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A Spatial Scan Statistic for Stochastic 
Scan Partitions 

Carey E. PRIEBE, Tim OLSON, and Dennis M. HEALY, Jr. 

This article develops a spatial scan statistic for homogeneity analysis of point processes that utilizes stochastic scan partitions. 
The derivation of the sampling distribution for the statistic yields an exact test. This test has the potential for improved power 
over conventional alternatives when the point process is embedded in an underlying continuous random field and is recommended 
in situations for which the location of subregions of nonhomogeneity in the point process correspond to regions in the underlying 
field that can be segmented as distinct from their surroundings. The application to the detection of clustered microcalcifications 
in digital mammography is investigated as a motivating example. 

KEY WORDS: Cluster detection; Digital mammography; Homogeneity; Image analysis; Poisson dispersion; Random field. 

1. INTRODUCTION 

In many situations one wishes to perform an analysis of 
the homogeneity of a point process. Testing for homogene- 
ity against a clustering alternative is relevant in applications 
as diverse as astronomy (Cressie 1993), minefield detection 
(Muise and Smith 1992; Smith 1991), and regional disease 
mapping (Jacquez 1993). The example considered through- 
out this article is the detection of clustered microcalcifica- 
tions in digital X-ray mammography. 

Spiculated lesions, circumscribed masses, and clustered 
microcalcifications are among the important early indica- 
tors of malignant breast cancer, and early detection has been 
shown to improve survivability. Thus the detection of clus- 
tered microcalcifications in screening mammograms is an 
area of considerable research activity in the computer-aided 
detection and diagnosis community. The proceedings from 
the first three international workshops on digital mammog- 
raphy include results from numerous research efforts on 
this application, wherein homogeneity may imply the "uni- 
formly healthy tissue" case and regions of nonhomogeneity 
warrant closer inspection (Bowyer and Astley 1994; Doi, 
Giger, Nishikawa, and Schmidt 1996; Gale, Astley, Dance, 
and Cairns 1994). 

Consider a point process (: Id __{0,1} defined on 
Id, the d-dimensional unit cube. The goal is to perform 
a Poisson dispersion test of Ho: Poisson(A) for A fixed 
and known (homogeneity) versus the alternative that jd 

is partitioned into disjoint regions Rf and RfA and the 
point process is Poisson(A) on Rf and Poisson(A' > A) 
on RfA (nonhomogeneity). An intuitive approach to test- 
ing these hypotheses involves the quadrat counts of Fisher, 
Thornton, and Mackenzie (1922) (see Diggle 1983). The 
generalization to spatial scan statistics was considered by 
Adler (1984), Loader (1991), and Naus (1965), and more re- 
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cently by Alm (1997), Chen and Glaz (1996), and Kulldorff 
(1997). Analysis of the univariate scan process (d = 1) has 
been considered by many authors, including Cressie (1977, 
1980), Loader (1991), and Naus (1965). As noted by Cressie 
(1993), exact results for d > 2 have proven elusive. This ar- 
ticle considers a version of the scan process using stochastic 
and disjoint scan regions and provides an exact distribution 
under the null hypothesis of homogeneity. 

The test presented here promises improved performance 
over conventional approaches under conditions found in 
several important application areas. Specifically, we note 
higher power when the point process is embedded in an 
underlying continuous random field (: Id -, ?, as is the 
case in conventional gray-scale imagery, and when there is 
a correlation between RA, the location of the anomalous 
subregion in the point process ((x), and subregions of ho- 
mogeneity in (. For example, in the simplest and best-case 
scenario, (I and (A are strictly stationary and ergodic fields 
and ((x) = 0(X)XRO (x) + (A(x)xRA (x), where XR(X) 
is the indicator function for the set R. 

As an example of the type of application for which higher 
power can be expected, we consider the case of gray-scale 
imagery in general and the detection of microcalcifications 
in digital mammography in particular. Given an image ((x), 
a realization of a continuous random field, two algorithms 
must be applied before performing the test for homogeneity. 
A detector C(() is used to find microcalcifications, and a 
segmentation algorithm W(() partitions Id. 

The first step is to obtain a detection map-a real- 
ization ((x) of the point process. One simple example 
of such a detector is a matched filter (Castleman 1996; 
Jain 1989). Let C0,: {random fields on Id} ,{random 
fields on Id} be a matched (correlation) filter, where ,u(x) 
is the generalized target signal against which the corre- 
lation is performed, such as a prototypical microcalcifi- 
cation; that is, C0,(()(x) = fjd((z)Au(z - x) dz. A sub- 
set of the local maxima of this field is considered detec- 
tions; the point process is obtained via C(() = C1,(() = 
X{C a(x)=Oand Amax(X)<6<0}(X) = (x), where Amax(X) is the 
largest eigenvalue of C,'(x) and 8 is a threshold. Thus C: 
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{ random fields on Id} -> {point processes on Id }. The pur- 
pose of the dynamic thresholding is to produce a detection 
algorithm that yields a Poisson(A) detection map (with A 
the intensity, or rate, of the uniformly distributed false pos- 
itives) under the null hypotheses of no microcalcifications 
present with a high probability of detection in the presence 
of microcalcifications. 

