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Abstract 

Let ~(x,~)) be a 'piecewise stationary' random field, defined as an embedding of stationary 
random fields ?,'(x,(~)) via the polytomous field m(x,~J). The domain of definition is partitioned 
into disjoint regions R ~. Denote the marginals for each ~i(x,(J)) by ~'(~) so that ~(x,~,)) ~ ~'(~) 
for x ~ R s. Define homogeneity as the situation in which all the :( are identical versus nonhomo- 
geneity in which there exist at least two regions with differing marginals. To perform a test of 
these hypotheses without assuming parametric structure for the ~' or choosing a specific type of 
nonhomogeneity in the alternative requires estimates ~, for each region. However, the compet- 
ing requirements of  estimation without restrictive assumptions versus small-area investigation to 
determine the unknown locations of  potential nonhomogeneities lead to an impasse which cannot 
easily be overcome and has led to a dichotomy of approaches - -  parametric versus nonparamet- 
ric. This paper develops a borrowed strength methodology which can be used to improve upon 
the local estimates which are obtainable by either fully nonparametric methods or by simple 
parametric procedures. The approach involves estimating the marginals as a generalized mixture 
model, and the improvement derives from using all the observed data, borrowing strength l?om 
potentially dissimilar regions, to impose constraints on the local estimation problems. 

A M S  1991 classification: Primary 62M40; secondary 62G10 
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1. Introduction and summary 

In many  situations one wishes to per form an analysis o f  the homogene i ty  o f  a ran- 

dom field, often as a precursor  to more  advanced analysis. For instance, a conclus ion 

o f  nonhomogene i ty  may  imply a requi rement  for further analysis,  part icularly o f  the 

suggested regions o f  nonhomogene i ty .  A finding of  nonhomogene i ty  may  warrant more 
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involved change point or change curve analysis (see Carlstein et al. 1994; or the Proc. 
Applied Change Point Conference, 1994). Uniformity of background conditions is rel- 
evant in applications as diverse as astronomy, ecology, epidemiology, etc. (Cressie, 
1993). In image analysis testing for homogeneity is often the first step: for PET scan 
analysis of brain functions homogeneity is the 'no-change' condition and regions of 
honhomogeneity are of interest for their functionality implications (O'Sullivan, 1995; 

Worsley, 1995); in mammographic analysis homogeneity may imply the 'uniformly 
healthy tissue' case while regions of  nonhomogeneity warrant closer inspection (Miller 
and Astley, 1992); a finding of homogeneity in minefield detection implies 'no mine- 
field' while nonhomogeneity again requires further analysis (Smith, 199l; Muise and 
Smith, 1992; Hayat and Gubner, 1994; Basawa, 1993). 

This paper develops a semiparametric scan analysis approach for testing for non- 

homogeneity which will serve as a preprocessing step in image analysis and pattern 
recognition tasks. 

1.1. The random field 

Let ~(x, co) : R ° x Q ~ Z be a random field with domain of definition R ° C R n. Given 

a polytomous field m ( x , ~ )  taking on the values 1 . . . .  , r  and r strictly stationary and 
ergodic fields ~i(x,~o), each with the same domain, we construct ~ as an embedding. 

r Following Carlstein and Lele (1994), let ~(x,o~) = ~ i= l  ~-iI{m,=i}" The field ~(x, co) is 
termed piecewise strictly stationary. Here and hereafter mx denotes the observed value 
of the random field m(x, co) at location x and Is is the indicator function for the set S. 

We will consider the case in which the domain in question is a subset of the integer 
lattice Z" in R", R ° C Z n. The number of re,qions in R °, sets, not necessarily made up 
of contiguous lattice sites, consisting only of random variables from a single field ~i, 
is r. Thus the domain is partitioned into a finite number of disjoint regions; R ° = 
U Ri (i = 1 . . . .  ,r) .  When the embedding field m(x, eo) is modelled as random the 
regions R i are random sets. Asymptotic considerations involve letting R ° (the domain 
of m and the ~i) grow. This can be physically realized by obtaining multiple images 
for which the embedding field m(x, ~o) is identical. 

By construction the random variables associated with each region are identically 
distributed and have the same dependence structure, class conditional identically dis- 
tributedness. Thus ~(x,~o) ,-~ ~i(~) for x ~ R i for probability density functions (or, 
more generally, for distribution functions) ~i. 

For instance, in image processing we may consider R ° to be an M1 × M2 lattice of 
pixel locations and let the value of the field observations ~ E E = 9~ represent pixel 
intensity as in, e.g., German (1990). 

1.2. The test for  nonhomo.qeneity 

In the simplest case, the goal is to test homogeneity, in the sense of  multiple com- 
parisons. 

H0: Homogeneity ( ~ i =  ~j Vi, j )  
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versus 

H I "  Nonhomogeneity (3i, j such that :~i¢ ~j). (1) 

That is, is the statistical structure of  the random field the same throughout, or does it 
vary locally'? Note that in the identifiable situation, for which the distributions of  the 

summand fields ~i are different from one another, the null hypothesis can be interpreted 

as the case where the (unobservable) embedding field m, is identically i t\w some 
i {1 ..... ,-}. 

