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Abstract

The purpose of this article is to introduce a data visualization technique for class cover catch
digraphs which allows for the discovery of latent subclasses. We illustrate the technique via
a pedagogical example and an application to data sets from arti5cial nose chemical sensing
and gene expression monitoring by DNA microarrays. Of particular interest is the discovery of
latent subclasses representing chemical concentration in the arti5cial nose data and two subtypes
of acute lymphoblastic leukemia in the gene expression data and the associated conjectures
pertaining to the geometry of these subclasses in their respective high-dimensional observation
spaces.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Techniques for the analysis of high-dimensional and/or massive data sets are of
critical importance in many areas of science in general, and the analysis of genetic
data, in particular. We term these techniques statistical data mining in the sense of
Wegman (1999, 2000); to paraphrase: “Data Mining is an extension of exploratory data
analysis and has basically the same goals: the discovery of unknown and unanticipated
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structure in the data. The chief distinction between the two topics resides in the size
and dimensionality of the data sets involved. Data mining, in general, deals with much
more massive data sets for which highly interactive analysis is not fully feasible.”
Thus, the main scienti5c goal of statistical data mining is the discovery of unknown
and unanticipated structure in data, leading to new working hypotheses which can
subsequently be tested. In this paper, we describe a set of techniques for the analysis
and visualization of high-dimensional data for the purposes of discovering patterns in
the data. These techniques are applied to a gene expression data set (see Golub et al.,
1999), resulting in an interesting and potentially important working hypothesis about
the relationships between di,erent types of leukemia.

2. Gene expression I

The Golub et al. (1999) data set, produced by A,ymetrix DNA microarrays, in-
volves two general classes of leukemia, acute lymphoblastic leukemia (ALL) and acute
myeloid leukemia (AML). Each observation is a patient, with nALL = 47, nAML = 25;
n=nALL +nAML =72. Each observation is a point in 7129-dimensional Euclidean space;
there are 6817 unique human genes monitored, augmented with some redundant probes
and control elements. (See also Getz et al., 2000.)

Note that this is not a “simple” data set. For example, a principal component analysis
scree plot (Cattell, 1978) suggests that as many as ten or more dimensions are necessary
to adequately account for the variability in the data set.

The ALL class has two (latent) subclasses, T-cell and B-cell, with nT = 9, nB = 38;
nALL=nT+nB=47. Note, however, that this subclass information is not used in building
the model presented below. In fact, we were unaware at the time of the analysis
that these subclasses possess the geometry in the high-dimensional “gene expression
space” required for discovery. When we investigated the subclasses produced by our
methodology, the T-cell/B-cell dichotomy emerged. The result of our procedure is the
discovery of T-cell/B-cell as potential latent subclasses, and a potentially scienti5cally
valuable conjecture pertaining to the geometry of these subclasses in gene expression
space. This result is described in detail below.

3. Methodology

Our methodology for latent class discovery, which involves building a (random)
graph model for a (supervised) two-class classi5cation problem and the subsequent
(unsupervised) investigation of this model for latent subclasses, is described in this
section. At nearly every stage there are generalizations which can (and often should)
be employed; we present here a simpli5ed version. Additional details can be found in
Marchette and Priebe (2003) and Priebe et al. (2002).

We are given two disjoint sets of d-dimensional observations, X = {x1; : : : ; xn} ⊂
Rd and Y = {y1; : : : ; ym} ⊂ Rd. We begin by choosing X as the “target class”; our
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procedure is asymmetric in target class. (Development of a methodology for classi7ca-
tion, as opposed to the latent class discovery described herein, requires symmetrization
by considering each class as the target class in turn; see Priebe et al., 2001.)

Following Priebe et al. (2001) and DeVinney and Priebe (2001), the class cover
catch digraph (cccd) D = (V; A) for X against Y is de5ned as follows. Let V = X
(the set of target class observations). For each v∈V , let Bv := B(v;miny∈Y (v; y)) :=
{z ∈Rd: (v; z)¡miny∈Y (v; y)} for some distance or pseudo-distance function
 : Rd × Rd → R+ := [0;∞); we will use the L2 (Euclidean) distance. That is, for
each target class observation v, Bv is the (open) ball around v of maximal radius such
that the ball contains no non-target class observations. Then the arc (directed edge)
vw∈A⇔ w∈Bv.

