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Abstract 

As a first step in determining the effkacy of using computers to assist in diagnosis of medical images, an investigation 
has been conducted which utilizes the patterns, or textures, in the images. To be of value, any computer scheme must 
be able to recognize and differentiate the various patterns. An obvious example of this in mammography is the recogni- 
tion of tumorous tissue and non-malignant abnormal tissue from normal parenchymal tissue. We have developed a 
pattern recognition technique which uses features derived from the fractal nature of the image. Further. we are able 
to develop mathematical models which can be used to differentiate and classify the many tissue types. Based on a lim- 
ited number of cases of digitized mammograms, our computer algorithms have been able to distinguish tumorous from 
healthy tissue and to distinguish among various parenchymal tissue patterns. These preliminary results indicate that 

discrimination based on the fractal nature of images may well represent a viable approach to utilizing computers to 
assist in diagnosis. 
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1. Introduction 

The development of computer assisted diagnosis 
(CAD) as a physician’s tool is widely recognized as 

a desirable goal [4]. The application of CAD to 
mammography could well lead to broader based 
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screening without increased medical costs. Ad- 
ditionally, a successful CAD system could aid 

radiologists in evaluating the myriad normal mam- 
mograms and segregate the questionable ones for 

further diagnosis. Any successful CAD system 
applied to medical imagery must necessarily be 

concerned with such issues as image segmentation, 
feature extraction, and pattern recognition. This 
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paper addresses one method of feature extraction 

and pattern recognition based on image texture. 

The feature extraction technique is derived from 
the theory of fractals [2]. Related work in fractal 
analysis of mammographic images can be found in 

references [3,7,9]. The pattern recognition system 
we have developed is based on a branch of 
statistics known as Computational Statistics [ 191. 

Computational Statistics is most useful in deal- 

ing with extremely large data sets and data sets 
that cannot be represented by usual statistical 
models such as normal (or other closed form) dis- 
tributions. The texture information in a digitized 

medical image such as a mammogram easily 
represents a data set of 100 000 local observations. 
Additionally, our observations indicate this data is 

not well represented by a normal (or gaussian) dis- 

tribution. With the advent of current computer 
technology, manipulation of data sets of this size 
or larger is quite feasible. Hence, the application of 
Computational Statistics to medical imagery and 

CAD represents a quite natural blend of techno- 

logies. 
In dealing with the issues raised above we need 

to address and define several mathematical terms. 

The first is a probability density function or pdf. 
The pdf is analogous to a mass density which is 
described with respect to some variable (e.g., the 

mass density of the earth as a function of distance 

from the center). Here, the probability density will 
be a function of the image data. To estimate the 
pdf, we use a technique such as adaptive mixtures 

[ 12,131. Adaptive mixtures is a means of calculat- 
ing the pdf without making strict assumptions 
about the actual statistical distribution of the data 
and is a hybrid approach designed to maintain the 

best features of both kernel estimation [16] and 
finite mixture models [ 181. That is, we do not 
assume that the data is normally distributed. 

In order to compute the pdf estimate, we need 

to extract image features. For this work we have 
used features based on the concept of fractals 
which can be used to represent various textures 

[l I]. Fractals have been used to describe many 
common images such as coastlines, clouds, and 
fern leaves [8]. In other words, fractals are geo- 
metric objects which have a non-Euclidean (non- 
man-made) character which can be described in 

part by a property called the fractal dimension 
which is different than the normal Euclidean di- 
mension. 