This scenario can be formulated as a classical multiple comparisons D'oblem (see, 
e.g., Miller, 1981). Let ~: i  = --n'~'i _-- {~ . .  x C R i}  ~ ,zi(~) for i = 1 . . . . .  r be the t7' ob- 

servations in region R i and perform the test of  homogeneity given above. If this test 

is to be performed without making parametric assumptions on the :( or choosing a 

specific type of  nonhomogeneity in the alternative it is necessary to develop estimates 

,~' for each i. Large values of  a statistic 

T =  max d(&i,~J) 
/ , j ~ (  1 ...., r} 

for some pseudo-distance d( ) defined on the space of  probability densities will indicate 

nonhomogeneity. Ghoudi and McDonald (1994) consider the completely nonparametric 

case. 

1.3. The siet, e o f  mix tures  

The generalized mixture model assumption (Lindsay, 1995; Lindsay and gesperance, 

1995) which will allow us to utilize a borrowed strength methodology is 

:*(~.) f C({;O)dFi(O). (2) 

The semiparametric estimates ~i are constrained to be elements of a sieve of mixture 
models (Geman and Hwang, 1982; Priebe, 1994). For normal mixtures, used throughout 
for concreteness, C(~; 0) = ~p(4;/~, v). Letting #;,,,, Tm, 6,,,. 7,, > 0, we define the elements 
of the sieve {S,,} as 

{ o 

{rcr} satisfy G , ~ < ~ t ~ < l -  ~:,,, Vt and ~;' i~ 7r,-- 1: 

{/~t} satisfy - rm ~</lr ~<r,. Vt; 

satisfy 5m ~<vt ~<?'., Vt} {1,,} 

where ~:,. --~ 0, r~ -~ oo, 3,. --~ O, and 7m --~ ,~c, as m ~ ,~c. For a given region R i a 

sequence m(n i) is defined and 

~i _= argsup I ]  fl(~). (3) n 
I~ C S,,,~ ,,, , ~ E Z : 
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Thus ~i is a maximum likelihood estimator (a recent review of  maximum likelihood 

algorithms for semiparametric estimation can be found in Bohning (1995)) when the 

random field observations are independent, and an M-estimator otherwise. In any event, 

~ i  is an m(ni)-mixture of  normals and can be used in the test for nonhomogeneity. n, 
More importantly for our purposes, this semiparametric estimator lends itself to bor- 

rowing strength as a fully nonparametric estimator, such as a kernel estimator, cannot. 

1.4. Borrowing strength 

In image analysis and other random field applications it is often the case that one 

needs to obtain small-area estimates for some aspect of  the local statistical structure 

of  the field. This requirement for local estimates implies, for many real applications, 

that there is a severe limit on the number o f  observations available with which to 

build the estimates. A competing requirement for flexible estimators, ruling out simple 

parametric models for these estimates, implies that a large number of  observations may 

be necessary in order to obtain sufficient accuracy. This combination o f  competing 

demands results in a conundrum for the statistician: expand the extent o f  the small 

areas, or restrict the model? 

This paper presents a third option, the use of  borrowed strength estimators, which 
is appropriate under certain conditions which can often be assumed in random field 

analysis. Using observations from regions with different statistical structure in the 

development o f  local estimates can often improve estimation accuracy without requir- 

ing overly restrictive model assumptions. This paper builds upon a parametric version 

o f  borrowed strength presented in Priebe (1996). 

The structure imposed by a sieve-of-mixture estimation procedure allows the con- 

sideration of  semiparametric borrowed strength. The idea o f  borrowing strength is one 

o f  utilizing all the data, the entire random field, to obtain an estimate which is then 
used to constrain the local estimation problems. 

Writing ~0 _ ~0 = {~.x : x E R °} to be the entire set of  n o field observations, let 

^ 0  ~no -= arg sup ]~ fl(~). (4) 
/~ES,,,~,,0 ~ ~ E 5  o 

r &0 is an estimate of  the overall field density ~0 = ~i=1(E[ni]/nO)~i, recalling that n o 

is a fixed constant but the n i are random variables denoting the number o f  observations 

in the random sets R i derived from the random field re(x, 09) via the indicator function 
I{m,=i}. The term 'borrowing strength', as used in this paper, indicates the idea o f  

using this overall mixture estimate to constrain the local estimations. ~0 is an m(n°) - 

mixture. It will be argued that, under appropriate conditions, local estimates of  the ~i 

constrained to have the same structure as ~0, i.e., constrained to be m(n°)-mixtures 
with the same means and variances as &0, will be superior to the conventional local 
estimates &i. Thus the borrowed strength estimate is 

$i --= argsup I ]  fl(~), (5) nO,n , 
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~0 where Sm(,,¢, ) C Sin(no) is the restriction of  the sieve element Sm to having the means and 
variances of  &0. Only the mixing coefficients are free parameters. This idea is explored 
in more detail in Section 2. ~i is to be compared with the conventional estimate ,:)i 

defined in Eq. (3). 