A dominating set S for D is a set S ⊂ V such that, for all w∈V , either w∈ S or
vw∈A for some v∈ S. The invariant �(D) is de5ned as the cardinality of the smallest
dominating set(s) of D; 16 �(D)6 cardinality(V )=n. A minimum dominating set for
D is de5ned as a dominating set with cardinality �(D). Finding a minimum dominating
set in a general digraph is NP-Hard; an (approximate) minimum dominating set Ŝ can
be obtained in polynomial time using a well-known greedy algorithm (see Priebe et al.
(2001) and references therein). Our estimate for the domination number of the digraph
D is �̂= cardinality(Ŝ).

For each v∈V there is an associated radius; rv := miny∈Y (v; y). We employ
agglomerative clustering on the radii {rv : v∈ Ŝ}, yielding a dendogram, or cluster
tree (Everitt, 1980; Hartigan, 1975). The leaves of this dendogram correspond to the
�̂ elements of Ŝ.

The dendogram provides a sequence of “cluster maps” mk : Rd → Rk+ for each
k = 1; : : : ; �̂. The cluster map with a given range-space dimensionality k is based on a
disjoint partition of Ŝ and can be conceptualized by visually “cutting” the dendogram
horizontally at a level which yields k branches, or clusters, Ŝ1; : : : ; Ŝk . The kth clus-
ter map is then de5ned as mk(x) = [(x; Ŝ1); : : : ; (x; Ŝk)]′, where the distance (x; S)
from a point x to a set S is de5ned as the minimum over s∈ S of the distances
(x; s).

For each k = 1; : : : ; �̂ an empirical risk (resubstitution error rate estimate) L̂k is
calculated as

L̂k := (1=(n+ m))
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The empirical risk L̂�̂ = 0 by construction, whereas L̂k may be non-zero for k ¡ �̂. The
goal is to use the empirical risk as a function of k to determine a reasonable cluster
map dimensionality; this “model complexity selection” is a notoriously diNcult task,
but is necessary nonetheless.
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Fig. 1. Our “latent class discovery” is similar to a clustering of target class observations based on their
distance to non-target class (Class 0). C1 and C2 are latent subclasses of the target class.

We proceed by de5ning the “scale dimension” d̂? to be the cluster map dimension
that minimizes a dimensionality-penalized empirical risk; d̂?� := min{arg mink L̂k+�·k}
for some penalty coeNcient �∈ [0; 1]. (Some will prefer a logarithmic penalty � log(k)
or Bayesian model selection; alterations such as these can of course be accommo-
dated.) Again, by construction, we have d̂?� = min{k: L̂k = 0} for � = 0 and d̂?� = 1
for �= 1. The choice of � determines the sharpness required to de5ne the “elbow” in
the curve of empirical risk versus cluster map dimension. Thus, the scale dimension
is, loosely, the x-coordinate of the elbow in the curve. (Note that d̂?� is an estimate of
d?� , the cluster map dimension which minimizes the penalized probability of misclas-
si5cation.)

The result of this methodology is md̂?� , the cluster map of interest for exploratory
data analysis. It is this map that is investigated in the examples below. For instance, we
may consider the assignment of each observation xi in the target class to that cluster
(or those clusters) for which xi ∈

⋃
v∈Ŝk B(v;minw∈Ŝk rw). Our “latent class discovery”

will derive from information revealed via this assignment; there may ultimately be a
(known or unknown) latent variable or geometric structure that is responsible for the
particular set of target observations that reside in a particular cluster. Another way to
think about this is that we are investigating the structure of the target observations
based on their distance to the non-target observations. Fig. 1 presents an example that
illustrates the process; the target regions labeled C1 are closer to the non-target region
(Class 0) than is the C2 target region. In this case we would expect to discover latent
classes. (Note, however, that the leftmost C1 subclass may not be discovered, as the
observations therein may fall in a ball centered at a C2 observation—a large radius
ball.)
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Fig. 2. Depiction of the simulation example. (a) The domain space class-conditional scatter plot, with
dominating set Ŝ (�̂= 6) for the target class observations (represented by “o”s). The two axes represent two
canonical dimensions. (b) The dendogram for the six radii. (c) The class-conditional scatter plot resulting
from cluster map m2 (with the convex hull of the projected non-target class observations). The two axes
represent m2(·) = [(·; Ŝ1); (·; Ŝ2)]′.

4. Two-dimensional simulation

Let us consider, for the purpose of illustration, a simple two-dimensional simulation
example. For this case, the domain space class-conditional scatter plot and the algorith-
mically produced dominating set Ŝ (with �̂=6) and the associated radii (one large and
a collection of 5ve smaller) for the target class observations are presented in Fig. 2(a),
the dendogram for the complete linkage clustering of these six radii is presented in
Fig. 2(b), and the two-dimensional range space class-conditional scatter plot (the result
of the application of the cluster map m2 to the observations of Fig. 2(a)) is presented
in Fig. 2(c). Fig. 3 shows that the scale dimension d̂? = 2. (Precisely, d̂?� = 2 for
�∈ [0:03; 0:92).)