The science of fractals was first pioneered by 
Mandelbrot [8]. Barnsley, et al. [I] showed that 
many biological systems could be described using 

fractal geometry. This quantity (fractal dimension 

fd) has been shown to correlate with subjective 
human texture classification and is defined by 
Pentland [lo] as 

E ( IAZ(AX) I ) = E( lAZ(l)l ) IIAxII H 

Here H is the difference between the normal 
Euclidean dimension (ed) and the fractal dimen- 

sion (H = ed -_&). The Euclidean dimension for 
an image is, of course, two. E( . ..) is the expected 
value of the quantity in brackets. E( I AZ( 1) I J is 
the expected change in the intensity one unit away 
from a given point. E(AI(Ax)) is the expected 
change in the intensity Ax units away. The symbol 
Il... II is the standard Euclidean norm or distance. 
For the case of a Euclidean object where the frac- 
tal and Euclidean dimensions are the same (i.e., a 

non-fractal object) the expected change in the 
image intensity at a distance x units from some 
point is the same as the expected change one unit 
away. This result is in keeping with our intuition 

since the grayscale value is constant for such an 
object. Previous work of Caldwell et al. [3] has 
shown a correlation between fractal dimension 

and the subjective human classification of paren- 

chymal patterns. 
Many of the methods for estimating fd are 

based on Richardson’s Law [8] 

where M(E) is the measured property of a fractal at 
a scale of E and K is a constant of proportionality. 

The measured quantity at a given point is the 
change in image intensity as a function of scale. 
Using this equation, and the technique described 
in Solka et al. [ 171, we extract three features that 
describe the texture. The first is directly related to 
the fractal dimension, the second is a measure of 
how well the fractal model fits the data, and the 
third is related to the local degree of contrast in the 
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image. As will be seen below, the use of all three 
features gives improved results over the use of any 
single feature. 

The process of extracting fractal features and 
computing a pdf must be done for each class of 
data represented in the image. Once we have the 
estimates of the class pdfs our job is to discrim- 
inate each class from the other classes. If we plot 
the various pdfs and show that they are distinct 
from one another, we can calculate discrimination 
boundaries and the task of discriminating the 
various classes is a relatively straightforward ap- 
plication of Bayes’ rule [5]. Once we have good 
estimates of the pdfs based on data from a number 
of images (i.e., from training data) and have deter- 
mined appropriate discrimination boundaries, we 
can, in effect, turn the process around and use 
these boundaries to classify regions in new images. 

As stated above, when we extract fractal fea- 
tures for a given class we determine three features 
for each observation. We can think of these three 
features as being the coordinates of a vector in 
three dimensional space. While more information 
is often contained in higher dimensional feature 
space, the difficulty associated with pdf estimation 
increases dramatically with any increase in the 
dimensionality of the observations [ 151. To 
simplify our computations we can use the Fisher 
linear discriminant (FLD) [5] which allows us to 
project these three dimensions to the one dimen- 
sion that is in some sense best for discrimination 
and thus decreases the computational complexity. 
Additionally, this projection eases the problem of 
illustration since we are able to plot the results. 

For each class of training data we have some 
number of observations that we label as X, which 
represents the observations from class i (where 
i = I,2 for two classes). Using the fractal features 
as components we can represent each observation 
vector as x = [xi, s?, ~31 r, where each observation 
vector z iscontained in the set Xi. The FLD yields 
a projection vector whose use results in a projected 
one dimensional observation y for each vector x. 
Thus we obtain a set of observations Y, for each 
class i. Then we employ a normalization transfor- 
mation which yields Y’, with a mean of 0 and 
variance of 1. This same transformation is applied 
to class 2 of the projected observations yielding 

Y’, from Y,. Next we estimate the pdfs for Y’ I 
and Y’* using the adaptive mixtures technique 
and determine the discriminant boundary. 

For a different image, which we label as testing 
data, we apply the FLD projection vector and the 
normalization transformation which were deter- 
mined from the training data. We then estimate the 
pdfs for the two classes of data from the testing 
image using the projected and transformed data. 
This allows us to obtain performance estimates of 
this overall procedure and to judge its utility to 
CAD. 

2. Methods 

Images used in this study were provided 
courtesy of the H. Lee Moffitt Cancer Center and 
Research Institute and the Department of Radiol- 
ogy at the University of South Florida. The acqui- 
sition of the mammograms was accomplished 
under the breast screening program of the Center. 
The selected cases represent a variety of cancers of 
different subtlety. All tumorous regions were bi- 
opsy proven. The mammograms were digitized at 
-220 mm/pixel and 8 bit/pixel by the Mindax 
Corporation of Minneapolis, MN using a DuPont 
FD-2000 scanner. 