1.5. The scan process  

Since we do not wish to assume prior knowledge of  the location of the local 
regions of  interest R i it is necessary to introduce a regional structure on R ° and test 
for homogeneity under this structure. Let R ° =  U/? i (i 1 . . . . .  ~), where the /~i are 
(possibly overlapping) neighborhoods with number of  observations fi' (# i  _ #, j}'l 

{~.,: x ~/~i}). For instance, in the investigation of  spatial scan statistics (Chen and 
Glaz, 1995; Kulldorff, 1995) one often considers c-balls, in which case /~ = B(r,c)::~ 
{x ~ R°: IIx- rH < ~} for ~ R  ° and c > 0. Using these artificially introduced regions, 

large values of  

T Bs = d( ,~, ~J) i,/ 

and 

T c°Nv = d(~i ,&/)  (6) 
I , l  

will be compared for their ability to indicate potential nonhomogeneities. (Note: Priebe 
et al. (1996) presents an approach for relaxing the requirement that these standard scan 
windows (c-balls) be used; the ~i considered there consist of  a stochastic partition 

of  R °. ) 
The lack of  knowledge of  the location of  potential nonhomogeneous regions ne- 

cessitates that the regions /~i be chosen to be relatively small as compared to the 
anticipated size of  the true but unknown R i. This in turn implies that the ~ are small 
and hence the estimates ~(i ( i  : 1 . . . . .  /~) will have relatively large variance, espe- 
cially when no simple parametric model is assumed. This is the conundrum alluded to 
earlier. The borrowed strength methodology presented herein can be used to address 
the simultaneous requirements of  small-area estimation and flexible modelling. Since 
the /)~ are necessarily smaller in their spatial extent than the nonhomogeneities antic- 
ipated, there likely will be numerous regions ~i completely contained within a given 
R k and hence having the same probabilistic structure. This implies that there will be 
information relevant to the estimation of '3( i in at least some of  the regions /)J for 
j ~: i and the assumption that borrowing strength can improve the local estimations is 
reasonable. 

1.6. Relat ion to the l i terature 

Various applications of  the nonhomogeneity analysis addressed herein were given at 
the outset, and the relationship to efforts in change curve analysis and lowHevel image 
analysis was noted. 
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A particular feature of the approach presented in this paper which deserves special 
mention is the use of mixture densities to represent the null hypothesis of homogeneity. 
Examples abound in which mixtures represent heterogeneity of population. See Titter- 
ington et al. (1985, Chapter 2) for instance. In such a model each component of the 
population is assumed to be represented by a single term in the mixture. For example, 
each possible class of tissue texture in X-ray mammography might be modelled as 
a single normal. Such a model is often unrealistic. Priebe et al. (1994) indicates that 
healthy tissue, for example, is poorly modelled as normally distributed. In this work the 
marginal density for a field observation is considered itself to be modelled as a general- 
ized mixture density, with homogeneity the case in which the same mixture represents 
the marginals throughout the field. The recent work of O'Sullivan (1993) has also sug- 
gested consideration of a mixture density for the marginal density of individual pixels 
in image processing. The particular application to PET imagery considered therein does 
not lend itself to improvement via the borrowed strength methodology developed in 
this paper, as most pixels are considered to have nearly normal marginals. Therefore, 
the algorithm presented in O'Sullivan (1993) does not utilize borrowed strength. Their 
work is nonetheless closely related and of obvious interest, as it seems likely that for 
selected applications the procedure advanced in O'Sullivan (1993) can be improved by 
incorporating borrowed strength. 

2. Borrowed strength 

2.1. Borrowed strength methodology 

For nonhomogeneity detection we estimate the density ~0 = f c ( . ;  O) dF°(0) of the 
overall field using ~0. The support of dF°(0) is the 'imposed measure', by which we 
mean the globally estimated parameter values (individual term means and variances) 
which when fixed constrain the subregion estimation problems. The sieve of mixtures 
approach implies that ~0 ~_ ~m(n o ^ 0  ) will be an m(n°)-mixture and hence, from Eq. (2), 

^i ^i 
supp(dF°(0)) = {01 . . . . .  0re(n0)}. This fixes the mixture in the parameter space 0 m(n% 
and restricts the possible density estimates for subfields. We then obtain estimates of the 
densit ies ~z i for subfields ~i using ,_~i under this imposed measure. Since the parameter 
space support is now fixed, the only estimation required for the subfield densities is that 
of {dr'i(0)} for 0 E supp(dF°(0)); that is, {~  . . . . .  ~z/(,0)}. Thus we have the following 
methodology. 

Borrowed strength methodology 

1. Introduce a regional structure on R°; R ° = URi( i = 1 . . . . .  i:). 
2. Estimate dF ° for the random field R ° using the n o observations ~o. 
3. Impose supp(dF°(0)) on each subfield ~i. 
4. Estimate dFi(O) for 0Esupp(dF°(0))  using the r~ i observations ~i. 
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5. Large values of 

T ~s d ( ~ i ( ~ ; ? i ) , ~ J ( ~ ; ~ / ) )  (',,) t./ z 

indicate potential subregions of nonhomogeneity. 

The claim made here is that using the statistic T Bs thus obtained in the test for nonho- t,]" 

mogeneity yields an improvement over the analogous conventionally estimated statistic. 
Details for the implementation of the above methodology for nonhomogeneity 

detection in image analysis (the example presented in Section 3) are as follows, where 
R ° is a square ~ × x/~n ° lattice: 

1. Let {/?i} be the collection of ,~7 × ~ square regions in R °. These are the 
standard 'scan windows'. In practice the size of the /~i directly impacts the size of the 
anomalies that can reliably be detected. 