We also require a segmentation, or partitioning, algorithm 
W: {random fields on Id} -> {random partitions of Id}. 
Consider, for example, the watershed algorithm from math- 
ematical morphology (Serra 1982; Vincent and Soille 1991). 
Although care must be taken to avoid ambiguity present in 
the geographical definition of watershed basins as the basins 
of attraction for the local minima of the realization ( (Serra 
1982, pp. 445-450), an intuitive idea of the algorithm can 
be based on the analogy to this physical example: Consid- 
ering ( as a surface in 3-space, the segmentation regions 
R,..., RK are the "wells" defined by surrounding ridges, 
summits, and divides. Vincent and Soille (1991) gave an ef- 
ficient algorithm for computing watersheds in digital gray- 
scale images. 

Derivation of the exact sampling distribution under the 
null hypothesis for our test statistic requires the assump- 
tion of independence of the point process ((x) = C(() and 
the stochastic partition {R1,... , RK} = W((). We do not 
claim that this independence holds in general for all ran- 
dom fields (. Our example considers fields in specific ap- 
plication domains such as mammographic imagery. A useful 
(simplistic) model for the "white dots" in these images un- 
der the null hypothesis of no microcalcifications-for ex- 
ample, blood vessels imaged end-on-is "smooth, except 
for superimposed speckle." The independence assumption 
in this situation is plausible in light of the spatial Fourier 
representation of the detection and segmentation opera- 
tors; note that C(() is a function of the high-frequency 
components of (, whereas W(() is a function of the low- 
frequency components of (. Consider the simplest case, 
in which C(.) is a matched filter correlating with "single 
pixel white dots." For the examples considered in this arti- 
cle, application of the watershed algorithm for determining 
the stochastic partition includes pre-smoothing with a me- 
dian filter P,J(.), where a- is the filter radius. The resultant 
partition W,(() = W(P,(()) thus inherits the robustness 
property of the median filter-the high breakdown point- 
in the sense that single pixel anomalies of the kind that 
determine the point process ( have no effect (in the limit 
as the image resolution, and hence the number of pixels 
within the filter radius, increases) on the stochastic parti- 
tion. Even though both the point process and the stochastic 
partition are obtained deterministically from the same field 
(, they are independent. This argument can be extended to 
matched filters correlating with any bounded target signal 
by increasing the radius a- of the median filter for larger 
target signals. This independence assumption is key to the 
derivation in Section 2.2 of the sampling distribution of the 
spatial scan statistic based on the stochastic partition. The 

effect of this presmoothing on the partition W, (() is inves- 
tigated in Section 3.1. 

In summary, given a realization (, W(() = {R1, .. RK} 
produces a realized partition of Id and C(() = ( yields a 
realized point process on Id. The aforementioned proceed- 
ings of the international workshops on digital mammogra- 
phy contain numerous examples of microcalcification de- 
tection algorithms, by no means limited to matched filters; 
nonetheless, this detector provides a simple and sufficient 
example. Similarly, the literature contains many and varied 
mammogram segmentation algorithms based on methodolo- 
gies quite different than watershed morphology; the first 
criterion for this choice is simplicity of a concrete exam- 
ple for the partitioning algorithm. In addition, derivation of 
the sampling distribution for the test statistic requires dis- 
tributional information for the stochastic Rk, as discussed 
in Section 2, and the claim of higher power as compared 
to the conventional scan statistic requires RA Rk' for 
some k' under HA when W(((x)) = W((?(X)XRO(X) + 
(A (X)XRA (X)) - 

In Section 2 we develop the spatial scan test for clustering 
based on stochastic partitions and discuss its power char- 
acteristics. In Section 3 we provide an example indicating 
that the assumptions made in deriving the test statistic are 
reasonable, a simulation example indicating the framework 
in which the test excels, and an example from digital mam- 
mography in which the test is recommended. In Section 4 
we conclude with a discussion of relevance and extensions. 

2. CLUSTER DETECTION USING 
STOCHASTIC PARTITIONS 

2.1 Conventional Scan Statistics 

Let (: Id -> {0, 1} denote a point process, with events 
occurring at spatial locations x E D c Id, where D is a 
random set. For 5 > 0, define the scan process as 

-)(x) = g({ (y): y E R(x, 6)}) _ g(R(x)), 

defined for all x E {y E Id: R(y, 6) c Id}. The R(x, 6) are 
scan regions about the spatial locations x, and g( ) denotes 
a function of the observations in a local neighborhood about 
x. The function g is termed the locality statistic. A standard 
choice for the scan regions and the locality statistic are d- 
dimensional cubes, 

R(x, 26) - {y: x3 -6 < yj < xj + 6 for j = 1,..., d, 
and the number of events in the scan region, 

g(R) = cardinality (D n R). 

