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Abstract

Each point in an observed point pattern representing potential target detections (e.g., mines for
mine�eld detection and localization) often is accompanied by a scalar ‘mark’ representing the detector’s
level of con�dence in that particular detection. Scan analysis for clustering should take this additional
mark information into account. We present an importance sampling method for deciding, based on an
observed marked point pattern, if a scan statistic S provides signi�cant evidence of increased activity
in some localized region of time or space. Our method allows consideration of scan statistics based
simultaneously on multiple scan geometries. Our approach yields an unbiased p-value estimate of
the form P[S ≥ sobserved] = B∗�; where B∗ plays the role of the Bonferroni upper bound and the
correction factor � measures the conservativeness of this upper bound. The variance of our importance
sampling estimate is typically smaller than that of the naive hit-or-miss Monte Carlo technique when
the p-value is small. Furthermore, our estimate is often accurate for critical values which are not far
enough in the tails of the null distribution to allow for accurate approximations via extreme value
theory. In this article, we develop our importance sampling p-value estimator for the case of marked
spatial Poisson processes using multiple scan geometries, and illustrate the approach via application to
mine�eld reconnaissance. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Spatial scan analysis; Importance sampling; Marked point pattern; Mine�eld

( This work is partially supported by O�ce of Naval Research Grant N00014-95-1-0777.
∗ Corresponding author. Tel.: +1-410-516-7200; fax: +1-410-516-7459.
E-mail address: cep@jhu.edu (C.E. Priebe).

0167-9473/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0167-9473(00)00017-7



476 C.E. Priebe et al. / Computational Statistics & Data Analysis 35 (2001) 475–485

1. Motivation: mine�eld reconnaissance

Mine�eld detection and localization is an important problem currently receiving
much attention in the engineering and scienti�c literature (Smith, 1995; Witherspoon
et al., 1995). Witherspoon et al. (1995) depict the operational concept for mine�eld
reconnaissance via an unmanned aerial vehicle. Multispectral imagery of an area
of interest is processed. First, potential mines are located with a mine detection
algorithm. (Holmes et al. (1995) present a thorough discussion of the particular mine
detection algorithm used in the sequel.) The detector produces a binary detection map
D(·) such that D(x)=1 for all points x in the image domain I⊂R2 at which a mine
or minelike object is detected. Categorizing the candidate detections into ‘true targets’
(mines) and ‘false targets’ (mine-like objects, debris, noise, etc.) and considering an
operational imperative imposed on the mine detector to �nd (nearly) all true targets,
it can be expected that the number of false targets in the detection map D(·) will
be relatively high.
Among the most promising approaches to the mine�eld detection problem are

statistical methods which consider the map D(·) of candidate detections to be a real-
ization of a spatial point process. These methods proceed by analyzing the detection
map for clustering or regularity to determine if it represents a mine�eld point pattern
buried in noise, or noise alone (Earp et al., 1995; Muise and Smith, 1995; Cressie
and Lawson, 1997; Hayat et al., 1997; Lake et al., 1997; Priebe et al., 1997a).
It is common to consider the detection of clustering in point processes as a for-

mal hypothesis test, with the null hypothesis represented by homogeneity, or com-
plete spatial randomness (Diggle, 1983; Cressie, 1993). For the mine�eld detection
application, in which mine�elds and false detections are modelled as point processes,
the null hypothesis is ‘no mine�eld’. While there are cases for which regularity –
patterns in the observed point process – can be used as a key to mine�eld detection,
other applications do not allow for this restriction of the alternative hypothesis of
‘mine�eld present’. It is these latter situations, in which mine�eld detection becomes
a test of homogeneity against a more general alternative of nonhomogeneity, that we
address here.

2. Spatial scan analysis

Consider a point process D :I → {0; 1} where the domain I is a bounded subset
of Rd. The goal is to perform a Poisson dispersion test of H0 :P(�0) on I for
�0¿ 0 �xed and known (homogeneity) versus the nonhomogeneity alternative that
some subregion has higher intensity. E.g., under HA the region of interest I is
partitioned into disjoint regions I0 and IA and the point process is P(�0) on I0 and
P(�0 + �A) on IA with �A¿ 0. Thus, the map D(·) takes the value zero except at
�nitely many locations xi, 1; : : : ; N , at which locations the value taken is unity. The
null hypothesis further implies that N ∼ P(�0) and, conditionally given N , x1; : : : ; xN
are independent and identically distributed uniformly in I. For our application, I
represents the entire area scanned, I0 is the subregion with no mine�eld, and IA
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corresponds to the location of the mine�eld. The intensity of the false alarm process
is �0, the intensity of the mine�eld process is �A, and �0 + �A is the intensity of the
compound process (superimposed false alarm and mine�eld processes) in IA.
An intuitive approach to testing these hypotheses involves the quadrat counts of