2. Use the adaptive mixtures algorithm (Priebe, 1994) on the entire data set .-0 all 
the pixel values in the image, to obtain a normal mixture estimate ~0. The number of 
terms in this mixture, re(n°), is stochastic and determined by the particular instantiation 
of the random image. 

3 and 4. Update the mixing coefficients {~s~ . . . . .  ~zi,,(,,,l} using the EM algorithm with 

the means and variances fixed, yielding ~i (For finite mixtures this is a standard profile 
likelihood estimate; see Cox and Reid (1987) and Priebe et al. (1996).) Only ~ i  the 
pixel values from the particular scan window /~i. are used here. 

5. T Bs ~, i./ =11 E/IIL:, the integrated squared error between the respective local 
estimates. 

The conventional local likelihood procedure against which this borrowed slren~th 
approach is compared simply replaces steps 2 4 above with 

2'. Use the adaptive mixtures algorithm to estimate ~i for /~i using ~i and employ 
the statistic T~;f )~'' = ]]&i,&/HL_-.  

2.2. A consisten<v result 

Considering the sieve {S,,,} introduced in Section 1.3, for which large sample prop- 
erties have been given in Geman and Hwang (1982) and Priebe (1994), we wish 
to establish consistency of the borrowed strength estimates. We consider sieves of 
normal mixtures for concreteness, but the analogous results hold in general for sieves 
of mixtures of continuous exponential family densities as well. 

Let ~ , , -  {~t . . . . .  ~,} and m =m(n)  > 0 be a fixed integer and consider the likelihood 
Lz([~) = H¢cz,, [:~(~). Define 

to be the maximum likelihood set in S,,,. For [~ ~ Sm define 5",/~, • S,,, to be the restriction 
of the sieve element Sm to having the means and variances of [~; only the mixing 
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coefficients are free parameters. Letting ~' = ~(~; ~ ' ,~ ' ,  v ' )  E Sm be fixed, define 

M~,,ml~, - ~ E S m : Ls,,(~) = sup Lz,,(fl) 
[1¢ s ,,~' 

to be the restricted maximum likelihood set in Sm (restricted to having /~ = # '  and 

v = v'). Define 

mlM.,.,,,=- U Ms . . . .  
' - J r  

c~ ~ E M 2 ,  ,,~, 

Finally, for 0 < q ~< 1 define 

qM&'m =- { ~ E Sm" Lz' ' (~)>'q sup ) 

Given this machinery, we have the consistency result given by 

Theorem 1. Let  ~i (i = 1 . . . . .  r)  be finite mixture  models with arbitrary, unknown 

complexity. Let  n o = ~ n i and n i --+ oc Vi in f i x e d  proportion. I f  a sequence {m} = 
{re(n°)} increasing slowly enough with respect to n i is chosen, then fo r  class condi- 
tionally iid f ield observations (~i(x, ~o) lid ~i(~)) the procedure indicated by (4) and 

(5) yields consistent estimators o f  the c¢ i, 

!i m ~ilog(o~i/~:i)d~ = 0 a.s.. 

Proof.  See Appendix. [] 

3. Nonhomogeneity detection examples 

3.1. Class conditional independence 

We begin our simulation study by considering a scenario in which the random field 
of  interest, f ,  is an embedding of  two random fields f l  and f 2  with f i  iid ~i. 

Letting m be a binary (0, 1) Markov random field used to model the presence of  

local nonhomogeneities we have f = I {m,_ l} f  1 + ( 1  -- I{m --1} ) f  2. Thus f consists of  
observations which are class conditionally independent and identically distributed. 

For this simulation consider the specific example ~ ( ~ )  = (v /~)X2(9  + v / ~ )  and 
~2(~) = ( ~ ) Z 9 2 ( 9  _ x / ~ ) .  Fig. 1 shows the densities ~l and ~2 (each with zero 
mean and unit variance) as well as an instantiation of  f J ,  f2 ,  m and f .  

A Monte Carlo simulation based upon the above scenario is now described. This 
simulation is designed so as to be relevant to nonhomogeneity detection. That is, there 
is to be a significant proportion of  the 'background'  field f 2  and only a small proportion 
of  the ' anomaly '  field f l .  Thus the embedding field m is assumed to be approximately 



CE. Priebe et al./Journal of Statistical Plannim] and h{fi'rence 59 (1997) 45 60 53 

0.4 ot ; /"'-'",, 

0.3 ~ ~  ~ { : ¢ 2  

0.2 , ~ ' ,  

o / 
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I O0 .... ............. . . . . . . . .  I O0 . . . . . . . . . . . . . . . . . . . . . . . .  

80 80 - 

60 60- 

4 0  4 0  - 
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20 40 6'0 8{) 100 0 2'0 4}) 6}} 8}} I00 
(d) {e) 

Fig. 1. Scenario for lid simulation and experiment. (a) Probability density functions ~l and c~ 2 used in the 
example. :~l({) = (x/q~)Z2(9 + x/T8~) and :~2(~) = (x/~)Z~(9 x/~c~). (b)-(e)  depict Jq, f2,m and 
.f, random fields representative of the Monte Carlo simulation reported in Tables 1 and 2. These fields are 
used in the lid nonhomogeneity detection experiment presented in Fig. 2. 