The scan statistic M maps the scan process to R. For the 
purpose of testing for nonhomogeneity as described here, 
a commonly used scan statistic is the maximum number of 
events in a region, 

max M regionsDR g(R)}. 

2.2 Testing Based on Stochastic Partitions 

Let Id be stochastically partitioned into K disjoint scan 
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regions, Id = UkKRk. That is, when the underlying field ( 
is segmented, the segmentation regions Rk are stochastic, 
depending on the particular realization encountered. For in- 
stance, when the application involves detection of clusters 
of microcalcifications in mammographic images, the im- 
ages are first segmented into local regions based on tissue 
texture. 

Let the random variable M, the scane statistic, be de- 
fined as M max(Nl,. . ., Ni), where the locality statis- 
tics Nk = (Nk - Atk)/\Atk denote the standardized num- 
ber of events Nk in region Rk and the tk denote the spatial 
size of regions Rk, tk =Rk 1. The tk live on the simplex 
SK = {(tl, ... itK) Itk > O for all k, EK ltk-} 

The test rejects for large values of M. Under the null 
hypothesis that the point process is spatially homogeneous 
Poisson(A) and ((x) is independent of the partition W((), 
the conditional cumulative distribution function for M is 
given by 

FM(m; A, KItl, I.., tK) 

- Po(M<mJA,K,tl,...,tK) 

K LmVXFt+AtkJ (Atk)j 

= eA II E: j! 1 
k=1 j=0 

Obtaining the desired unconditional distribution requires 
knowledge of the joint distribution of ti, . . ., tK. Assuming 
that ((x) is homogeneous under Ho, W(.) randomly par- 
titions unit d volume. David (1970, pp. 79-82) considered 
the random partition of the unit interval into K subintervals 
using order statistics. Given Xi iid G (i = 1, . . . , K - 1) for 
continuous distribution G on [0, 1], define G spacings as 
the lengths of the subintervals Yi = X(i) - X(i-1), where 
X(o) 0_ . For G = uniform(0, 1), the Yi are said to be 
distributed as uniform spacings, identically distributed with 
joint density (K - 1)! over SK-1 = {(tl,... ,tK-l)tk > 0 
for all k K, IiK1 tk < 1}. Distribution theory for more 
general G spacings was considered by Pyke (1965). For 
our present purpose, the region sizes tl,... .tK-1 with 
tK = 1- EuK-1 tk, play the role of the Yi, partitioning unit 
volume. Under Ho, they are indeed identically distributed. 
In view of the probability integral transformation, a par- 
ticularly relevant choice of Ft, ,., ,tK1 is uniform spacings. 
We have the following result, proved using combinatorics 
and multivariable calculus (see the Appendix). 

Theorem. Let the tk be distributed as uniform spacings. 
Then the sampling distribution for the scan statistic M un- 
der the null hypothesis is given by the cumulative distribu- 
tion function 

FM(m; A, K) 

- JFM(m; Al KItl ... , tK) dFtl i...,tK-l 

K LmVX7+AtkJ (A) - 

JSK-1 k-l j=O SK 

C C K 

>(-) EAE,Ek=ljk 
i k!) 

jl =0 iK=0 k=1 

x s E i at 5iK- 

i=O 

jl iK-i K-1 k k 

x ... S I (- kak k )k 

Lv=0 1K-1=O k=1 

k1 k+jK-i+K- (2) 

where Lxj represents the floor of x, C = Lmv"X + AJ, aJk 

(m2 + 2jk-mm2+4jk)/(2A), and s = s(j1,. ..,jK) 
1 - il a3k. 

2.3 Comments 
We present some points of discussion concerning the test 

that we have developed. 

1. Calculation of 1 - FM (mobserved -1; A, K) given in (2) 
yields an exact p-value for the test of homogeneity. 

2. Equation (1) characterizes a restricted Poisson dis- 
persion likelihood ratio test statistic with unequal sam- 
ple sizes. Rejecting for large values of M is equiva- 
lent to a generalized likelihood ratio test, rejecting for 
large max(Zl,. .., ZK), where Zk = 2((Atk - Nk) + 
Nk log(Nk/Atk)), when the partition {Rk} is assumed to 
correspond to the alternative hypothesis partition {R?, RA} 
in the sense that RA c Rk for some k. 

3. The assumption of uniform spacings for the tk un- 
der the null hypothesis seems plausible for the particular 
partitioning algorithm W(-) considered in later examples, 
the watershed algorithm. An empirical investigation of this 
assumption is presented in Section 3, Example 1. 