Fisher et al. (1922); see Diggle (1983). The generalization to spatial scan statis-
tics is considered in Naus (1965), Cressie (1977,1980), Adler (1984), and Loader
(1991), and more recently in Alm (1997), Kulldor� (1997), Chen and Glaz (1997),
and Priebe et al. (1997b). A window Wg(x) with geometry (size and shape) g is
positioned at each point x ∈ Ig = {y ∈ I: Wg(y)⊂I} and the locality statistic
Nx;g=

∑
x′∈Wg(x)D(x

′) is the number of events observed in the window. The summa-
tion is over all x′ ∈ Wg(x); there is (almost surely) a �nite number of x′ ∈ Wg(x)
such that D(x′) = 1. The scan statistic S is de�ned to be the maximum over all
x ∈ Ig of the Nx;g and H0 is rejected for large values of S.
Inference using this scan statistic is di�cult; as noted by Cressie (1993), the exact

distribution of the statistic for d ≥ 2 has proved elusive. Much of the available
analysis involves extreme value theory, and is therefore applicable only in the tail
of the null distribution (for extremely small signi�cance levels). For more moderate
signi�cance levels, naive Monte Carlo simulation is an option; however, this approach
is computationally intensive, as only a small percentage of generated observations
will cause a rejection and thus many repetitions are required in order to reduce the
variance of the estimated signi�cance to an acceptable level.

2.1. Multiple scan geometries

An additional complexity arises due to the requirement to consider simultaneously
multiple scan window geometries g ∈ G. This consideration allows quantitative
inference which takes into account the fact that the size and shape of nonhomo-
geneities (mine�elds) are not known a priori and thus the search for a region IA of
excess intensity must be based simultaneously on multiple window geometries. Loader
(1991), Kulldor� (1997), and Naiman and Priebe (2000) have previously considered
this important issue.

2.2. Marked point processes

In this article we address an additional consideration; namely, marked point pro-
cesses (see, e.g., Cressie, 1993), in which each detection in the detection map D(·)
has associated with it a mark indicating the con�dence of the detector in that par-
ticular detection. In this case, the map D(·) takes value zero except at �nitely many
locations xi, 1; : : : ; N ; at these non-zero locations the value taken is M (xi). In addition
to assuming that the non-zero locations form a homogeneous Poisson process, our
null hypothesis now also assumes a simple marking distribution; for instance, that
the marks M (xi) are iid uniform random variables (F0=U[0; 1]) and are independent
of the associated marginal spatial point process. We also assume that, under the al-
ternative, the marks M (xi) associated with true targets have a distribution FA which



478 C.E. Priebe et al. / Computational Statistics & Data Analysis 35 (2001) 475–485

Fig. 1. Empirical cdfs for the class-conditional marks for a mine�eld data example.

is stochastically larger than F0. Fig. 1 presents empirical cumulative distribution
functions for the class-conditional marks for example mine�eld data (Witherspoon
et al., 1995; Holmes et al., 1995). For our mine�eld application, these marks corre-
spond to posterior probabilities that the individual detections obtained from the mine
detector are in fact mines, as determined by a post-processing classi�cation rule (see,
e.g., Priebe et al., 1999). The stochastic ordering assumption is supported, and the
uniform assumption for the null marks appears conservative. Incorporation of such
marking information will improve the ability to detect nonhomogeneity.
For the marked case with multiple scan geometries the locality statistic for x ∈ Ig

and g ∈ G is

Nx;g =
∑

x′∈Wg(x)
M (x′)− cg:

The scan statistic is

S =max
g∈G

max
x∈I(g)

Nx;g:

The geometry-speci�c constants cg are determined so that the signi�cance level for
the test based on an individual Nx;g is the same across window geometries.
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3. Importance sampling

