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Abstract

We present a statistically innovative as well as scientifically and practically relevant method for au-
tomatically segmenting magnetic resonance images using hierarchical mixture models. Our method is
a general tool for automated cortical analysis which promises to contribute substantially to the science
of neuropsychiatry. We demonstrate that our method has advantages over competing approaches on
a magnetic resonance brain imagery segmentation task.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Gaussian mixture modelling is ubiquitous throughout laboratories in the world for image
analysis and segmentation, and has played a core role in medical image analysis, and in
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particular Human Brain Mapping for the past several decades. A fundamental aspect of
Human Brain Mapping research today is cortical reconstruction of brain volumes into their
macroscopic components, including gray matter (G), white matter (W), or cerebrospinal
fluid (C). Throughout the field of brain mapping, almost without exception the construction
of cortical manifolds requires some form of segmentation via probabilistic model fitting.
Reconstruction of volumetric submanifolds such as the thalamus, hippocampus, deep nuclei,
and other structures are being performed via automatic segmentation methodologies by
many investigators (Fischl et al., 2001; Grabowski et al., 2000; Holmes et al., 1998; Kapur
etal.,1996;Joshietal.,1999;Milleretal.,2000;Ratnanatheretal.,2001; Shattucketal.,2001;
Robb, 1999; Teo et al., 1997; Wells-III et al., 1996; Xu et al., 1999). Such approaches boil
down to some form of classical Bayesian segmentation and Neyman–Pearson likelihood-
ratio testing on Gaussian models and Gaussian mixture models. Even segmentation methods
which apply segmentation implicitly through mapping without direct Bayesian hypothesis
testing, such as those approaches based on deformable template matching (Christensen
et al., 1997) or active surface methods (Yezzi et al., 2002; Westin et al., 2000; Tagare, 1997;
Shen et al., 2001; Sclaroff and Liu, 2001; Schultz and Conradsen, 1998; Montagnat et al.,
1999, 2001; Montagnat and Delingette, 1997; Mignotte and Meunier, 2001; Kervrann and
Heitz, 1999; Jain et al., 1996; Garrido and de la Blanca, 1998, 2000; Chen and Metaxas,
2000; Caunce and Taylor, 2001; Xu et al., 2000; Xu and Prince, 2000; Pham et al., 2000)are
usually based on some form of Gaussian mixture modelling. Usually, the data models are
implicitly conditionally Gaussian, with the resulting matching functions of the quadratic-
norm type.

At the heart of such brain mapping efforts is mixture modelling in which each tissue
class is modelled as a single Gaussian component. Sometimes additional “partial volume”
components are included to account for the inadequacy of the single Gaussian model. Of
course, selecting the dimension of the model, i.e. the number of partial volume fits, re-
duces to the model selection problem; as well there is no reason to believe that a single
model order fits all tissue and or imaging modality types. The focus of this paper is to
propose a method which allows for the flexibility of a Gaussian mixture model—with
model complexity selected adaptively from the data—for each tissue class. Our procedure
involves modelling each class as a semiparametric mixture of Gaussians. Thus, for each
subjectj, the subject-specific marginalfj is taken to be a hierarchical mixture model—a
mixture of Gaussian mixtures. For each of the three classesc ∈ {C,G,W}, the density
fj has one mixture componentfjc, and each of these components is itself a mixture of
Gaussians. The major difficulty solved in this paper associated with employing such semi-
parametric methods is to solve dynamically the model selection problem. The crucial step
of determining class-conditional mixture complexities for (unlabeled) test data is hopeless
in the unsupervised case—without labeled voxel observations known to belong to the three
classes, the hierarchical mixture model is hopelessly unidentifiable. We accomplish this by
matching models to a predefined data base of hand labelled experimental tissue samples.
Thus, the use of a registry of expertly generated data becomes a fundamental part of our
solution. This approach of course builds on the entire philosophy now emerging through
the Biomedical Informatics Research Network (http://www.nbirn.net) initiatives in which
data bases are federated and available for laboratory comparison and analysis. As we show,
the performance improvement obtained is significant, implying that the emergence of hand
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labelled information from laboratories across the country which are combined with auto-
mated methods for analysis promise tremendous improvements in future automated brain
analysis methods.