4. An approximation for FM (m; A, K) is useful for large 
m,A, K as the complexity of (2) is polynomial in A and 
exponential in K. Writing h(t) = Ez(mf+AtJ { [(At)i]/j!}, 
(2) yields 

Fm(m; A, K) = e-A(K - )!h * h * *h(l),I (3) 

the convolution of h with itself K - I times evaluated at 
unity. This convolution may be approximated efficiently us- 
ing numerical Fourier transform algorithms. 

5. A simple form for FM (m; A) is also justifiable under 
the null hypothesis in some cases. Thus for stochastic K, 
we have 

00 

FmA(m; A) fK (r,)eA(, - 1)! 
r,=2 

M(tk) j 

where fK(i) = P (K = tf) is the probability that the 
stochastic partition is made up of K = s regions, ,S - 
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2, 3,. (r 1 does not allow a test.) An investigation of 
this is provided in Section 3, Example 1. 

2.4 The Power of the Test 

The power of the test depends on the accuracy of the 
partition boundaries as estimates of "true" boundaries, the 
difference in intensities A and A', and the size of the region 
of nonhomogeneity RA. In the example considered herein, 
the stochastic partition involves segmenting the mammo- 
gram into local regions based on tissue texture. If micro- 
calcification clusters are likely to be contained within a sub- 
region of tissue with texture different than the healthy tis- 
sue, then this partitioning scheme has the potential to yield 
greater power than a standard quadrat test or a conven- 
tional spatial scan statistic. The power of the test based on 
(2) can be calculated exactly. In particular, we consider the 
best-case scenario in which RA is small relative to Id and 
a single scan region corresponds to the region of nonho- 
mogeneity, RA = Rk, for some k'. That is, for W(() = 
W((0(X)XRO(X) + (A (X)X RA(X)) - {RA, R2,. .,RK} un- 
der HA, we have 

power X 
= PA(M > ma) = 1- PA(M < mo, -1) 
= 1-Fpoisson(/tk,) ((mC - 1) )Atk + Atk/) 

x A 1 Fpoisson(Atk) 
K-2 k#k' 

x ((mT,-1) /Atk+ At)dSK-2 (5) 

The integral term can be calculated exactly, using the same 
technique as in the theorem, and is approximately 1 - oa 
for small tk' - tA. e(A') = FPoisson(\'tk)((mT -1) Atk' + 
Atk) -+ 0 as A' -+ oo. Thus powerc, -+ 1 as A' -+ oc, as 
expected. Compare this to the best-case scenario, in which 
the two regions R? and RA are known. Then 

poweroptimal 

- -(A' ) FPoisson(t0O) ( -1 ) + At0). (6) 

The only way to obtain power approaching that given in 
(5) or (6) when using quadrats or conventional scan statis- 
tics is to guess correctly and have one scan region match 
RA perfectly. For quadrats, this requires perfect knowledge 
of the size, shape, and location of RA. Conventional scan 
statistics relieve the requirement for a priori location infor- 
mation, but traditionally use hyperrectangles of one or a few 
sizes and thus still require a fortuitous choice for the antic- 
ipated size and shape. In light of this analysis, it should not 
be surprising that (2) yields higher power, approaching (6), 
because we are in essence assuming that the information 
about RA is available through the segmentation W((). 

When RA C Rk,, or when RA = Rk' U Rk', the power of 
(2) is reduced. In the first case this suboptimality is due to 
the decreased "effective intensity" observed in Rk', propor- 
tional to the size of the region Rk', \ RA which has intensity 
A rather than A'. The latter segmentation causes the addi- 
tional observed events in RA to be split between Rk1 and 
Rk', rather than being concentrated in a single Rk',, with a 

resultant decrease in power for A' large with respect to A. 
Continuing the comparison with conventional scan statis- 
tics, note that the absence of size and shape information 
regarding RA implies that one of these two suboptimality 
cases will hold. Although the power of the conventional 
scan statistic is higher than that of the quadrat approach 
with fixed partitions (Naus 1966), the method of stochas- 
tic partitions yields an improvement for "correct" partitions 
{RA, R2, .. , RK}- 

The simulation and mammography examples in Section 
3 provide insight into the power of the test in specific cases. 

3. EXAMPLES 

This section presents an example indicating that the as- 
sumptions made in deriving the test statistic are reasonable, 
at least for the digital mammography application, a simu- 
lation example indicating the framework in which the test 
provides improved power over alternatives, and an example 
of test performance in digital mammography. 