90% zeros (E[n 1] = n°/10), and therefore a0(~) __= (l/10):~l + (9/10)¢(2. The field m 
shown in Fig. l (d)  is obtained through a Gibbs sampler and has 8959 zeros out of  
10 000 total pixels. 

Thus ~l and ~2 are non-mixture-of-normal densities. The idea, from a nonhomo- 
geneity detection (tumorous tissue detection in digital mammography,  for example) 
standpoint, is that ~l is the density for the anomalies (tumors), ~2 is for background 
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Table 1 

Number-of-terms results for iid Monte Carlo simulation 

n ° -  1000 n o = 10000 n ° -  100000 

m(n °) 6.6 ± 1.1 10.1 ± 1.2 16.9 ~ 2.5 

m(~') for k i c R  l 2 . 0 ± 0  4 . 1 ± 0 . 9  7 . 6 J z l . 5  

m(l~ i) for RiCR2 2 . 0 ± 0  4.1 ~:0.7 7 . 2 ~  1.2 

Note: Results of  Monte Carlo simulation under iid conditions presented 
in Fig. 1 indicating the performance of  born'owed strength and conven- 

tional maximum likelihood estimators for scan analysis of nonhomo- 

geneity. The results are based upon 10 Monte Carlo runs with n ° as 
shown and r? i n°/100. The densities 3( 1 and ~2 are shown in Fig. l (a) .  
~0 = 0. led + 0.9~ 2. Represented are the performance using the local 

l ikelihood estimator :~i and the borrowed strength estimator 8i.  
Quantitative indication of  the superiority of  the borrowed strength 

estimator is obtained via the one-sided Wilcoxon test: for n o = 10000 

the Wilcoxon test for / /2:  1l,~2,~21lt~ - [l&2,~Rllz e ~>0 is significant at 
p = 0.001; for n o = 100000 the Wilcoxon test for H01:I1~1,:~1[IL2 -- 

H~l,cd ][L_~ >~0 is significant at p - 0.055. 

(healthy), and under the alternative hypothesis of  nonhomogeneity there will be, say, 
10% ~1 and 90% ~2 in the field. Recall ~i is the borrowed strength estimator and ~i is 

the conventional local likelihood estimator for i = 0, 1,2. This simulation is designed 
to support the conjectures (1) ~0 ~ ~0, and (2) ~i _+ ~i faster than :~i ~ ~i (i = 1,2), 

and to give an idea of how this faster convergence leads to superior nonhomogeneity 

detection. 
We wish to investigate the relative performance of borrowed strength versus con- 

ventional likelihood. Toward this end, consider first the 'conventional' estimation of an 
unknown density with a mixture of normals. (Such a procedure is quite common; see 
Chapter 2 of Titterington et al. (1985).) There are two different cases in which this 
is necessary for our experiment. For conventional likelihood estimation, we obtain ~i 
using the ~i observations available locally. For borrowing strength, we must obtain ~0 
using n o observations. The parameterspace support (means and variances) of this esti- 
mate will then be imposed upon the local estimation problems. These estimation tasks 
are straightforward if the number of terms in the mixture is known or assumed. For 
our purposes, this is not the case and an automated method for determining an appro- 
priate model complexity is necessary. The adaptive mixtures algorithm (Priebe, 1994) 
is employed, and II, IlL 2, o r  integrated squared error (ISE), results are presented in 
Table 2 for a selection of sample sizes: n o E {1000, 10000, 100000}; /~i = n0/100. 

Table 1 presents the actual number of terms used in the estimates. These results are 
based upon ten Monte Carlo runs and indicate the desired effect. ISE decreases with 
sample size, even when the number of terms is treated as a random variable and 
estimated from the data. (For purposes of the nonhomogeneity detection ]l~ i,~°llL-, is 
reported rather than lift i,cd]lL~. The purpose of this deviation from the intuitive is dis- 
cussed below.) 
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Table 2 
ISE results for iid Monte Carlo simulation 

n ° -  1000 n ° -  10000 n ° -  100000 

[!~o ~OIIL~ 0.0046 ± 0.0014 0.0008 ± 0.0004 0.0001 i 0.0001 
[I i2, z~O IlL: O. I I 10 i 0.0642 0.0240 ± 0.0163 0.0057 ± 0.0030 
ii5-- 2, ~°ilL: 0.0879 J_ 0.0775 0.0053 ± 0.0068 0.0007 ± 0.0008 
11~. ~°111: 0.1423 ± 0.1066 0.0529 ± 0.0202 0.0501 ~ 0.0090 
li£ I . .:~° ilL_" 0.0984 ± 0.0887 0.0359 --" 0.0162 0.0457 ± 0.007 ~) 

Note: See footnote to Table I. 

The relevant comparison to be made is ] l S i , , ~ ° ] [ L  ,_ versus 1] ~ i  ~01[L, ' This comparison, 
available in Table 2, indicates that the borrowed strength estimates are signilicantly 

better than their conventional counterparts. There are two interesting interpretations of 
this result. First, considering the parameters associated with the terms in the mixture 
~0 which are more relevant to :~l than ~2 to be 'nuisance' parameters of a sort in the 

estimation of  ~2, the result indicates that any degradation in performance due to these 
nuisance parameters is outweighed by improved estimation of the parameters associated 
with the terms which are relevant to ~2. A second interpretation of these results comes 

from the viewpoint that one can afford to have more terms in the local estimation 
problem i f  the means and variances are kept fixed. Thus a greater complexity, required 
in the normal mixture estimation of nonnormal densities, is acceptable and superior 
estimation can be expected as long as this greater complexity is put to good use. 