Of course, the importance of such improvements is in that a fundamental aspect of human
brain mapping today is the subtle examination of small changes in brain morphometry. For
instance, to investigate whether schizophrenia or Alzheimer’s disease alters the structure
of gray matter in the cingulate gyrus of affected subjects, accurate segmentations into
tissue types of the cingulate gyrus for both affected and control subjects are required. Such
segmentations are currently obtained via labor- and cost-intensive hand-segmentation of
all images in a sample. For the purpose of investigating subtle differences between the
affected and control populations, larger sample sizes afford greater statistical power and
are, of course, desirable. This leads to a conflict between the desire for a large sample size
and the desire to keep the number of hand-segmentations small. This manuscript presents
a method for taking a hand-segmentedtraining subset of the images to be segmented
and producing accurate automated segmentations for the remaining images in the sample.
This will allow for a larger sample of segmented images, thereby increasing the power of
subsequent statistical analyses.

Our method proceeds according to the following outline.

(1) For each subject/class pair in the available training data set, estimate the marginal
subject-specific class-conditional probability densities. Notice that for this supervised
step (since these are training images, individual voxel class labels are available) semi-
parametric mixture complexity estimation is appropriate.

(2) Find the “closest” training model to the (unlabeled) test data.
(3) Fit a mixture to the test data, using the training model obtained in step (2) to determine

the class-conditional mixture complexities and starting locations.
(4) Classify voxels from the test data using the plug-in Bayes rule, where the mixture

component class labels are inherited from the selected training model (but the mixture
itself is estimated from the test data in step (3)).

This manuscript is structured as follows. In Section 2 we describe a data set of MR images
to be investigated. Section 3 gives the mixture modelling methodology in detail. Section
4 describes the experimental protocol employed, and Section 5 reports the results of our
investigations. Finally, in Section 6, we conclude with a discussion of the implications of
our results and our methodology.

2. Data

Dysfunction of specific subregions of the cerebral cortex has been implicated in the
pathophysiology of several neuropsychiatric disorders, including schizophrenia. Although
widespread thinning of the gray matter cortical mantle has been observed in subjects with
schizophrenia (Zipursky et al., 1992), specific abnormalities of neuronal architecture may
exist within portions of the cortical mantle and form the neuroanatomical basis for specific
cognitive deficits or symptom groupings. Shown inFig. 1are examples of cingulate, occipital
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Fig. 1. Panel 1 shows the cingulate gyrus, panel 2 is the occipital gyrus, and panel 3 is the medial prefrontal gyrus.
(Adapted fromDuvernoy, 1999).

and medial prefrontal in the human brain, which are studied here. Such brain areas consist
of different mixtures of gray matter, white matter, and cerebrospinal fluid.

The cingulate gyrus, a large C-shaped gyrus that courses around the corpus callosum
and cerebral ventricles, has attracted considerable interest because of its role in attention
and other cognitive functions that appear to be critical for understanding schizophrenia and
other neuropsychiatric disorders (Csernansky and Bardgett, 1998). The medial prefrontal
cortex has been implicated in a variety of recent functional and structural neuroimaging
studies of both normal affect regulation and differences associated with affective disorders
such as major depressive disorder or bipolar affective disorder (Swerdlow and Koob, 1987;
Drevets et al., 1992; Drevets and Todd, 1997; Botteron and Figiel, 1997; Drevets, 1999).
The occipital cortex has been the focus of several major functional neuroimaging studies
of visual perception; see, e.g. (Yantis, 2001; Tootell et al., 1998).