Using the techniques described by Solka et al. 
[ 171, features for tumorous and healthy tissues are 
extracted (10 000 healthy tissue observations and 
500 tumorous tissue observations) from mam- 
mogram A shown in Fig. 1. This represents the 
training data. We develop the FLD projection vec- 
tor and the normalization transformation from 
this image (which contains a malignant stellate 
mass - 10 mm). 

A second mammogram not pictured here (mam- 
mogram B) was used for testing (10 000 healthy 
tissue observations and 300 tumorous tissue obser- 
vations). The mammogram contains a malignant 
stellate mass ( - 6 mm). We apply the FLD projec- 
tion and transformation developed from mam- 
mogram A to the data from mammogram B. We 
next reverse the order of training and testing data. 
That is, we use mammogram B as training data 
and mammogram A as testing data. 

At this point, one might well ask if the process 
of projection from three dimensions to one dimen- 
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Fig. I. Regions of interest in mammogram A. This image has been enhanced for presentation 

sion results in any degradation in discriminant 
capabilities. For the small number of images we 
are using in our work we can of course calculate 
the estimated pdfs using the full three dimensional 

vectors. We can also calculate the correlation 
matrices which show numbers which are a measure 
of how well any given feature correlates to the 
class variable for the two mammograms in this 

study. 
The last part of our analysis utilized the four tis- 

sue patterns (labeled as Nl, Pl, P2, DY) which 
have been distinguished by Wolfe [20] and corre- 
spond to increasing breast tissue density and dif- 
ferent morphology. The relationship of these 
patterns with breast cancer risk is the subject of 
much discussion. See. for instance, Saftlas and 
Szklo [14]. To determine the applicability of this 
technique to the discrimination of Wolfe patterns, 
we analyzed an additional eight mammograms. 

Our method consisted of determining pdfs for two 
Wolfe patterns, using this as training data, and 
using two other Wolfe patterns as testing data. 

3. Results 

3. I. Two class data discrimination 
Fig. 2 is a plot of the pdfs of the projected data 

showing the separation of the healthy and tumor- 
ous classes. This figure indicates that for this 

Fig. 2. Fisher linear discriminant pdfs for mammogram A. 
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Fig. 3. Fisher linear discriminant pdfs for mammogram B using 
the independent projection. 

image, the fractal dimension features can be used 
to distinguish healthy tissue from tumorous tissue. 

We apply the FLD projection and transforma- 
tion developed from mammogram A to the data 
from mammogram B. The estimated pdfs from this 
testing data are shown in Fig. 3. The discrimina- 
tion boundary is clearly evident. Furthermore, this 
boundary appears to be invariant. That is, the 
boundaries in Figs. 2 and 3 are in the same place. 

When the roles of mammograms A and B are 
reversed, the plots obtained exhibit the same be- 
havior but with a different discriminant boundary. 
However, the results indicate that once a projec- 
tion is chosen the discriminant boundary is invar- 
iant from training to testing data. This indicates 
that the discriminant boundary obtained from 
training images can be successfully applied to new 
test images. We hasten to add that since this is 
based on just two mammograms this represents an 
indication of what might be possible. 

