional parameter space, so 

they can be used to transform the data matrix X. The following matrix product is now 
formed 

G = (X )o (X@), (3.5) 

where o denotes an element-by-element matrix multiplication and X9 represents the 
transformed data matrix. The ijth element of G is given by 

9ij = EXikkj . (3.6) 

An examination of each element of G reveals that the sum of the jth column of G equals 
the jth eigenvalue given in Equation (3.4), hence 

n 

gij = A. (3.7) 
i=1 

The next step is to post-multiply G by A-1 forming the following matrix 

E = GA-1, (3.8) 

which normalizes each column of G by dividing by the corresponding eigenvalue (i.e., 
the jth column is divided by the jth eigenvalue). Each column in the matrix E now sums 
to one, and the element eij represents the fractional contribution of the ith data point to 
the jth eigenvalue. 
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Finally, the EID is calculated by summing the terms in the ith row of the matrix E 

p 

EIDi eij. (3.9) 
j=l 

Thus, EIDi represents the contribution of the ith observation to the eigenvalues of the 
information matrix. Again, note that there are n elements in the EID, one corresponding 
to each point in the data set. 

The diagonal elements of the "hat" matrix from regression theory (Rousseeuw and 

Leroy 1987) will also yield the EID values for each observation. Thus, an alternative 
formulation of the EID is given by 

EID = diag(H) = diag(X(XTX)-lXT). (3.10) 

To derive this equation, start with the definition of the ith element of the EID 

p p 

EIDi = eij = 
f, (3.11) 

j=i j=1 J 

and substituting for the ijth element of G from Equation (3.6) yields 

EIDi =- E 
Xk'l ' (3.12) 

These are the diagonal elements of the following matrix product 

H = (XIA- /2)(XIA-1/2)T, (3.13) 

where A1/2 is a diagonal matrix containing the square roots of the eigenvalues. The 
matrix H can be re-written as 

H = X(XTX)-IXT, (3.14) 

and H is the usual "hat" matrix from regression. 
The matrix given in Equation (3.14) has interesting properties that offer some insight 

into the nature of the EID. One is that it is an idempotent matrix. These matrices have 
the property that the trace equals the rank, so 

n 

E EIDi = rank(H) = rank(X) = p. (3.15) 
i=l 

The EID can be said to show the contribution of the ith measurement location to the 
rank of the data matrix and thus also to the linear independence of the parameter space. 

It has been shown previously (Poston and Tolson 1992) that the following relation- 

ship holds between the determinants of the information matrices as points are removed 
from a data set 

IxTix_i = (1 - EIDi) XTXI , 
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where X_i is the data matrix with the ith point removed and EIDi is the value for the ith 

point. From this one can see that there is a direct relationship between the determinants as 
the points are removed from the data set. If the objective is to minimize the determinant, 
then the observation with the largest EID value should be deleted. This is the case for 

finding the set of points used to determine the MVE. 
The following proposition shows (Kammer 1991; Rousseeuw and Leroy 1987) the 

range of values that an element of the EID can have. 

Proposition 1. EIDi is in the range 0 < EID i < 1 . 
Proof: Because H is an idempotent matrix, this implies that 

n 

hii = (HH)ii E hijhji. 
j=1 

Because H is also symmetric, the diagonal elements can be written 

n n 

hii = hijhji = E hi 
j=1 j=l 

Expanding the sum on the right side yields 

hii = h2 + h2. 
i#j 

This equality can only be true if hii > h which implies that 

0 < hii < 1 

or that 

0 < EIDi < 1 

and the proposition is proved. O 
It is instructive to examine what happens if a data point has a corresponding EID 

value of zero or one. A data point with an EID value of one must be retained to preserve 
the linear independence of the data matrix X. This is obvious from Equation (3.16). If 
such a point is deleted, then the determinant of the resulting information matrix is zero 
and the problem becomes singular. In the regression setting, this means that all of the 

parameters cannot be estimated. On the other hand, if an observation has an EID value 
of zero, then the determinant is unchanged and no loss of information occurs. 