3.1 Example 1: Investigation of Uniform 
Spacings Assumption 

The first example, an empirical investigation of the as- 
sumption of uniform spacing for the tk under the null hy- 
pothesis, is presented in Figures 1 and 2. Consider an image 
((x); for example, a digitized mammogram. The watershed 
algorithm W(() yields the scan regions Rk. We consider 
the chi-squared Pearson and the Kolmogorov-Smirnov 
(K-S) tests of the marginal distribution of the region sizes tk 
versus the uniform spacings distribution. Following David 
(1970), we have 

ftk (u) = beta(u; 1, K - 1) 
= (K1- )(1 _u)K-2 for < u <1 

and the marginal distribution is the incomplete beta function 
Ftk (a)= fftk(u)du= Ia(1,K- 1) for 0< a < 1. Figure 
1 gives the results of running the watershed algorithm on 
a healthy mammogram, comparing the empirical and the- 
oretical cdfs (Fig. ic). Both the chi-squared and K-S tests 
convincingly fail to reject the uniform spacings hypothesis. 

The number of watershed regions K-the number of lo- 
cal minima-is a measure of the "roughness" of the image 
(, and thus can be controlled somewhat by presmoothing. 
Let Pc(.) be a median filter with smoothing parameter (fil- 
ter radius) v. Figure 2 represents the results of performing 
the same test procedure described for Figure 1 for a set of 
49 healthy mammograms. The partitions are obtained via 
W(Pc(()) for six different settings of v. We thus present 
six K-S p values for each mammogram. Except for per- 
haps a = 1, which produces the most regions (the median 
number of regions ranges from UK1 = 172.9 for a = 1 
to ,UK6 = 18.1 for a = 6 for these 256 x 256 pixel im- 
ages), we find no deviation from what would be expected 
under the uniform spacings hypothesis. We conclude that 
the assumption of uniform spacings under the null hypoth- 
esis made in the theorem for the watershed algorithm as 
applied to digital mammography is reasonable. The results 
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(a) (b) 

0.0 0.02 0.04 0.06 

(c) 

Figure 1. Investigation of the Uniform Spacings Assumption. Panel (a) depicts a homogeneous (healthy) mammogram. Panel (b) depicts the 
watershed regions. Panel (c) compares the empirical and theoretical cdfs. [ , beta(1, 72); - - -, empirical]. The Kolmogorov-Smirnov p value 
for a test of the spacing distribution for the marginal of watershed region sizes is .58. The chi-squared p value is .34. We cannot reject the null 
hypothesis. Figure 2 indicates that this result generalizes. 

of this experiment seem plausible, from an investigation of 
the statistical properties of the watershed algorithm. 

The aforementioned experiment also provides an exam- 

34 5 ?2 5 44 5 61 
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5 

6 
5 4 6 1h6 

2 
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42335 4 3 ~ 4 1 2 
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2F2g2ure5 4 
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C~~~~J ~5 4 2 ~ 5 

~6 3 6 1 5 1 4 

2 1 5 5 1 6214 
2 2 1 4 1 1 4 3 

2 

0 10 20 30 40 50 

mammogram 

Figure 2. Analysis of the Spacings Hypothesis for the Marginal Size 
Distribution. K-S p values for a test of the uniform spacings distribu- 
tion for the marginal of watershed region sizes. The data are a set of 
49 healthy mammograms. For each image, six different presmoothing 
settings for the watershed algorithm are used. The p values appear uni- 
formly distributed, as would be expected under the null hypothesis. 

ple of a sample from fK(s;) = P (K = ), presented in Fig- 
ure 3. Corresponding to smoothing with c = 3 from Fig- 
ure 2 and having a median number of regions fK3 = 54.9 
over the 49 healthy mammograms, Figure 3 indicates both 
graphically and via tests of normality that hypothesizing 
a multinomial approximation to a normal distribution for 
fK(Ks;) may indeed be reasonable in obtaining (4). 

3.2 Example 2: Simulated Example 

Figure 4 considers a simulated example of using (3) to 
test for homogeneity. The nonhomogeneous process con- 
sidered here mirrors that of Muise and Smith (1992) for 
minefield simulations. A homogeneous Poisson (A) process 
is generated in j2 (Fig. 4a); and a corresponding nonho- 
mogeneous process is generated in j2 by adding another 
Poisson(A' > A) process generated in RA (Fig. 4b). For this 
example A = 20,A' - 270, RA - [.2,.4] x [.2,.4], JRAl 