Naiman and Priebe (2000) introduce an importance sampling approach to estimat-
ing the signi�cance level of hypothesis tests based on scan statistics. The general idea
of importance sampling (see Fishman, 1996) is to change the distribution to be sam-
pled from, and follow this by making an adjustment that accounts for the change
to produce an unbiased estimator of the desired probability. Naiman and Priebe’s
approach to importance sampling in the scan statistic setting involves sampling only
data in which rejection of the null hypothesis occurs, and then the subsequent ad-
justment step involves determining the collection of all locality statistics producing a
rejection. There are several bene�ts of this aproach. First, in a variety of examples,
the importance sampling is relatively easy to implement for conveniently structured
situations. Second, the importance sampling is more computationally e�cient than
naive Monte Carlo simulation when the signi�cance levels are su�ciently small,
but not so small as to allow for accurate extreme value approximation. Finally, the
Naiman and Priebe importance sampling technique is capable of handling multiple
scan window geometries g ∈ G: This article presents the extension of the Naiman
and Priebe importance sampling approach to the case of marked point processes with
multiple scan window geometries.
Given an observed marked point pattern (obtained through the processing of

imagery, for example) and a collection of geometries to be considered, the ob-
served value of the scan statistic, denoted sobs, is calculated. Our importance sampling
methodology for estimating the p-value of the observed sobs is designed to improve
the naive hit-or-miss Monte Carlo simulation. For the naive simulation, point patterns
are generated under the null distribution and scan statistics S1; : : : ; Sm are observed.
The estimate p̃ = (1=m)

∑m
j=1 I{Sj≥sobs} can have an unacceptably large variance for

computationally reasonable values of the point pattern sample size m when the true
p-value is small.
For a scan statistic involving a �nite number of locality statistics, our importance

sampling approach can be interpreted as providing a correction factor � to the con-
servative Bonferroni upper bound B=

∑
g∈G

∑
x∈Ig

P[Nx;g ≥ sobs] for P[S ≥ sobs]. Be-
cause the scan statistic under consideration involves a continuum of locality statistics,
this interpretation does not make sense; B =

∑
g∈G

∑
x∈Ig

P[Nx;g ≥ sobs] =∞. How-
ever, playing the role of B in our case is B∗=

∑
g∈G |Ig|P[Nx;g ≥ sobs], and we have

P[S ≥ sobs]=B∗�. Our importance sampling requires the ability to e�ciently generate
sample point patterns from the conditional distribution given exceedence, the event
{S ≥ sobs} that the geometry-normalized sum of the marks in some window equals
or exceeds sobs. The procedure provides an estimate �̂ of the the correction factor �
which measures the conservativeness of B∗. That is, point patterns conditioned on
the event {Sj ≥ sobs} are generated for j=1; : : : ; m. For the jth generated conditional
point pattern, the set of x’s for which Nx;g ≥ sobs is determined and the Lebesgue
measure of this set, denoted 
̂j, is calculated. Then �̂= (1=m)

∑

̂−1j .

Our importance sampling estimate p̂=B∗�̂ is unbiased for the true p-value P[S ≥
sobs] = B∗� with a variance that is typically smaller than that of the naive Monte
Carlo estimate when the p-value is small. Furthermore, our estimate can be accurate
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for critical values which are not far enough in the tail of the null distribution to
allow for accurate approximations via extreme value theory.
When addressing marked Poisson processes rather than standard unmarked pro-

cesses, additional complexity arises due to the need to generate marked point pat-
terns conditionally on exceedence. This involves four steps. First, the geometry and
location of a window WE in which exceedence is forced to occur are chosen at
random; the geometry gE according to the appropriate weighted distribution and the
location xE uniformly in IgE . Second, the number of points n for the window WE
is generated conditionally on exceedence in WE (the event {NxE;gE ≥ sobs}). Then a
value s for the sum of the marks in the window is generated conditionally on excee-
dence in WE and the event {N = n}. Finally, marks for the points must be generated
from F0 conditionally on the events {NxE;gE ≥ sobs}, {N = n}, and {∑n

i=1Mi = s}.
Generating the remainder of the marked point pattern is straightforward, as the
locations of points outside WE are independent of what happens inside WE , and the
marks on the points outside WE are iid F0. This algorithm is presented in detail in
the appendix.
The trade-o� between importance sampling and naive Monte Carlo is one of com-

plexity of sample generation vs. number of samples required to obtain a prescribed
precision for the estimate of the p-value. Thus e�cient code for the conditional
sampling scheme described above is imperative; if the conditional sampling scheme
is fast relative to the bene�t in terms of precision, then our importance sampling
methodology will be preferred. To quantify this comparison, we de�ne the relative
e�ciency R to be

