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Abstract 

Poston, W.L., et al., A qualitative analysis of the resistive grid kernel estimator, Pattern Recognition Letters 15 
(1993) 219-225. 

The ability to estimate a probability density function from random data has applications in discriminant analysis 
and pattern recognition problems. A resistive grid kernel estimator (RGKE) is described which is suitable for 
hardware implementation. The one-dimensional linear RGKE is compared to a kernel estimate using Gaussian 
kernels, and simulations are presented using both continuous and quantized data. The nonlinear form of the RGKE 
is shown to have desirable properties, such as the ability to detect discontinuities in the density function. 

Keywords. Pattern recognition, kernel estimation, nonparametric probability density estimation. 

Introduction 

In this paper, the problem of estimating the prob- 
ability density function f ( x )  of  a given sample of  N 
real observations X1, ..., XN will be considered. The 
examples presented here are for the one-dimensional 
case only. However, this concept can be extended to 
multi-dimensional data, subject to the constraints of  
circuit complexity and processing time. Related work 
which uses the resistive grid in a two-dimensional ap- 
plication can be found in Rogers et al. (1992). The 
approach studied here is the kernel estimator from 
Silverman (1986) using a kernel that can be imple- 
mented by a resistive grid network (Mead, 1989). 
This network is based on a nonlinear discrete dendri- 
tic process model. A discussion of kernel estimates 
and their application to neural networks can be found 
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in Specht (1990) and a review of research concern- 
ing pattern classification is presented in Lippmann 
(1989). It will be shown qualitatively, that using the 
linear RGKE provides results comparable to an esti- 
mate formed using a Gaussian kernel. Results using 
the nonlinear RGKE will illustrate the ability of the 
resistive grid to detect discontinuities in the density. 
Finally, conclusions and possible applications will be 
discussed. 

Continuous resistive grid kernel estimator 

The resistive network described in Mead (1989) 
is an implementable analog VLSI model of  a biolog- 
ical dendritic process. This model provides a real-time 
analog means of computing the weighted average of 
many input signals or observations. The voltage at a 
node is determined by the weighted average of the 
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Figure 1. Schematic of  the resistive grid network. 
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Figure 2. The continuous RGKE kernel is related to the Lapla- 
clan distribution. 

inputs. Since the amplitude of the voltage due to a 
single input decreases exponentially with distance, 
signals that are farther away will carry less weight. A 
schematic of the one-dimensional resistive network 
is shown in Figure 1. 

The equation for the general univariate kernel es- 
timator of constant window width h is 

f ( x )  = -GZ~,. K , ( 1 )  
i=1 

where N is the number of data points, h controls the 
degree of smoothness, and K denotes a kernel. For a 
one-dimensional continuous resistive network, the 
following equation can be used as the kernel centered 
at y 

1 KR~(y) =A e -Jx-yl/L, L= ~ (2) 

where L is the characteristic length, R is the resis- 
tance per unit length, G is the conductance to ground 
per unit length and A is a normalization constant. The 
resistance R is related to the resistance in the cyto- 
plasm of the neural process, and the conductance G 
corresponds to the leakage through the membrane to 
the surrounding fluid (Mead 1989). When relating 
this to density estimation, the characteristic length L 
can be identified with the window width h. The nor- 
malized voltage at each node of the resistive network 
determines the estimate of the density function. Note 
that the resistive grid kernel of Eq. (2) is just the La- 
placian distribution centered at zero 

f ( x ) = ~ e  -alx-ul, - m < x < o o  (3) 

with L = 1 and A = 1 / 2. This density function is illus- 
trated in Figure 2. 
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Figure 3. Compar i son  between an estimate using a Gaussian kernel (solid) and a Resistive Grid Kernel (dot ted) ,  with h = 1 / ~ .  The 
true density, depicted in 3a, is Gaussian.  

Figure 3 shows a comparison of kernel estimates of 
a normal density using the continuous RGKE and 
Gaussian kernels for various window widths given by 
h=l/v/-N (Duda and Hart, 1973). It can be seen 
from these plots that, as expected, the RGKE yields 
a density estimate similar to one using Gaussian 
kernels. 

Since the continuous RGKE is a bounded Borel 

function satisfying the following conditions 

ff IgRa(x) I d x < ~ ,  

KRc(x) dx= , 1 

IxKR~(x)I--,O, Ixl --,or (4) 

with h ~ 0  and Nh~o~ as N ~ ,  then the estimate 
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Figure 4. Comparison between an estimate using a histogram 
(dotted) and the discrete linear RGKE (solid) with L=5 and 

N= 10,000. The true distribution is Gaussian. 

fRa(x)-,f(x) and the variance of this estimate goes 
to zero in probability as N ~ o o  (Silverman, 1986). 

Discrete linear resistive grid kernel estimator 

When implementing the RGKE, quantized inputs 
must be used (Mead, 1989). The probability density 
estimate for the kth node of an infinite discrete linear 
resistive network is given by 

Ni e-lk-illm' 
, (5) 

where Ni is the number of observations in bin i, A is 
a normalization constant and 

1 1 N/1  + 1 
~,= 1 + 2L ~ L 4L -- -5  " (6) 

This equation is valid under the assumption that lin- 
ear superposition holds. This can be compared with 
a discrete or lattice version ofEq. ( 1 ). 

1 ~ ~(XhXi))  f(x)= ~,= ,  

-Nh 

where N =  Y N~ with Ni giving the number of  obser- 
vations at the ith lattice site or node. I fNi  of  Eq. (7) 

is identified with the voltage at each node and nor- 
malization is neglected, the equivalence of Eqs. (5) 
and (7) can be seen. 