High-resolution MR imaging now affords an unprecedented opportunity to acquire de-
tailed images of the neuroanatomical configurations and tissue characteristics of the living
human brain. Substantial advances in our understanding of neuropsychiatric disorders are
anticipated as this technology is used more widely in populations of individuals with such
illnesses. However, most neuropsychiatric researchers still apply manual methods to assess
the boundaries and internal tissue segmentations of cortical subregions in MR scans. These
manual methods are limited by their dependency on the constant availability of human
experts and by between rater error (e.g.,Bartzokis et al., 1993; Haller et al., 1997).

We investigate first a set of cingulate gyrus images provided by John Csernansky of
the Washington University School of Medicine, St. Louis. High-resolution MR scans were
acquired using a turbo-FLASH sequence (TR=20 ms, TE=5.4 ms, flip angle=30◦, ACQ-
1, Matrix 256× 256, Scanning Time= 13.5 min) with 1 mm× 1 mm× 1 mm isotropic
resolution across the entire cranium. (See, for instance,Cho et al. (1993)for MR imaging
background.) MR image data were reformatted via intensity scale adjustment to maximize
tissue contrast, using the voxel intensities in the corpus callosum and the lateral ventricle as
limiting values. MR scans were then interpolated into 0.5 mm×0.5 mm×0.5 mm isotropic
resolution using trilinear interpolation.

We considerJ = 10 subjects; five with schizophrenia (labeled “CG 1” through “CG
5”) and five control subjects (labeled “CG 6” through “CG 10”). For each subject, the
voxels in the cingulate gyrus of the right hemisphere, have been hand-segmented by expert
neuroanatomists into one of three tissue classes;C: ={C,G,W}. (SeeFigs. 2and3.) Hand
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Fig. 2. Panel 1 shows the original MRI, and Panel 2 is the hand-segmentation of (one slice of) CG 9 into C (dark
gray), G (light gray), W (white); black is unsegmented region.
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Fig. 3. Frequency histograms for CG 9: entire cingulate gyrus, right hemisphere (top), and C (bottom left), G
(bottom center), and W (bottom right).

segmented files were created using Analyze (Robb, 1999) and a region of interest (ROI)
defined by expert raters to isolate the cingulate gyrus. The ROI included white matter, gray
matter and cerebrospinal fluid of one hemisphere that encompassed the cingulate gyrus and
immediate surrounding region. A three-dimensional ROI encompassing the entire cingulate
gyrus in the right hemisphere was outlined. The ROI was constructed in coronal sections.
In each MR section, an enclosure which consisted of the gray matter of the right cingulate
gyrus and its neighboring gray matter, white matter, and cerebrospinal fluid was drawn by
hand. This was a fast procedure as it did not require manual segmentation of exact tissue
types or precise anatomical structures. An example of such an ROI section is shown in
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Table 1
Sample sizes for 10 cingulate gyri

Number of voxels

CG 1 CG 2 CG 3 CG 4 CG 5 CG 6 CG 7 CG 8 CG 9 CG 10

C 150,128 90,035 91,452 85,063 121,138 45,709 108,617 84,402 76,886 125,409
G 210,636 186,529 136,856 124,227 130,717 154,993 181,538 169,583 161,138 131,230
W 333,341 359,746 263,401 243,651 274,943 193,633 320,293 276,141 264,607 339,410
Total 694,105 636,310 491,709 452,941 526,798 394,335 610,448 530,126 502,631 596,049

Fig. 2; note that some voxels were not labeled and thus not included in the ROI. The right
cingulate gyrus was manually delineated, according to anatomical rules. For each scan, a set
of cingulate manual segmentations by an expert rater was obtained in the ROI. The manual
segmentations consisted of three tissue classes. Voxel classifications by the rater were based
on visual inspection of morphological cues such as gyri curvature and connectivity, as well
as visual intensity cues between three tissue classes.

There are between 390,000 and 700,000 class-labeled voxels per subject. The smallest
subject-specific class-conditional sample size is 45,709 (C for subject CG 6). SeeTable 1
for details.