Fig. 2 shows the results of  the nonhomogeneity detection methodology applied to the 
particular realization of the field f shown in Fig. l (e) using the scan process with and 
without the borrowed strength. A 10 × l0 pixel moving window is scanned throughout 

the region; fii = 100. At each location the density is estimated, using semiparametric 
borrowed strength maximum likelihood on the 100 observations in the one case and 
standard maximum likelihood on the 100 observations in the other. Each locality statis- 
tic, the estimated marginal density for a given window, is then compared, in terms of 
ISE, with the overall density which is assumed to be made up mostly of 'background'. 
Those scan locations which have the largest ISE are considered anomalies, and these 
locations are shown in Fig. 2. We mark all scan regions with an ISE against :~() among 
the largest 5%. The superior nonhomogeneity detection afforded by borrowing strength 
is clear, as is expected from the theory and the Monte Carlo simulation. 

As mentioned above we consider the values of ] l s i , ~ O I I L  ~ and ll~i,~()[ll; in Table 2 

rather than the perhaps more intuitively appealing 11£, ~illL_. and I] ~ ,  ~'11,~-. The purpose 
of this becomes clear upon consideration of  the description above of the implementation 
of the detection procedure used to obtain Fig. 2. Given a local density estimate 2i 
(conventional or borrowed strength) r = ]l&i,~.0[[L - is calculated for each local scan 
region/~,i. For the examples presented here we have true values of I]z~ I, ~0[IL_~ -- 0.0473 
and I1:~ 2, :~°HL_~ = 0.0006. A large value of T indicates that the region ~i is closer to :~1 
than ~2 and hence a likely region of nonhomogeneity. This approach is only applicable 
for the anomaly detection version of nonhomogeneity analysis; i.e., situations in which 
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• O 

(a) 

O 

(b) 

Fig. 2. Results for iid nonhomogeneity detection experiment. 
Results of a nonhomogeneity detection experiment under the lid conditions are presented in Fig, 1 and 

Tables 1 and 2. The image (field f from Fig. l(e)) is 100 × 100 pixels (n o = 10000) and the scan regions 
are overlapping 10 × 10 pixel windows (~7 i - 100). The results, those scan regions which have a value for 
the statistic T = II~i,~°llL2 among the largest 5% are overlayed on the Markov random field m depicted in 
Fig. l(d) representing the embedded nonhomogeneities. Represented are the performance using (a) the local 
likelihood estimator ~i, and (b) the borrowed strength estimator fii. 

The superior detection capabilities, fewer false detections in the background region and a higher percentage 
of correct detections in the anomalous regions, indicate the ability of the borrowed strength estimator to 
employ increased model complexity and hence obtain superior integrated squares error results, as indicated 
numerically in Tables 1 and 2. 

the  a l t e rna t ive  hypo thes i s  is smal l  local  r eg ions  o f  n o n h o m o g e n e i t y ,  so tha t  c~ ° ~ 0c 2. 

For  such  a scenar io  the prac t ica l  a d v a n t a g e s  are s igni f icant  in t e rms  o f  bo th  compu ta t i on  

t ime  and  c o m p l e x i t y  o f  analys is ,  as the a l t e rna t ive  i nvo lves  the  non t r iv ia l  ana lys i s  o f  

the  s imi lar i ty  ma t r ix  def ined  by  sij = II~ i, ~JIJL~. 

3.2. Dependence  

W e  n o w  cons ide r  a s i tua t ion s imi la r  to tha t  addres sed  above ,  wi th  the dif ference 

b e i n g  that  the  fields are no  longer  independen t .  The  m a r g i n a l s  are 9 i i d a  / wi th  ~i 
and  c~ 2 the  s ame  as in the  i id case  above ,  and  a s imple  n e i g h b o r h o o d  d e p e n d e n c y  

is cons idered .  W e  let Nx = { y :  ]Ix - TIP < K }  and  genera te  two  i n d e p e n d e n t  and  
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Table 3 
Number-of-terms results for dependent Monte Carlo 
simulation 

n ° - 0000 

m(n °) 9.1 ± 1.3 
m(~ i) for /~i C R I 4.4 ± 0.7 
m(~ i) fo r  t~ i ~ R 2 4.4 ± 1.1 

Note: Results of Monte Carlo simulation under depen- 
dency indicating the performance of borrowed strength 
and conventional maximum lilkelihood estimators for 
scan analysis of nonhomogeneity. The results are based 
upon 10 Monte Carlo runs with n o = 90000 and ~i i - 
900. The densities ~l and ~2 are shown in Fig. I. 
,~0 _ 0.1~1 + 0.%2. Represented are the performance 
using the local likelihood estimator ~i, and the bor- 
rowed strength estimator ii. Again the Wilcoxon test 
for H2:H~2,~21lz2 - ]I~2,~2I[L ~ >~0 is significant at 
p = 0.001, quantitatively indicating the superiority of 
the borrowed strength estimator. 