To simulate the linear RGKE, N =  10,000 data 
points are drawn from a quantized normal density 
with zero mean and variance one. The probability 
density function is then estimated only at the centers 
of  the bins. Figure 4 illustrates the estimate from a 
discrete linear resistive grid with a characteristic 
length of 5.0. This shows that the RGKE can yield a 
smooth density estimate of  the data. 

A discontinuity is introduced in the same data to 
evaluate the performance of the linear discrete 
RGKE. This is illustrated in Figure 5a, which clearly 
shows the edge in the data. The estimates from the 
RGKE for different values of L are shown in Figures 
5b-d. As these plots demonstrate, the discontinuity 
can be detected by decreasing the characteristic length 
L. However, smoothness in the estimate is lost when 
the characteristic length is made small enough to de- 
tect discontinuities in the density. This fundamental 
tradeoff in the choice of the smoothing parameter L 
(or h in the traditional formulation) is an inherent 
characteristic of linear kernel estimators. 

Discrete nonlinear resistive grid kernel estimator 

While the above equations for continuous and lin- 
ear discrete RGKE allow for a development of the 
theory with respect to kernel estimators, including the 
nonlinearities of  the network has some benefits. An 
application of Kirchoff's circuit laws to the ith node 
in Figure 1 yields the following equation 

Grin+ ~_, V~+t 
V~= ~ + R~= V,'n =flNj (8) 

I 1 ' 
G+ R,--Z, + R-5 

which governs the voltage at the ith node of a resis= 
t ire grid network when linearity is not assumed. The 
parameter p is a scaling factor controlling the degree 
of nonlinearity, Vj n is the fixed input voltage to the 
ith node, R~ denotes the resistive element between 
nodes i and i+  I, and G denotes the fixed conduc= 
tance to ground at each node. The resistance used in 
Eq. (8) is derived from the current/voltage relation- 
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Figure 5. (a)  Estimate of the density using a histogram with N =  10,000. The true density if piecewise Gaussian. (b) Linear RGKE 
estimate with L = 5. (c )  Linear RGKE estimate with L = 2. (d) Linear RGKE estimate with L = 1. 
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ship for a nonlinear resistive element (Mead, 1989) 

Ioctanh(V~ %-V'+ 1). (9) 
An application of Ohms law (R = AV/I) leads to 

Ri=Ro V"+2-- Vi-/tanh ~ , (10) 

where Ro is the zero signal resistance value. The esti- 
mate of the density function is given by the voltages 
at each node, 

Vi V~ 11,. ( I I )  
NLRGi ~"  N ~ N 

Z V ' Z V~. fiN 
i = l  i ~ l  

with equivalent normalization factors by virture of 
conservation of charge and the input scaling indi- 
cated in Eq. (8) .  

This set of coupled nonlinear equations is applied 
to the discontinuous data of the previous section. 
Figures 6a-c illustrate the probability density esti- 
mates for different degrees of nonlinearity. A value 
of 0.2 for fl yields results similar to the linear case; 
the curve is very smooth and no discontinuity is de- 
tected in the density. However, as more nonlinearity 
is allowed, the discontinuity in the density becomes 
apparent. With f =  1.0 the curve remains smooth 
while the discontinuity in the density function is 
clearly shown. Thus, the inherent nonlinearity in a 
resistive grid network can actually improve its prob- 
ability density function estimator qualities. 

223  



For an additional illustrative example o f  the non- 
linear RGKE, a piecewise uniform distribution on the 
interval (0,1 ) is used. The resistive grid estimates for 
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Figure 6. (a) Nonlinear RGKE estimate of the density shown in 
Fig. 5 with f l=0.2 and N =  10,000. (b) Nonlinear RGKE esti- 

mate with f l= 1. (c) Nonlinear RGKE estimate with f l= 2. 

f l=0 .2  and f l= 1.0 are shown in Figure 7. The results 
are similar to the previous case. As the scaling factor 
fl is increased, the density becomes less smooth and 
the discontinuities are more evident. This example 
also demonstrates that the nonlinear RGKE will de- 
tect more than one discontinuity in the probability 
density function. 

Summary 

This study has shown qualitatively that the resis- 
tive grid kernel estimator yields results comparable 
to probability density estimates derived using Gaus- 
sian kernels. The ability of  the nonlinear RGKE to 
detect discontinuities in the density, while continu- 

1.4 

Volume 15, Number 3 PATTERN RECOGNITION LETTERS March 1994 

( a )  

].2 

0.8 

0.6 

0.4 

0.2 

-0.5 

1.6 

0 0'.5 

Bin Centers 

1.5 

1.4 

1,2 

1 

0.8 

0.6 

0.4 

0.2 

0 
-0.5 

(b) 

0 015 

Bin Centers 

1.5 

Figure 7. (a) Nonlinear RGKE estimate of a piecewise uniform 
density with fl=0.2 and N =  10,000. (b) Nonlinear RGKE esti- 

mate with fl= 1. 
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ing to produce a smooth function, illustrates its use- 
fulness as an estimator. Since the R G K E  is suitable 
for hardware implementation, it is possible to apply 
it to problems in discriminant analysis and pattern 
classification when real-time responses are required. 
Future research efforts include a quantitative statis- 
tical analysis of  the approach, as well as the hardware 
implementat ion of  the resistive grid network. 
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