- 

tA = 1/25, and R? = _2 \ RA. (Example interpretation: We 
expect approximately 20 false microcalcification detections 
in the mammogram; a small region-4% of the total im- 
age size-has a cluster of microcalcifications that will pro- 
duce approximately 10 detections.) These point processes 
are considered to be embedded in simulated random fields, 
and the watershed algorithm is applied to these fields. The 
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Figure 3. Analysis of the Number of Regions K Produced by the 
Watershed Algorithm Applied to Healthy Mammograms. The estimate of 
fK (ii) = P (P = i,) is based on the set of 49 healthy mammograms, using 
smoothing parameter a = 3. The K-S p value versus normality is .244; 
the chi-squared p value versus normality is .912. It may be reasonable 
to hypothesize a multinomial approximation to a normal distribution for 
fK (K)- 

field corresponding to the homogeneous process is homoge- 
neous as well, yielding the watershed scan regions depicted 
in Figure 4c. The field corresponding to the nonhomoge- 
neous process is nonhomogeneous, having different struc- 
ture in the region RA; ((x) = (?(x)XRO (x) + (A(X)XRA (x), 
where (? and (A have different distribution functions. Fig- 
ure 4d shows the watershed scan regions for this case; (? 
and (A have been chosen so that W(() = W((?(X)XRO(X)+ 
(A(X)XRA(X)) -_ {RA, R2,..., RK}. In Figure 4c and 4d, 
the corresponding point process is overlaid. 

For this example, we obtain the following results 
from (3): 

Homogeneous process: 

K = 24; E Nk = 16; M = 1.997; p value = .52; 

Nonhomogeneous process: 

K =24;ZENkC 27; M =9.l46;p value 0 . 

For comparison, the quadrats approach using 25 regions 
(also perfectly aligned, with one quadrat region = RA) 
yields p values of .20 and 0 for the homogeneous and 
nonhomogeneous examples. Both approaches have been af- 
forded best-case power characteristics due to the optimal 
alignment of one scan region with the region of nonhomo- 
geneity RA. 

3.3 Monte Carlo Power Comparison 
To buttress the results of the power analysis presented 

in Section 2.4, we now present a small study via Monte 
Carlo simulation providing formal numerical comparison of 
power characteristics with competing procedures. The sim- 
ulation scenario is similar to that of the preceding example. 
A homogeneous Poisson(A = 20) process is generated in 
R? = 12 \ RA, and a corresponding process is generated in 
12 by combining with another Poisson(A') process gener- 
ated in RA. For this simulation study, RA is a .2 x .2 square 
oriented with the coordinate axes and randomly located in 
12. The value used for A' ranges from 20 (homogeneity) 
to 270 (in which we expect 10 additional events in RA). 
This point process is considered to be embedded in a sim- 
ulated random field ((x) = (?(x)XRO(x) + (A (X)XRA (X). 

The watershed algorithm is applied to this field, producing 
W(()- {R , R2, ,RK}- 

Homogeneous Nonhomogeneous 
o 0 

o 0~~~~~~~ 

o 0 00. 00 

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 
(a) (b) 

(c (d)i 

Figure 4. Simulated Example of Usin 
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emede isiuaeradmflsf0 an ATefed 0i ooe 

neous, whereas fA is nonhomogeneous, having a different distribution 
in RA than in R?. The watershed algorithm is applied to these fields, 
yielding the scan regions depicted in panels (c) and (d). This example 
yields the following results: (homogeneous process) K = 24; ZNk = 16; 
M = 1. 997; p value = . 52; (nonhomogeneous process) K = 24; EZNk = 
27; M = 9.146; p value = 0. 
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Figure 5. Power Curves From Monte Carlo Simulation in a Setting 
Analogous to that of Figure 4. Here 100 Monte Carlo replications were 
performed for various values of V'. (A\'- \)125 represents the expected 
number of excess points in the randomly located .2 x .2 square subre- 
gion R . The nominal level of the test is. .025. The procedures compared 
include our method using stochastic scan partitions (SSP, denoted by 
+), the quadrat approach in which the size of the quadrats is chosen 
correctly (QUADRA7; denoted by A), the Chen and Glaz (1996) ap- 
proximation for the conventional scan statistic (CG) with three choices 
for the size of the scan window-CG(. 1 x . 1), denoted by x; CG(.2 x 
.2), denoted by 0; and CG(.4 x .4), denoted by V -and the 'perfect 
knowledge" (OPTIMAL, denoted by O ) case in which both the size and 
the location of the region of nonhomogeneity are known. For SSP, the 
partition is obtained by applying the watershed algorithm to a simulated 
random field ?(x) = (o(X)XRO (X) + (A(X)XRA (X). Included in the figure 
are the approximate one-standard deviation bounds for our stochastic 
scan partition method. These curves indicate that when a partition ap- 
proximating IRA, R2, , RK} iS obtained, our method can improve 
significantly upon the power of both the quadrat approach and the con- 
ventional scan statistic, except perhaps when the scan statistic uses the 
correct choice of scan window. These results agree with those of the 
theoretical analysis of Section 2.4. 