4. PROCEDURE 

Recall that the volume of the MVE is proportional to the determinant of the scatter 
matrix. This is the rationale for using the EID to select the subset of data points that is 
used in the MVE. If we use the matrix XTX to approximate F, then we can use the 

relationship in Equation (3.16) to successively remove points until m points remain. These 
m points will then be used in the algorithm described previously for finding the weights 
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and the resulting ellipsoid. However, to better approximate the scatter matrix, the data 
will be centered by subtracting the p-dimensional sample mean from each observation. 
This is repeated as each point is deleted. The complete procedure consists of the following 
steps: 

1. Calculate the matrix 

= (X( - X)), 

where X(j) is the set of raw data points at the jth iteration of the method and 
X(j) is an (n- j) x p matrix with each row containing the p-dimensional sample 
mean for the current set of data. Note that at iteration j = 0 there are n points in 
the data set, at iteration j = 1 there are n - 1 points, and so on. 

2. Use the matrix X'(j) in Equation (3.10) to calculate the EID value for each point 
in the current data set. 

3. Delete the point that corresponds to the maximum EID value. 
4. Repeat steps 1-3 until m points remain. 
5. Adjust the weights using Titterington's algorithm until the m points are covered 

by the ellipsoid. 
Some care should be taken with Step 3 when implementing this method. It is quite 

possible that in the very first calculation of the n EID values that a data point has an EID 
value of one. Such a point must be retained to keep the problem nonsingular (see Eq. 
3.16). Instead of deleting this point, one should remove the observation corresponding 
to the next highest EID value. The chances of an observation having an EID value of 
one becomes greater as the data set is reduced, and it is obvious from Equation (3.15) 
that when there are only p points left in the set, then each observation must have a value 
of one. Thus, this discussion becomes more critical as more points are deleted from the 
set, and hence it appears that the larger n relative to m, the better. 

5. APPLICATIONS AND RESULTS 

For illustrative purposes, the EID method is used to estimate the MVE for several 
data sets where the true MVE is known. The article by Hawkins (1993) gives the correct 
subset and the resulting volume of the true MVE for these data sets. The relative error 
in the volume of the ellipsoid based on the subset obtained using the EID method is 
determined for comparison purposes. The six data sets can be found in Rousseeuw and 

Leroy (1987), and the parameters of interest are shown in Table 1. From this one can 

Table 1. Regression Data Set Parameters Timing Results 

Time (sec.) to select subset of Time (sec.) to find weights in 
Data set p n h points using the EID Titterington's algorithm 

Aircraft 4 23 14 .053 .87 
Coleman 5 20 13 .053 .33 
Delivery 2 25 14 .053 2.64 
Education 3 50 27 .170 2.04 
Gravity 5 20 13 .053 1.38 
Salinity 3 28 16 .053 .27 
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AIRCRAFT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------- 

COLEMAN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- 

DELIVERY- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- 

EDUC --e----------------------------------- 

GRAVITY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- 

SALINITY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- 

0 1 2 3 4 5 6 

Figure 1. Percent Relative Error in the Volume of the MVE as Determined by the EID Approach. 

see that the data sizes are relatively small ranging in size from n = 20 to n = 50. The 

dimensionality of the data is also low, from two to five dimensions. 
The EID algorithm is implemented in MATLAB on a Pentium, 166MHz computer. 

The relative errors in the volume of the minimum covering ellipsoid using the EID 

approach are shown in Figure 1. It is evident from the small error that ours is a feasible 

approach to finding the MVE. The relatively large error in estimating the MVE for the 

gravity data set is due to the small size of the data set. It is recommended by Rousseeuw 

and van Zomeren (1990) that there be at least five observations per dimension. 
The times needed to determine the subset of points using the EID method are given 

in Table 1, along with the time it took to determine the set of weights using Titterington's 

algorithm. These results show that the MVE can be estimated in under three seconds for 

the data sets considered here. It should be noted that for those sets with reported times 

of .053 seconds, the elapsed time to find the subset of points was too fast for the time 
resolution of the computer. Hence, this time is an upper bound for the execution of the 

algorithm in these instances. 
The two-dimensional delivery data set is shown in Figure 2 to provide a qualitative 

assessment of the method. From this, it is clear that the bulk of the data is clustered 

toward the origin. When the EID method is applied to this data set, the first observations 

that are deleted are the outlying ones in the upper right corer of the plot. It is not until 
the last points are deleted that the EID algorithm makes an incorrect choice. The optimal 
set (Hawkins 1993) is shown in Figure 3, and the set chosen by the EID approach is 
shown in Figure 4. Note the point that is incorrectly retained in the set. One reason for 
this error is that the point the EID deletes has a larger magnitude than the one that should 

I I I I I I 
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Figure 2. Delivery Data Set, n = 25. 
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1000 - 

500 - 
x x (2) 

x 

X 
x x 

x x -Not in the true MVE 
x 

x 
0 
0 5 10 15 20 25 30 35 

Figure 4. Subset Chosen by the EID Method. 

be kept in the set. Previous studies indicate that these will be the points that tend to have 
a large EID value. 