Note that the type of hierarchical clustering employed (e.g., complete linkage versus
single linkage) will a,ect the process. Since di,erent dendograms (and di,erent clus-
ters) can be produced by using di,erent linkage criteria, the cluster maps and hence
the choice of d̂?� are dependent on the criterion employed.

In this pedagogical example, there are clearly two latent subclasses, and these sub-
classes are associated with the two clusters of radii. (We would not expect to encounter
such simplicity in the analysis of real-world data sets.)

5. Arti!cial nose example

Before returning to the gene expression data, we present results for an arti5cial nose
chemical sensing data set. The results obtained for these data are qualitatively similar to
those obtained below for the gene expression data. Furthermore, the structure of these
arti5cial nose data, and the subsequently discovered latent subclasses, are perhaps better
understood.
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‘Scale dimension’ for simulation data: d*=2

Fig. 3. For the simulation example the scale dimension d̂? = 2.

The data are taken from a 5ber optical sensor constructed at Tufts University; see
Priebe (2001) for details. Each observation is a multivariate time series—19 5ber
responses at each of two wavelengths, sampled at 60 equally spaced time steps, for
a total “dimensionality” of d = 2280. The data set is designed for the investigation
of the detection of trichloroethylene (TCE), a carcinogenic industrial solvent. For this
example we consider a subset of the Tufts data set consisting of those observations
containing chloroform as a confounder. This yields n = 80 target class observations
(observations with TCE in a mixture of chloroform and air) and m = 40 non-target
class observations (observations with just chloroform and air, and no TCE).

The methodology described above yields �̂= 24. Fig. 4 depicts the plot of empirical
risk versus cluster map dimension; d̂? = 7 for this case.

The exploratory analysis of the data was performed using the Interactive Hyperdi-
mensional Exploratory Data Analysis Tool (IHEDAT) (see Solka et al., 2002).
IHEDAT is a java-based system developed to study the interaction between the cccd
classi5cation methodology and various high-dimensional data sets. Fig. 5 depicts the
results of an exploratory analysis of this data set using d̂?=7. The lower left panel de-
picts the agglomerative clustering dendogram for the radii associated with the
approximate minimal dominating set Ŝ for the cccd D of the target class observations
with respect to the non-target class observations. The upper right panel is a parallel
coordinates plot (Wegman, 1990) depiction of the associated cluster map from the
original 2280-dimensional space to the associated seven-dimensional “scale dimension
space.” The upper left panel depicts the clustering (into d̂?=7 clusters) associated with
the seven clusters of dominating set elements. It is in this panel that the latent class
discovery emerges. In the “data image” (see Minnotte and West, 1998) depicted here,
the target class observations are in order of decreasing concentration of TCE in the
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Fig. 4. The empirical risk (y-axis) against the cluster map dimension for the arti5cial nose data set. This
plot suggests d̂? ≈ 7.

observation. (The data set contains TCE at di,erent concentrations.) Each observation
is represented by a column in the data image. Above the data image we color-code for
the cluster(s) into which a particular observation falls. We see, thanks to this ordering,
that the seven clusters are highly correlated with concentration. In general, these clus-
ters can be thought of as a regression on concentration; the latent classes discovered in
this manner are associated with the various concentrations. In particular, the magenta
and blue clusters contain, almost exclusively, the 50 lowest concentration observations.
Further investigation indicates that these lowest concentration clusters (magenta and
blue) are associated with dominating set elements with small radii, and the 5ve clus-
ters which contain (again, almost exclusively) the 30 highest concentration observations
are associated with dominating set elements with larger radii. We conclude this exam-
ple with the claim that the latent class discovery depicted for this nose data set is in
keeping with our (limited) understanding of the (high-dimensional) geometry of the
problem: the radii are determined by the distance of the dominating set elements to
the non-target class, and low-concentration target class observations should be closer
to the non-target class, and should thus be associated with the smallest radii.

6. Gene expression II: exploratory data analysis

We return now to the gene expression data. Recall that our procedure is asymmetric
in target class; for this example we choose ALL to be the target class.