The procedures compared include our method using 
stochastic scan partitions (SSP), the quadrat approach in' 
which the size of the quadrats is chosen correctly (.2 x .2), 
and the conventional scan statistic with three choices for 
the size of the scan window: too small (.1I x . 1), correct, 
and too large (.4 x .4). Because the exact distribution of 
the conventional spatial scan statistic is not available, we 
make use of the approximation provided by Chen and Glaz 
(1996). We also include a comparison against the optimal 
" perfect knowledge" case in which both the size and the 
location of the region of nonhomogeneity is known. 

Figure 5 presents the results of this simulation, in which 
100 Monte Carlo replications were performed for each 
value of A', in the form of power curves. The nominal level 
of the test is set to be .025. (Randomization is required 
for all of the tests compared, except SSP, to achieve this 
nominal level.) Included in the figure are the approximate 
one standard deviation bounds for our stochastic scan par- 
tition method. These results show that when a partition ap- 
Droximatingy {R A Rg. . .,- RK} is obtained. our method can 

impov siniicatl o th pwerofboh te uadata/ 
prahadtecnetoa ca ttsi,ecp ehp 

when ~ ~ ~ ~ ' coprdaantth cnsaitc/sn h orc 
choice~~~ ~~ ofsa,/dw Teerslsare ihtoeo 

the theoretical analysis of Section 2.4 and indicate numer- 
ically the potential improvement to be gained by using the 
stochastic scan partitions method when the underlying ran- 
dom field provides information about the region of.nonho- 
mogeneity. 

3.4 Example 3: Digital Mammography 

In addition to the watershed segmentation algorithm, ap- 
plication of the test requires a detection algorithm that pro- 
duces an appropriate point process. We use the variation of 
the standard matched filter C(-) described earlier and apply 
the procedure described in Example 2 to digitized mammo- 
grams. 

Figure 6 depicts the results of applying the test (3) to 
digital mammography. The results indicate the advantage 
of utilizing scan regions obtained through a segmentation 
of the random field underlying the point process. For this 
example the watershed and matched filter algorithms were 
applied to two mammograms; one healthy and one (Fig. 6a), 
containing the cluster of microcalcifications seen in Figure 
6b. For the healthy mammogram, (3) yields a p value of .98 
(with 36 regions) and quadrats yield a p value of .97 (with 42 
regions). For the nonhomogeneous mammogram, (3) yields 
a p value of .034 (with 44 regions) and quadrats yield a p 
value of .41 (with 42 regions). This improvement over the 
quadrats approach, a manifestation of the greater power of 

~~() . (b 

I~~~~ / 

Figure 6 Testing the Homogeneity of Digital Mammographic Im- 
ages For a healthy mammogram, (3) yields a p value of .98 (with 36 
regions) and quadrats yield a p value of .97 (with 42 regions). For the 
nonhomogeneous mammogram depicted in panel (a) containing the mi- 
crocalcifications seen in panel (b), (3) yields a p value of .034 (with 
44 regions) and quadrats yield a p value of .41 (with 42 regions). The 
sprior power oiFfl thetestgivn by/ (3) is u toimf the tact- that a single 
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the test utilizing stochastic scan regions, is due to the fact 
that a single watershed region contains the entire upper- 
right cluster of four microcalcifications (Fig. 6c), whereas 
the quadrat regions split this cluster. 

4. CONCLUSIONS 

We have developed a spatial scan statistic for testing the 
homogeneity of a Poisson process against a clustering al- 
ternative. The approach utilizes stochastic and disjoint scan 
regions, and the exact distribution of the test statistic has 
been derived. We have compared this to simple approaches 
using quadrats as well as more sophisticated scan statistics 
that still require a priori choices for the sizes of the scan 
regions and for which only approximations are available. 
The test has the potential for improved power over these 
competing approaches when the point process is embed- 
ded in a general random field, as is the case for targets in 
images. Other approaches to testing the homogeneity of a 
spatial point process, such as point-to-point distance statis- 
tics, have not been considered. 

The test has been developed for HO: Poisson(A), A fixed 
and known on Id versus HA: Poisson(A) on RO and 
Poisson(A' > A) on RA, R? U RA - Id and RO n RA 0. 
The test is not constrained to two-dimensional processes, 
and the examples of both C(.) and W(.) presented earlier 
are easily generalized to higher-dimensional fields. In par- 
ticular, point processes arising from volumetric brain imag- 
ing can be treated. An analogous derivation yields tests for 
binomial processes and for A' < A and A' * A. For un- 
known A, using the estimate A = Nk in (2) or (4) yields 
the appropriate test, with a degradation in power propor- 
tional to the size of region RA. But in practice, A often can 
be accurately estimated by performing a large number of 
tests. For example, a particular microcalcification detection 
algorithm can be applied to a set of healthy mammograms 
to determine the value of A to be used under the null hy- 
pothesis. 