Finally, one last comparison is in order regarding the salinity data set. It is stated 
in Hawkins (1993) that this set would require approximately 5,000 random starts with 
the FSA to reliably determine the MVE, which is a computationally intensive task. Note 
that for this data set, the EID method of subset selection finds a set of points in less than 
.053 seconds with only 3% error in the volume of the ellipse. Thus, the EID method is 
a computationally efficient technique that produces a good estimate even for those data 
sets that trouble other methods. 

To further study the efficiency of the EID algorithm for subset selection, we per- 
formed a study to examine the computational feasibility of the algorithm particularly 
as a function of the size of the data set and the dimensionality of the data. As before, 
MATLAB was used to implement the algorithm. It should be noted that MATLAB is 
an interpreted language, so this will cause the algorithm to be slower than if it were 

implemented in a compiled language. To provide a rough comparison to the heuristic 

algorithms described in Woodruff and Rocke (1993), they indicated that the average time 
for these algorithms on a DEC Alpha using a compiled language is approximately 30 
minutes for n = 50 and p = 10 and could be as high as six hours in some cases. The 
results presented in Figure 5 show that our algorithm is very attractive with respect to 

computational efficiency and is suitable for large data sets. In particular, note that even 
with n = 10, 000 and p = 10, an interpreted language, and a slower microprocessor, our 

algorithm has a timing under 25 minutes. Detailed times are given in Table 2. 

I w"~!X II I 
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Figure 5. Time to Select Subset of Points. 

6. SUMMARY 
In this article, the EID method of determining the subset of points used in the MVE 

has been described. This method is a closed-form, deterministic algorithm as opposed to 
stochastic methods, which are currently in use. Subset selection is what makes the MVE 
a computationally expensive method to implement in daily practice. Results indicate that 
the EID method for selecting the set of points to be included in the MVE estimator is a 
useful one. 

It should be noted that the EID method for subset selection could also be used to es- 
timate the minimum covariance determinant (MCD) estimator (Atkinson 1994; Hawkins 

Table 2. Time (minutes) to Select Subset of Points Using the EID 

Size of data set p = 2 p = 5 p= 10 

16 0 0 0 
32 0 0 0 
64 0 0 0 

128 0 0 0 
256 0 .01 .01 
512 .02 .03 .05 

1024 .06 .10 .20 
2048 .27 .44 .83 
4096 1.06 1.91 3.83 
8192 4.39 7.78 15.56 

10000 6.77 12.67 24.31 

311 



W.L. POSTON, E.J. WEGMAN, C.E. PRIEBE, AND J.L. SOLKA 

1994; Rousseeuw 1985; Woodruff and Rocke 1994). The MCD is defined as the mean 
and covariance arising from the subset of m points that minimizes the determinant of the 
estimated covariance matrix. An estimate of the MCD could be obtained directly by the 
EID method and would preclude the need for finding the minimum covering ellipsoid. 
In addition to the obvious savings in computational effort, there is some evidence that 
the MCD is more efficient (Woodruff and Rocke 1994). 

Although the EID method is not guaranteed to find the true MVE, it has certain 

advantages that make it more attractive than the algorithms currently in use. As discussed 

previously, it involves little computational effort, and thus it is suitable for sets with large 
n and p. Poston (1995) developed a version of the EID method that has been implemented 
in parallel. Hence, it is suitable for massive data set applications. Also, due to the iterative 
nature of the method, it would be easy to get a family of estimators for different values 
of m which is a useful feature (Hawkins 1993). Finally, this method would be useful 
as a starting point for other robust estimators such as S or M estimators (Woodruff and 
Rocke 1994). 
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