3. Semiparametric mixture modelling

Model selection in Gaussian mixtures—the estimation of mixture complexity—is of
fundamental importance in many applications of finite mixture models. An enormous body
of literature exists regarding the application, computational issues, and theoretical aspects of
mixture models when the number of components is known (see, e.g.,McLachlan and Peel,
2000; Everitt and Hand, 1981; McLachlan and Basford, 1988; Titterington et al., 1990), but
estimating the unknown number of components remains an area of intense research effort.
See, for instance,Chen and Kalbfleisch (1996); Dacunha-Castelle and Gassiat (1997, 1999);
Escobar and West (1995); Henna (1985); James et al. (2001); Keribin (2000); McLachlan
(1987); Priebe and Marchette (2000); Roeder and Wasserman (1997)for recent progress in
this area.

We model the class-conditional probability density functions via the “alternating ker-
nel and mixture” (AKM) method (Priebe and Marchette, 2000; James et al., 2001). This
methodology results in an automatic estimate of mixture complexity. We do not claim
AKM is necessarily the best approach; but it is reasonable and illustrative, and can have
advantages over other techniques. InPriebe and Marchette (2000)AKM is compared to
the Bayesian methodology ofRoeder and Wasserman (1997), while James et al. (2001)
presents a comparison with numerous competing approaches.

3.1. Modelling

For each subjectj ∈ J: ={1, . . . , J }, consider magnetic resonance voxel observations
Xj : ={Xj1, . . . , Xjnj

}; the subject-specific sample sizes are denoted bynj . Let the marginal
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probability density function for subjectj voxel observations be given by

fj =
∑
c∈C

�jcfjc. (1)

That is,fj =�jCfjC+�jGfjG+�jWfjW . The subject-specific class-conditional marginals
are denotedfjc, and the subject-specific class-conditional mixing coefficients�jc are non-
negative and sum to unity. We assume that theXji are identically distributed according to
fj (but not independent).

Each subject-specific class-conditional marginalfjc is itself modelled as a mixture of
normals

fjc =
kjc∑
t=1

�jct �jct , (2)

where the subject-specific class-specific mixing coefficients satisfy�jct �0 for eachj, c, t ,

and
∑kjc

t �jct =1 for eachj, c, and�jct =�(·;�jct ,�
2
jct ) denotes the Gaussian probability

density function with mean�jct and variance�2
jct . Thus the subject-specific marginalsfj

are modelled as hierarchical mixtures—mixtures of Gaussian mixtures;

fj =
∑
c∈C

�jc

kjc∑
t=1

�jct �jct . (3)

This model is precisely analogous to the model used in “mixture discriminant analysis”
(Hastie and Tibshirani, 1996). The subject-specific class-conditional mixture complexities
kjc are to be estimated from the data via AKM.

3.2. Estimation

Given class-labelled training data, we have available subject-specific class-conditional
sample sizesnjc such thatnj = ∑

c njc. For the subject-specific mixing coefficients�jc

we use the empirical estimate

�̂jc = njc/nj , (4)

the ratio of the subject-specific class-conditional sample size to the total subject-specific
sample size. LetXjc denote that subset ofXj for which the class label isc.

We estimate the subject-specific class-conditional mixture complexitieskjc, mixing co-
efficients�jct , and mixture components�jct , via AKM. This estimation is semiparametric;

the mixture complexitieŝkjc are estimated from the data. AKM employs an iterative esti-
mation scheme, comparing thek-component mixture estimate against thek +1-component
mixture estimate. When the improvement obtained by adding ak + 1st component is negli-
gible (less than some penalty term) the iteration is terminated and the resultingk-component
mixture is used as the estimate. This general version of model selection—looking for the
“elbow” or “knee” in a complexity vs. penalized estimation accuracy curve—is quite com-
mon. A distinguishing feature of AKM is the process of using successive kernel estimates
to guide the successive mixture estimates.
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The filtered kernel estimator (Marchette et al., 1996) extends the basic kernel estimator
by allowing multiple bandwidths driven by a pilot mixture model. Given a Gaussian mixture

f =
k∑

t=1

�t�t (5)

and a bandwidthh, define the filtered kernel estimator̃f (·;X, f, h) based on the mixturef
and using the dataX = {X1, . . . , Xn} to be

f̃ (x;X) = 1

n

n∑
i=1

k∑
t=1

�t�t (Xi)

f (Xi)h�t

�0

(
x − Xi

h�t

)
, (6)

where�2
t is the variance of thetth component of the mixturef and�0 is the standard zero

mean, unit variance normal. This allows for different bandwidths, guided by the mixture
modelf.