• /3¢,.e,,. The marginal  density for ~t', identical ly distributed fields r i. Then ,qi = ~'~,c,~' i i 

is known,  is identical for all x, and is ~i (by construct ion.)  For this example the 

neighborhoods N~ and the coefficients /3;v are chosen so that the marginal  densit ies 

for fields ,ql and 92 are the densit ies ~f and ~2 shown in Fig. l (a) .  The field .~! is 

constructed as an embedding  of  ,ql and 92 us ing a binary field m as before. 

The convent ional  estimate obtained via (3) and the borrowed strength estimate (4) 

and (5)  are no longer a ma x i mu m likelihood estimates. They are however  M-est imates 

and for the simple dependency  considered here asymptotic  results in the parametric 

case can be obtained from considerat ion of  blocking (Arcones  and Yu, 1994) and 

decoupl ing (Doukhan  et al., 1995) and are analogous to the empirical  subsampl ing  

result o f  Craig (1979).  

One would  expect results quite similar to those presented in Section 3.1, with an 

effective sample size effect. That  this is indeed the case can be seen by compar ing the 

Monte Carlo s imulat ion result under  dependency with the lid results given in Tables 1 

and 2. In Tables 3 and 4 we present  the results from 10 Monte Carlo replications of  

the dependent  random field ,q with n o : :  9 0 0 0 0  and 1~ i : 900. The neighborhood N, 

consists o f  nine observat ions (K = 1.5) and we would  therefore expect results analogous 

to those obtained in the independent  case for n o = 10000 and /~i : :  100. A comparison 

of  Table 2 and Table 4 indicates that this is indeed the casc. 

4. Conclusions 

The mot ivat ion  for the semiparametr ic  borrowed strength est imation methodology 

developed in this paper is drawn from considerat ion of  the desire for est imators of  
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Table 4 
1SE results for dependent Monte Carlo simulation 

n o = 0 000 

I]~ °, ~°llL2 0.o001 i 0.00ol 
I]~ 2, ~°][L2 0.0064 ± 0.0051 
II &2, ~°liL2 0.0012 ± 0.0017 
I[~l ~0[[L2 0.0579 ± 0.0235 
11~1 ~0[[L2 0.0374 ± 0.0121 

Note: See footnote to Table 1. 

local characteristics in many random field analyses. In particular, the motivating exam- 

ple o f  nonhomogeneity detection in low-level image analysis is considered, although 

the technique is relevant to many small-area random field applications in which local 

estimates of  random field properties are required while stringent parametric assumptions 

are unwarranted. I f  it is reasonable to make the generalized mixture model assump- 

tion, then the local area estimates may lend themselves to improve estimation under a 

borrowed strength methodology. 

We have shown theoretically that estimating local densities under constraints 

developed using a larger set o f  data can yield consistent semiparametric mixture model 

estimates. Monte Carlo simulations provide an example wherein these borrowed strength 

estimates outperform conventional likelihood estimates. 

Appendix 

Proof  of  Theorem. From Geman and Hwang (1982) it follows that if a sequence {m} = 

{rn(n°)} increasing slowly enough with respect to ?l i is chosen such that eventually 

~ ,  ,,~1~0o cqMsi  m 
" n # 

then 

lira ~i E sup ~ilog(~i/cd)d~ = 0 a.s. 
rti ~ ° c  Myi .ml~O 

as desired. It remains only to show that eventually 

MZ';,m}M o,,, C qM=~ m (8) 
no 

holds for the particular problem at hand, which will imply that the borrowed strength 
estimator converges to the true unknown density in the Kullback-Leibler distance. 

Completion of  the proof follows from noting that for any given collection o f  finite 
normal mixtures {0~ i } ~ _ l m ( n  °) can be chosen to increase slowly enough such that Mz~o,m 

converges to the finite-dimensional solution ~0 X-'r tni/n°'~o~i ( 'Slowly enough'  here ~--- Z..~i=I~ / J • 
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is d e p e n d e n t  u p o n  the  spec i f i c  {W} and  the  ra te  at w h i c h  ~,,, ~ 0, %, -~  ~c, 3,, -~ 0, 

a n d  7m ~ oc  as  m -+  oo  fo r  t he  s i e v e . )  Fo r  l a rge  e n o u g h  n i it f o l l o w s  tha t  a sub -  

v e c t o r  o f  the  v e c t o r  ~,0 e s t i m a t i n g  the  m e a n s  and  v a r i a n c e s  o f  :6 ~ wil l  be  a rb i t ra r i ly  

c l o s e  to W ,  the  v e c t o r  o f  m e a n s  a n d  v a r i a n c e s  for  : ' ,  and  ( 8 )  wil l  ho ld .  Spec i f i ca l ly ,  

for  n i, n ° l a rge  e n o u g h ,  ~ > 0 smal l  e n o u g h ,  and  0 < q '  < q < 1, 

M z ,  ,,,I,e, C q M , ,  m ~ M Z  .,,[Bt,t'" ,:) C q 'Mz, . , , ,  

=> Ms . , , , l a t  ,.,~ <: q t M z < " '  

as de s i r e d ,  w h e r e  w e  use  the  fac t  tha t  M.~, , , ,  c o n v e r g e s  to a so l u t i on  w h i c h  i n c l u d c s  

the  s u b v e c t o r  ~ i  o f  tp0. 