R= (t̃=t̂)(�̃2=�̂2);

where t̃ is the elapsed time for the naive estimate and t̂ is the elapsed time for the
importance estimate, �̃2 and �̂2 are estimates of the p-value variance for the two
procedures, and both algorithms have been run for an equal number of trials. An
observed value of R greater than unity favors importance sampling.
The utility of importance sampling for a given application follows from identifying

a range of p-values (p∗∗; p∗), where p∗∗ is the p-value below which importance
sampling cannot provide a better estimate than extreme value theory with an ac-
ceptable computational load and p∗ is the p-value above which naive Monte Carlo
outperforms importance sampling. If it can be demonstrated that p∗∗¡p∗, and that
(p∗∗; p∗) encompasses an operationally important range of p-values, then the impor-
tance sampling approach should be adopted.

4. Example results

To compare importance sampling vs. naive Monte Carlo for nonhomogeneity
detection in marked point processes, and to investigate the utility of using marks, we
consider the following scenario motivated by the mine�eld reconnaissance application
(see Fig. 2).
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Fig. 2. Marked point pattern for the mine�eld simulation example. Five “true mines” are located in one
scan window, with 50 false alarms expected in the area of interest. Marks (right panel) are uniformly

distributed for the false alarms, and stochastically larger for the “true mines”.

Let I, the area of interest scanned, be the unit square [0; 1]× [0; 1]. Let the set of
geometries under consideration be G= {g1; g2; g3; g4} where the gi are squares with
sides of length l = 0:05; 0:10; 0:15; 0:20 for i = 1; 2; 3; 4. That is, we suspect that, if
it exists, the region of nonhomogeneity IA (the mine�eld) occupies between 0.25%
and 4% of I. Assume also that the detection algorithm is calibrated and we expect
approximately 50 false alarms in I; that is, �0 = 50.
For an observed point pattern, our scenario involves consideration of one scan

window with l = 0:10 in which 5 points are observed to occur, and the observed
value of the locality statistic for this window determines the observed value of the
scan statistic sobs. (These 5 points represent 5 true targets and no false targets, say.
That is, we assume the worst case scenario, from a detection point of view, in
which no false targets contribute to the value of sobs.) Consider also the analogous
scenario, with marks. The marks are iid U(0; 1) under H0. Our dominating window
with l=0:10 yields an observed locality statistic of 4. (This represents 5 true targets
with marks from FA averaging 0:8, say.)
Simulation results for this case, based on 1000 Monte Carlo replicates of 1000 tri-

als each, are as follows. For naive Monte Carlo estimation p̃=0:0196 with estimated
variance �̃2 = 1:94× 10−5, while importance sampling estimation yields p̂= 0:0195
with estimated variance �̂2 =1:33× 10−5. The two estimates agree with one another,
and the importance sampling estimate is more precise (�̃2=�̂2=1:46). E�ciency com-
parison of the two estimation algorithms indicates conclusively that, for this case,
importance sampling is superior. A sign test of H0: median(R) ≤ 1 yields a signi�-
cance value of essentially zero; R¿ 1 for 653 of the 1000 trials.
Failure to use the marks would be a grave error for this scenario; the unmarked

analysis yields a p-value of p¿ 0:25 for this case, compared to p ≈ 0:02 for the
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Fig. 3. The relative e�ciency of importance sample vs. ñaive Monte Carlo is studied for three cases.
Case I considers four geometries simultaneously, with an expected false alarm rate of 10. Case II con-
siders two geometries simultaneously, with an expected false alarm rate of 10. Case III considers two
geometries simultaneously, with an expected false alarm rate of 20. We see that, in each case, impor-
tance sampling begins to outperform naive Monte Carlo for p-values near 0.05, with the performance

improvement becoming quite dramatic as the p-value decreases.