Let f̂ 1 be the single normal component with mean and variance determined by the
sample moments ofXjc—that is, f̂ 1 is a trivial one-component mixture. Let̃f 1 be the
filtered kernel estimate based on̂f 1—that is,f̃ 1 is the standard kernel estimate using the
normal reference rule to determine the bandwidth. Fork = 2,3, . . . , define in turn firstf̂ k

to be thek-component mixture best matched to the nonparametric estimatef̃ k−1

f̂ k: = arg min
f∈Fk

||f − f̃ k−1||22, (7)

where||f − g||22: = ∫ ∞
−∞ (f (x) − g(x))2 dx is the integrated squared error andFk is the

class ofk-component Gaussian mixtures. Subsequently definef̃ k to be the filtered kernel
estimate based on the mixturêf k.

Let

�(f,X): = log
∏
x∈X

f (x) =
∑
x∈X

logf (x). (8)

(This would be the log-likelihood if the observations were independent; alas, this is not the
case for the brain voxels. We address the issue of spatial dependence in the next subsection.)
The estimate of mixture complexity used here (analogous to the estimates proposed in
Priebe and Marchette (2000)andJames et al. (2001)) is given by

k̂jc = arg min{k ∈ {1,2, . . .} : �(f̂ k+1,Xjc) − �(f̂ k,Xjc)< a(njc, k + 1)}. (9)

The penalty terma(njc, k +1) in the above equation—a function of sample size and model
complexity—isthekey practical issue in this version of model selection. A simple choice
for a(njc, k + 1) is 3 log(njc). Asymptotic considerations requirea(njc, k + 1)/njc → 0
asnjc → ∞ for fixedk, but not too fast. In practice, the choice ofa(njc, k + 1) drives the
parsimoniousness of the resultant model.Akaike (1974), Rissanen (1978), and many others
since (see, notably,George and Foster, 2000) have weighed in on the choice of this penalty
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term; nevertheless, for finite sample sizes the choice quite resembles an artistic balancing
of parsimony and fit—the conventional bias-variance trade-off.

3.3. Spatial dependence

Because there is correlation amongst the voxel observations, and thus�(·, ·)defined above
is not the log-likelihood, simple interpretation of the penalty terma(njc, k+1) as a function
of sample size calls for conditional covariance modelling of the three-dimensional spatial
process. Covariograms (Cressie, 1993) for the subject-specific class-conditional random
fields indicate that significant spatial correlation is evident at a distance of up to 10 voxels.
(Stationarity and isotropy are indicated as well.) This suggests that the effective sample
sizes are significantly smaller than the number of voxelsnjc.

One way to look at the effect of dependent observations on our estimate of mixture
complexity is to note that, if the observations in the subject-specific class-conditional sample
Xjc are positively correlated, then the terms�(f̂ k+1,Xjc) and�(f̂ k,Xjc) in Eq. (9) should
be scaled accordingly. That is, if the “effective number of independent observations” is
n′
jc: =njc/� for 1���njc, then substituting�−1�(·, ·) into Eq. (9) will account for the

correlation. The case� = 1 represents independence and, as (positive) spatial correlation
increases,� increases as well. This can be presented as

k̂jc = arg min{k ∈ {1,2, . . .} : �(f̂ k+1,Xjc) − �(f̂ k,Xjc)

< �a(njc/�, k + 1)}. (10)

The idea of accounting for spatial correlation via an “effective number of independent
observations” (Cressie, 1993) is analogous to the “resolution elements” found inWorsley
et al. (1992), e.g. Solid mathematical justification for adopting this approach is lacking
except in the most restricted cases (Leadbetter et al., 1983). Direct modelling of the depen-
dency structure, via methods such as Markov random field models, is the subject of intense
ongoing research. Our ad hoc approach is meant as a simple and straight-forward method
enabling semiparametric hierarchical mixture modelling.