Fig. 6 shows that d̂? = 5 for the gene expression data set; Fig. 7 depicts the re-
sults of our exploratory data analysis at d̂? = 5. For this display the data image and
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Fig. 5. This graphic displays the results of using class cover catch digraphs for latent class discovery on a
data set of arti5cial olfactory observations (the Tufts arti5cial nose data set). The upper left panel depicts
the clustering (into d̂? = 7 clusters) associated with the seven clusters of dominating set elements. It is in
this panel that the latent class discovery emerges. See text for details.

cluster coverage, depicted in the upper left panel, is ordered so that the nine T-cell
observations are the rightmost in the display. Investigation uncovers that the clusters
with the smallest radii (the third, fourth, and 5fth rows, referenced from the top, of the
5ve rows in the cluster coverage display) are made up entirely of B-cell observations
(although it is not the case that all B-cell observations fall into these clusters). Further-
more, the topmost (orange) cluster contains eight of the nine T-cell observations (as
well as some B-cell observations) and is associated with the largest radii. This yields
the (possibly scienti5cally valuable?) conjecture, analogous to that obtained in the arti-
5cial nose investigation, that the B-cell subclass of the ALL leukemia is “closer” to the
AML leukemia in “gene expression space” than is the T-cell subclass; see also Fig. 8.
This conjecture is obtained via exploratory data analysis with no prior indication that
the B-cell/T-cell subclasses even existed.

(Historical note: the ordering used for illustration in Fig. 7 was employed post-
discovery. In practice, we observed that the (arbitrarily ordered) cluster coverage dis-
play indicated (nearly) disjoint clusters and delved into the descriptors associated
with the data in an e,ort to 5nd a descriptor that correlated with the clusters. The
T-cell/B-cell subclass was thus discovered.)
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Fig. 6. The empirical risk (y-axis) against the cluster map dimension for the gene expression data set. For
this data set, d̂? ≈ 5.

It is hoped that results such as this one—novel working hypotheses—can be used
to drive future scienti5c investigations.

7. Gene expression III: inferential statistical analysis

Given our working hypothesis, a logical next step is to attempt to build support for
(or evidence against) this hypothesis via inferential statistical analysis. We present here
a simple but useful step in this direction.

Let �B (respectively, �T) represent the median (location) of the distribution of
distances from B-cell ALL leukemia (respectively, T-cell ALL leukemia) to AML
leukemia. The Wilcoxon rank sum test (equivalent to the Mann–Whitney test; see,
e.g., Conover (1980) or Lehmann (1975) for the null hypothesis H0: �B − �T = 0
versus the general alternative HA: �B−�T 	= 0 yields the (two-sided) p-value=0:0051.

Thus an inferential statistical analysis, undertaken in response to the latent subclass
discovery conjecture formed based on exploratory statistical analysis, yields strongly
signi5cant evidence that B-cell ALL is closer to AML than is T-cell ALL. (This could
be dominated by just a few genes, or just a few AML observations; the investigation
of these issues is the subject of ongoing e,ort.)

Alas, this inference is biased, as we chose the (potential) subclasses after
(exploratory) data analysis; valid inferential statistics requires an independent test set.
“Nevertheless,” as noted by Bickel and Doksum (2001, p. 8) in their discussion of
data-based model selection, “we can draw guidelines from our numbers and cautiously
proceed.”
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Fig. 7. This graphic displays the intriguing results of using class cover catch digraphs for latent class
discovery on the gene expression data set. The upper left panel depicts the clustering (into d̂? = 5 clusters)
associated with the 5ve clusters of dominating set elements. It is in this panel that the latent class discovery
emerges. See text for details.

8. Conclusions

We have presented a new methodology for latent class discovery based on the visual-
ization of class cover catch digraphs, and we have applied the methodology to data sets
from arti5cial nose chemical sensing and gene expression monitoring. In both cases,
interesting latent class structure emerged. The discovery of latent subclasses leads to
associated conjectures pertaining to the geometry of these subclasses in their respective
high-dimensional observation spaces. In particular, the latent classes discovered in the
investigation of the arti5cial nose data set are in keeping with our belief, based on our
understanding of the high-dimensional geometry of the problem, that the low concen-
tration target class observations should be associated with the smallest radii. For the
gene expression data set, the conjecture is that B-cell ALL is “closer” to AML than is
T-cell ALL in “gene expression space”. The ultimate utility of our methodology in the
discovery of new class distinctions for any given application will require subsequent
scienti5c investigation of the subclass conjectures.
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Fig. 8. Multidimensional scaling map of the gene expression data. Observe that, in general, T-cell ALL
observations (cross-hatched diamonds) are further from AML observations (5lled diamonds) than are B-cell
ALL observations (open diamonds).
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