marked analysis. (Naive sampling is more e�cient than importance sampling for this
unmarked case, as would be expected due to the large p-value.)
Finally, we note that extreme value theory is not a viable option for the scenario

under consideration. Even if such a theory can be developed for the case of marked
point processes with multiple scan geometries, the observed p ≈ 0:02 is not likely
to be far enough in the tail of the null distribution to allow for accurate estimation
via extreme value theory.
Thus, for our example scenario we have demonstrated the utility of importance

sampling: 0:02 ∈ (p∗∗; p∗). Fig. 3 presents the results of further simulation studies,
for a range of p-values and multiple choices of geometries G and background in-
tensities �0. For Case I we set �0 = 10 and, as in the previous example, four geo-
metries are considered; G = {g1; g2; g3; g4} where the gi are squares with sides of
length l=0:05; 0:10; 0:15; 0:20 for i=1; 2; 3; 4. Case II considers just two geometries,
G= {g1; g4}, with �0 = 10 as in Case I. Case III considers the same two geometries
as Case II, with an increased background intensity of �0 =20. The simulation results
suggest that, for each of these three cases, importance sampling begins to outperform
naive Monte Carlo for p-values near 0:05, and that the performance improvement
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is quite signi�cant for p-values less than 0:02 and dramatic for p-values less than
0:01. Analysis indicating the extent to which these results generalize is of obvious
interest and importance and is the subject of ongoing research.

5. Summary and conclusions

In this paper marked spatial Poisson processes and spatial scan analysis involving
multiple scan geometries is considered. An importance sampling algorithm for esti-
mating p-values for a test of homogeneity is presented. For a scenario motivated by
a mine�eld detection example it is demonstrated that (1) the importance sampling
estimate is superior to naive Monte Carlo estimation in terms of relative e�ciency,
and (2) it is operationally imperative to use the marking information. Furthermore,
there does not currently exist a viable extreme value theory for estimation in the sce-
nario considered. The conclusion is that the importance sampling approach presented
is the methodology of choice for p-value estimation in the scenario considered.
In addition to the ongoing quest for analytic results regarding the range (p∗∗; p∗)

for various general scenarios, extensions of this importance sampling approach are
currently being investigated. The binomial process can be treated as above. Inho-
mogeneous Poisson processes and Cox processes are of signi�cant interest in the
mine�eld detection application and can be addressed in much the same way. Spa-
tial point processes exhibiting dependency (Poisson cluster processes, inhibition pro-
cesses, Markovian processes) are also of operational interest. Finally, more complex
marking distributions are being considered.

Appendix Importance sampling algorithm

Although it is the �nal result of a scan using all g ∈ G, sobs will be associated
with one speci�c, dominant geometry gs. In order to estimate p-values, we need an
equivalent threshold value tg for each g.
Fixing x ∈ Igs , de�ne �:=P[Nx;gs ≥ sobs]. For each g ∈ G, �x y ∈ Ig and let tg

be such that P[Ny;gs ≥ tg]= �. In the marked case, the distribution is continuous and
tg is unique.
Step 1. Randomly select geometry and location of window WE .
Select gE ∈ G according to the probabilities

pg =
|Ig|P[Nx;g ≥ tg]∑
g∈G |Ig|P[Nx;g ≥ tg]

=
|Ig|∑
g∈G |Ig|

:

P[Nx;g ≥ tg]=∑
n≥0 P[Wg(x) contains n points]P[

∑n
i=i Ui ≥g ], where Ui ∼ U[0; 1].

Choose a location uniformly in IgE .
Step 2. Randomly generate the number of points n in WE , conditioning on ex-

ceedence.
Select n according to the probabilities

q� = P[n= �] =
P[WE contains � points]P[

∑�
i=i Ui ≥ tg]∑∞

�=1 P[WE contains � points]P[
∑�

i=i Ui ≥ tg]
:
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Step 3. Generate the sum of marks s, conditional on exceedence, and on the
value of n.
Choose s according to the distribution

Fn(s) = P

[
n∑
i=i

Ui ≤ s
∣∣∣∣∣
n∑
i=i

Ui ≥ tg
]
:

Step 4. Generate the individual mark values conditional on the values of s and n.
Randomly choose a point x = (x1 : : : xn) in the simplex

S=

{
y:

n∑
i=1

yi = s; yi ≥ 0
}
:

Place the marked points uniformly in WE .
Step 5. Place points outside of WE .
The location of points in WE is independent of the location of points in I=WE ,

where one has a Poisson spatial process of intensity �. Generate iid U[0; 1] marks
for these points.
Step 6. Estimate 
, the Lebesgue measure of

⋃
g∈G{x ∈ Ig: Nx;g ≥ tg}.

Methods will be speci�c to the set of geometries under consideration.
The above steps are performed m times. De�ne �̂:=(1=m)

∑m
i=1 
̂

−1
i .

The estimate of the p-value is

�̂B∗ = �̂
∑
g∈G

|Ig|P[Nx;g ≥ tg] = �̂�
∑
g∈G

|Ig|:
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