Estimating� is a sticky wicket. Nevertheless, as will be seen in the experimental results
presented below, a significant performance improvement can be obtained by employing
even a crude covariogram-based estimate�̂ in the complexity selection methodology. Fur-
thermore, Occam’s Razor may suggest a preference to err on the side of parsimony. Our
rule of thumb is to choosê� to be the number of voxels in a ball whose radius is given by the
distance at which the omnidirectional empirical covariogram drops below some threshold,
rounded to the nearest integer.

Usinga(n, k) = 3 log(n), we arrive at the estimate of mixture complexity

k̂jc = arg min{k ∈ {1,2, . . .} : �(f̂ k+1,Xjc) − �(f̂ k,Xjc)< �̂3 log(njc/̂�)}. (11)

Given k̂jc selected in this manner, the mixture model estimate of the marginal probability
density for subjectj, tissue classc, is then given by

f̂jc = arg min
f∈Fk̂jc

||f − f̃ k̂jc−1||22, (12)
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the k̂jc-component mixture identified in the AKM procedure. Results will be reported be-
low for three choices of̂�: 1, 25, and 99. The casê� = 1 corresponds to ignoring the
dependence; the choices�̂ = 25 and̂� = 99 are obtained with threshold values 2/3 and 1/3,
respectively.

4. Segmentation method

We consider segmenting the cingulate gyrus for subject� ∈ J; in this case, we have
J − 1 training subjects corresponding to indicesj ∈ J� := J\{�}.

4.1. Training

For j ∈ J�, we obtain

f̂j =
∑
c∈C

njc

nj

f̂jc =
∑
c∈C

njc

nj

k̂jc∑
t=1

�̂jct �̂jct (13)

via AKM. For � we have the test data setX�.
Write

L(�, f ) :=
∏

x∈X�

f (x). (14)

(This would be the likelihood if the subject-specific voxel observations were independent.)
We proceed by choosing the index�∗ specifying the training subject “closest” to the test data
set. However, even though we proceed under the assumption that the subject-specific class-
conditional tissue mixture modelŝfjc for one training subject can be usefully transferred to
the test sample, there is good reason to treat the subject-specific class-conditional mixing
coefficients as nuisance parameters; while the tissue class probability distributions may be
transferrable, we wish to assume that the percentage of gray matter, say, may vary from
training subject to test subject. Toward this end we define

Fj :=
{∑

c∈C
pjcf̂jc : pjc ∈ (0,1) ∀c and

∑
c∈C

pjc = 1

}
, (15)

the collection of densities which agree witĥfj up to subject-specific class-conditional
mixing coefficients. Then

�∗ := arg max
j∈J�

max
f∈Fj

L(�, f ). (16)

The selection of training subject�∗ provides the test subject� with class-conditional com-
plexity estimateŝk�∗c, as well as initial conditions obtained from thêf�∗c andn�∗c/n�∗ , for
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use in modellingX�. (There are, of course, choices other than the likelihood-based option
(Eq. (14)) for determining the “closest” training subject�∗.)