References 

Applied Change Point Conference, University of Maryland Baltimore County/National Securily Agency. 
17 18 March 1993; Proc. published as a special issue of J. Appl. SlalixL Sci. I (4). 

Arcones, M.A. and B. Yu (1994). Central limit theorems lbr empirical and U-processes of stationary mixing 
sequences. ,L Theoret. Probab. 7, 47 71. 

Basawa, I.V. (1993). Inference for a class of planar point processes with applications to mineiield nmdcllmg. 
Preprint. 

Buhning, D. (I 995). A review of reliable maximum likelihood algorithms l\)r semiparametric mixture models. 
J. Statisl. Plann. h~l~'rence 47, 5 28. 

Carlstein, g. and S. Lele (1994). Nonparametric change-point estimation l\~r data from an ergodic sequence. 
Theory Prohab. Appl. 38, 726 733. 

Carl stein, E.. H.-G. Muller and D. Siegmund (gds.) (1994). ('hanHe poinl l~rohlent.~. I MS Lecture Nolcs- 
Monograph Series, Vol. 23. 

Chen, J. and ]. Glaz (1995). Two-dimensional discrete scan statistics. Preprint. 
Cox, D.R. and N. Reid (1987). Parameter orthogonality and approxinmte conditional inl~rence Iwith 

discussion). J. Roy. Slalisl. Soc. Set'. B, 49, I 39. 
Craig, R.G. (1979). Autocorrelation in LANDSAT data. Proc. 13th lnterma. Strop. on Remote SensiHo o/  

Em:ironment, 1517 1524. 
Cressie, N.A.C. (1993). Statistics jor  Spatial Data. Wiley. New York. 
Duukhan, P., P. Massart and E. Rio (1995). lnvariance principles for absolutely regular empirical processes. 

Ann. l'h~st, tt. Poincare' 31, 393 427. 
Geman, D. (1990). Random fields and inverse problems in imaging. In: Lecture Notes in Mathematics, Vol. 

1427, Springer, Berlin. 
Geman, S. and C.-R. Hwang (1982). Nonparametric nmximum likelihood estimation by lhc method or" sieves. 

Ann. Stalisl. 10, 401 414. 
Ghoudi, K and D. McDonald (1994). A nonparametric test for homogeneity: applications to parameter 

estimation, ln: E. Carlstein, H.-G. Muller and D. Siegmund. Eds., Chan#e Point Prohlems. IMS Lecture 
Notes-Monograph Series, Vol. 23, 149-156. 

Hayat, M.M. and J.A. Gubner (1994). Markov-type spatial point processes with an application to minelMd 
modelling. Proc. 28th Attn. Con[i on It![brmation Sciettces and Svstenls. Princeton, NJ 

Kulldorff, M. (1995). A spatial scan statistic. Preprint. 
Lindsay, B.G. (1995). Mixture Models: Theoo', Geometry atut Applications. N SF-CBMS Regional Conf. 

Series in Probability and Statistics, Vol. 5. IMS Monograph Series, Hayward, CA. 
Lindsay, B.G. and M.L. Lesperance (1995). A review of semiparametric mixture models. J Stali~l. Plaint. 

h![i~rence 47, 29 39. 
Miller, R.G. (1981). Simultaneous Statistical h~[brence. Springer, New York. 



60 C.L Priebe et al./Journal o f  Statistical Plannin9 and Injerence 59 (1997) 4 5 4 0  

Miller, P. and S. Astley (1992). Classification of breast tissue by texture analysis. Imaoe Vision Comput. 
10, 277-282. 

Muise, R.R. and C.M. Smith (1992). Nonparametric minefield detection and localization. Technical Report 
CSS-TM-591-91, Naval Coastal Systems Station, Naval Surface Warfare Center. 

O'Sullivan, F. (1993). Mixture estimation from multichannel image data. Ji Amer. Statist. Assoc. 88, 209- 
220. 

O'Sullivan, F. (1995). A study of least squares and maximum likelihood for image reconstruction in position 
emission tomography. Ann. Statist. 23, 1267-1300. 

Priebe, C.E. (1994). Adaptive mixtures. J. Amer. Statist. Assoc'. 89, 796-806. 
Priebe, C.E. (1996). Nonhomogeneity analysis using borrowed strength. J. Amer. Statist. Assoc. (to appear). 
Priebe, C.E., D.J. Marchette and G.W. Rogers (1996). Segmentation of random fields via borrowed strength 

density estimation. IEEE Trans. Pattern Anal. Machine lntell. (to appear). 
Priebe, C.E., J.L. Solka, R.A. Lorey, G. Rogers, W. Poston, M. Kallergi, W. Qian, L.P. Clarke and 

R.A. Clark (1994). The Application of fractal analysis to mammographic tissue classification. Cancer 
Lett. 77, 183-189. 

Smith, C.M. (1991). Two dimensional minefield simulation. Technical Report NCSC-TM-558-91, Naval 
Coastal Systems Center. 

Titterington, D.M., A.F.M. Smith and U.E. Makov (1985). Statistical Analysis o f  Finite Mixture 
Distributions. Wiley, New York. 

Worsley, K.J. (1995). Estimating the number of peaks in a random field using the Hadwiger characteristic 
of excursion sets, with applications to medical images. Ann. Statist. 23, 640~569. 