In statistical image analysis applications, the utility of the 
test relies on the availability of a detection algorithm and a 
segmentation algorithm. We have used simple, well-known 
choices for these image-processing algorithms. The valid- 
ity of the test requires knowledge of the stochastic behav- 
ior of the segmentation algorithm. Examples indicate that 
the watershed algorithm behaves as required under Ho. The 
power of the test depends on the assumption that the point 
process and the field in which it is embedded are not in- 
dependent of one another under the alternative hypothesis, 
and on the ability of the segmentation algorithm to localize 
regions in which the point process is likely to be homoge- 
neous. For the detector, all Poisson dispersion tests require 
that the point process obtained be Poisson and homoge- 
neous under Ho. That is, the noise process is modeled as 
complete spatial randomness. Power depends on the ability 
to detect targets when they are present. We have used stan- 
dard matched filter-type detection algorithms. It is clear that 
better detection and segmentation algorithms provide more 
reliable tests. Research and development in these two areas 
is ongoing in engineering and the mathematical sciences. 

The test developed in this article is valid for any choice of 
algorithms meeting the foregoing conditions; our purpose 
has not been to optimize these algorithms, but rather to de- 
velop a test that incorporates the potential capabilities of 
a segmentation algorithm to produce appropriate stochastic 
partitions. 

APPENDIX: PROOFS 

Let K c {2, 3,. . .} regions partition Id, with sizes tk. "Uniform 
spacings" (David 1970) implies that tl, .. ., tKl, with tK = 1- 

ZK1 tk, are distributed with joint pdf(K - 1)! over 

SK-1 = {(tl, * tK-1)tk > V k, E tk ?1} 

Let A E R+,m E [- A,oc) and K be fixed, and let C(tk) = 
LmV/Atk + AtkJ, where LxJ represents the floor of x. Theorem 1 
is proved using nothing more than combinatorics and multivariable 
calculus. We require the following lemma, obtained via integration 
by parts and induction. 

Lemma 1. I kK 
tK-1 k=1 (k=1 jk+ K -(1)) 

We now proceed to the proof of Theorem 1. 

Proof of Theorem 1 
We have, under the null hypothesis, 

FM (m; A, K) 

= -"(K 1)! 
n l E j!k)' 

SK-1 k=1 3=0 

c(t1) C(tK) K 3 

=e (K-1)! S S H (Atk) dSK1. 

SK-1 3,1=o 3K=O k=1 

The support of t3k is C(tk) ? ik. Solving the quadratic equa- 
tion yields (in2 + 21k - M iM2 + 4jk) /(2A) < tk < 1. Writing 
aJk = (mi2 + 2jk - i in2+ 4jk)/(2A) and letting X[a,b] (t) be 
the indicator function for the set [a, b], define ( 1 for a3k < tk < 

X(a3k I tk) = X[ajk ,] (tk) 0 otherwise, 

representing the support of t k. Defining C = c(1) = +AJ 
yields 

FM (m; A, K) 

C C K \3k 
- e (K- 1)!] L.. . E 5.. fl (AtkJk 

K~~~~~: 
SK-1 kk= 
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It remains to integrate I(ji,.. , jK ) = KKl Hkl t-kkX(ajk, 

tk) dSK-1. The simplex constraints give us tK 1 - 1 tk, 

and so 

1(il, ..,jK) 

- 1i-ti. j-~ ~tk (jH tjk) (1 - itk)J 

k=l ~~~~~k=1 l = 

j-Zk=2aJk jl-t-Zk=3aJk / k=tk-a 3K 

31 32 3K-i 

K-1 \ K-1 \ K 

x tik) I tk) dt, . .. dtK-1- 

k=1 k=1 

We address the foregoing integral via the change of variables tk = 
S'Uk + aJk for 0 ? Uk ? 1 - u@,-1 Ul k = 1, ... , K - 1, and 

- = 8(1, jK) j 
K 

1-. ajlk obtaining 

)(<l, d . djK) 

K-2 K- 

J1 T1 -U1 k=1 Uk (K-1 ) 

O O ? ~~~~k=1 
K-1 \ K 

X - E (SUk + aik)) dul . .. dUK-1 

k=1 

iK .3 K-1 

=SK- LI( K ai jK -i 

i=o 11=0 1K-1=0 

l k 
) k ) 

(jK - i) K-1 (lk!) ( (K=l lk +jK -i + K- 1)! J 
by Lemma 1. 

Substitution and cancellation yields 

FM (m; A, K) 
C C 

31=0 jK=O k= 1 

3K .K ! jK-1 

x s 1 8 J ! aJ KS 
K 

=o 11=o 1K-1=0 

K-1ik Ti ik! tlk Jk-lk1 xJ s a. 
k=l (ik lk)! 3 k 

K1 
as 1 (Ek=1 lk + jKd i + Ki- 1 

as desired. 

[Received July 1996. Revised April 1997.] 
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