4.2. Testing

4.2.1. Mixture modelling
Given�∗ selected as above, we estimatef� by estimating the parameters

� = [��C,��G,

��C1, . . . ,��C(̂k�C−1),��C1,�
2
�C1, . . . ,��Ck̂�C

,�2
�Ck̂�C

,

��G1, . . . ,��G(̂k�G−1),��G1,�
2
�G1, . . . ,��Gk̂�G

,�2
�Gk̂�G

,

��W1, . . . ,��W(̂k�W −1),��W1,�
2
�W1, . . . ,��Wk̂�W

,�2
�Wk̂�W

]′ (17)

via

f̂� := arg max
�∈�

∏
x∈X�

∑
c∈C

��c

k̂�c∑
t=1

��ct��ct (x). (18)

Notice that this involves estimation of 3
∑

c∈C k̂�∗c − 1 parameters. Algorithmically, this
M-estimate is obtained using the EM algorithm (see, for instance,McLachlan and Krishnan,
1997) with the training model̂f�∗ as the starting point;

f̂� := EM(X�; f̂�∗). (19)

The estimate obtained in this manner can be written as

f̂� =
∑
c∈C

�̂�cf̂�c =
∑
c∈C

�̂�c

k̂�c∑
t=1

�̂�ct �̂�ct . (20)

Class complexities and component labels are inherited fromf̂�∗ , so that (forc = G, for
instance) the mixing coefficient̂��G indicates the amount (proportion) of gray matter in the

test image whilêf�G = ∑k̂�G
t=1 �̂�Gt �̂�Gt provides a model for that gray matter.

This unsupervised modelling of the test subject mixture allows estimation of the propor-
tion and character of the different tissue types as they appear in the test subject, with a goal
toward improving the segmentation for this subject.

4.2.2. Classification
We next consider the Bayes plug-in classifier

g(x) = arg max
c∈C

�̂�cf̂�c(x). (21)

The voxelx is to be labelled as belonging to the class which maximizes posterior probability
of class membership. SeeDevroye et al. (1996)for a thorough discussion of the Bayes plug-
in classifier.
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This is (operationally) equivalent to the likelihood ratio test procedure (our estimates are
indeed marginal density estimates) given by considering

LRT C/G(x) = �̂�Cf̂�C(x)

�̂�Gf̂�G(x)
=: r1(x) (22)

and

LRT G/W(x) = �̂�Gf̂�G(x)

�̂�W f̂�W(x)
=: r2(x). (23)

Our automatic segmentation is then given by the following rules:

• r1(x)>1 implies voxelx is to be labelled as tissue class C.
• r2(x)<1 implies voxelx is to be labelled as tissue class W.
• r1(x)<1 & r2(x)>1 implies voxelx is to be labelled as tissue class G.
• r1(x)>1 & r2(x)<1 should not occur.

◦ (Fig. 3 suggests stochastic ordering, C<stG<stW; this event is labelled “unknown” in
the event that it does occur.)

• (Ties are to be broken arbitrarily.)

5. Results

An example of the subject-specific, class-conditional marginal density estimates obtained
via the AKM procedure presented above is presented inFig. 4. Table 2presents the com-
plexity estimation resultŝkjc for the 10 cingulate gyri under consideration for three choices
of �̂. FromFig. 4we see that these (representative) fits are quite accurate. FromTable 2we
see that̂�=1 leads to a very high complexity, whilê�=25 and̂�=99 provide a reasonable
framework to investigate the parsimony-fit trade-off.

There is no “gold standard” available for this investigation; that is, we do not know the
truevoxel class labels. The expert’s hand-segmentation is the “lead standard” against which
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Fig. 4. Depicted are mixtures (�̂ = 25) and histograms forCG 9. From left to right: C, G, W. Estimated model
complexities arêkCG9C = 2, k̂CG9G = 3, k̂CG9W = 3.
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Table 2
Mixture complexity estimation results for 10 cingulate gyri

Estimated number of components

CG 1 CG 2 CG 3 CG 4 CG 5 CG 6 CG 7 CG 8 CG 9 CG 10

�̂ = 1
C 3 1 4 3 3 2 26 3 2 2
G 2 16 3 1 3 1 1 1 3 3
W 3 13 5 16 17 13 6 16 12 11
�̂ = 25
C 3 1 2 3 3 1 2 2 2 2
G 1 2 3 1 2 1 1 1 3 3
W 3 2 3 4 3 2 3 4 3 5
�̂ = 99
C 1 1 1 1 1 1 2 1 1 1
G 1 1 2 1 2 1 1 1 1 2
W 1 2 3 3 3 2 2 2 3 3