To examine the feature correlation we can con- 
sider the correlation against class obtained from 
the mammogram A data. The correlation number 
for the single projected dimension is -0.749. The 
correlation numbers for the three original features 
are 0.128, 0.367, and 0.094. Comparing absolute 
values, we find in each case that the number as- 
sociated with the projected single dimension cor- 
relates better with class than any of the three 
original features. For the data from mammogram 
A, the FLD projection correlation of -0.749 is 
significantly higher than any of the class correla- 
tions for the original features. Although the 

2 0 2 4 6 

Fig. 4. FLD pdfs for mammogram N I vs. mammogram DY. 

magnitude of the correlations are smaller for the 
data from mammogram B, this same pattern still 
holds. This result is the motivation for using all 
three features with the FLD rather than any single 
feature such as the fractal dimension by itself. We 
can also compute correlations based on one image 
used as a training set and the other image used as 
a testing set. Comparing the correlations of the 
projected data, there is no serious degradation in 
the correlation when the projection is obtained 
independently. For example, we obtain a correla- 
tion of -0.749 for the projected mammogram A 
data when the projection is obtained using this 
same data. When the projection used is obtained 
from the mammogram B data this correlation is 
nearly unchanged (-0.724). The numbers obtained 
for the mammogram B data follow this same pat- 
tern for the correlation. This gives further cred- 
ence to the generalization property, i.e., the 
projection obtained from one image can be used 
on data extracted from a separate image. 

3.2. Wolfe s pattern analysis 
The pdfs for the Wolfe patterns NI and DY are 

shown in Fig. 4. This figure, along with Fig. 5 and 
Fig. 6, indicates the ability to discriminate among 
the various Wolfe patterns. These particular com- 
binations of patterns were chosen simply for illust- 
ration and are not meant to be exhaustive. To 
demonstrate the same kind of generalization 
shown above, FLD projection vectors were deter- 
mined using the data drawn from these new mam- 
mograms and were used in producing the pdfs for 
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Fig. 5. FLD pdfs for mammogram NI vs. mammogram PI. 

the combinations Nl-DY, Nl-PI, and Nl-P2 
represented by Figs. 4, 5, and 6. In all cases, the 
patterns could be discriminated from one another 
and the discriminant boundaries generalize from 
training to testing image. 

The pdfs here have a greater overlap than those 
discussed previously and certainly this overlap 
represents a measure of the amount of error, or 
probability of error, of incorrect classification of a 
single observation associated with a testing set. 
However, in the case of spatial data for which 
multiple observations can be assumed to be from 
a single class, this probability of error is drastically 
reduced by considering the joint pdfs as a product 
of the (independent) individual pdfs. In fact, as 
few as 10 observations. which is certainly a reason- 
able number for this application, could reduce the 
probability of error significantly. 

Fig. 6. FLD pdfs for mammogram NI vs. mammogram P2. 
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4. Conclusions 

Based on the limited number of cases studied, 
the preliminary indications are that the extraction 
of features based on the fractal nature of images, 
the reduction of dimensionality employing the 
Fisher Linear Discriminant projection vector, and 
the estimation of probability density functions 
using adaptive mixtures, represents a viable ap- 
proach to pattern recognition that may be useful in 
the application of Computer Assisted Diagnosis to 
mammography. If the results of the efforts involv- 
ing the Wolfe patterns can be extended to include 
non-malignant abnormal tissue this technique may 
aid in distinguishing these tissue types. 

Research is continuing in this area and we have 
begun the digitization of a larger number of mam- 
mograms. Our plans are to develop an FLD pro- 
jection vector based on training data from healthy 
tissue and tumorous tissue extracted from a 
substantial quantity of mammograms. The nor- 
malization transformation will be calculated and 
the pdfs of these two classes will be estimated. This 
model will then be tested on a sizable number of 
distinct mammograms to determine its utility. We 
will continue our research and testing until there 
exists sufftcient evidence to support the viability of 
the approach. Additionally, we will extend our 
efforts to include non-malignant abnormal tissue. 

For any system to be of practical value, the 
model must be formed from a sufficiently large 
pool of mammograms to instil confidence in the 
method. The pdfs formed from this large pool will 
form the baseline system and will be stored for 
archiving and reference purposes. The adaptive 
mixtures approach to pdf estimation will give the 
system the capability to update the pdfs with each 
new mammogram that is tested. Finally, our pre- 
vious work indicates that the performance of our 
system can be improved through the use of wavelet 
transformations to enhance the areas of interest in 
the images 163. 
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