Table 3
Segmentation results for 10 cingulate gyri

Probability of misclassification

CG 1 CG 2 CG 3 CG 4 CG 5 CG 6 CG 7 CG 8 CG 9 CG 10

PV1 0.15 0.09 0.23 0.20 0.28 0.15 0.15 0.16 0.20 0.24
PV2 0.09 0.06 0.13 0.11 0.18 0.09 0.09 0.11 0.12 0.15
AKM ( �̂ = 25) 0.13 0.07 0.12 0.09 0.11 0.10 0.07 0.10 0.09 0.11
AKM ( �̂ = 99) 0.10 0.07 0.13 0.10 0.15 0.09 0.07 0.10 0.08 0.10

we compare. Competing segmentation methodologies include:

• An overly-simplistic model in which each tissue class is modelled with but a single
normal.

• Partial volume approaches (PV1 and PV2 inTable 3).
These two partial volume methodologies are sketched here.

The partial volume approaches PV1 (Ratnanather et al., 2001) and PV2 (Ratnanather
et al., 2004) involve a five-component Gaussian mixture fit via the EM algorithm; initial
conditions are hand-selected based on the frequency histogram for the entire data set (e.g.,
the top panel inFig. 3). One mixture component is initialized to account for each of the
three tissue classes, and a “partial volume” mixture component is initialized betweenC
& G and another betweenG & W. The difference between the two approaches is in the
manner in which these partial volumes are allocated to the various tissue classes. These
partial volume approaches are competitive with the most successful semi-automated MR
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brain image segmentation methodologies available in the literature, and are in use in current
brain segmentation projects (Ratnanather et al., 2001, 2004).

In method PV1,	C/G = 1/2 of theC/Gpartial volume component is allocated to C and
the other 1− 	C/G to G. That is, a voxel observationx for which theC/G partial volume
component maximizes (over the five mixture components) posterior probability of class
membership is assigned to tissue class C (resp.G) if it takes a value smaller (resp. larger)
than the mean of theC/Gpartial volume component. TheG/Wpartial volume component
is allocated analogously.

Method PV2, on the other hand, optimizes probability of misclassification over	C/G ∈
[0,1] and	G/W ∈ [0,1]. For the cingulate gyrus data set under consideration herein, this
optimization results in	∗

C/G = 0.85 and	∗
G/W = 0.92.

Table 3presents the probability of misclassification results for the 10 cingulate gyri
under consideration for the AKM hierarchical mixture model with two choices of�̂, as well
as analogous results for the two competing partial volume approaches described above.
Despite the small sample size of just 10 subjects,Table 3suggests that the hierarchical
mixture model methodology may provide superior automatic segmentation results to the
competing approaches. For example, a paired one-sidedt-test of AKM (̂� = 99) vs. PV2
yields ap-value ofp = 0.03.

6. Discussion and conclusions

Voxel segmentation is one step of a sequence of procedures used in cortical analysis.
Knowledge of volumes of gray matter, the coordinates of gray matter voxels and vertices
of the gray/white surface is essential in a careful scientific analysis of cortical regions in
normal and diseased subjects.

A real constraint on the ability to detect differences in two populations of MR brain
imagery, and hence to investigate important neuropsychiatric hypotheses, is the cost of
obtaining hand-segmentated brain volumes. This cost restricts the available sample sizes.
Automated segmentation promises to allow for significantly larger sample sizes, and thus
to advance the state of the science.

A hierarchical mixture modelling approach is demonstrated to provide automatic seg-
mentation of magnetic resonance images superior to that of competing partial volume
approaches. Our modelling methodology provides a key aspect missing in the methods
currently in use: automatic subject-specific, class-conditional model complexity selection.
The statistically innovative aspect of our work is the use of classified training data to obtain
a model complexity for the unclassified test data, and hence allowing for richer test data
models (and, subsequently, superior segmentation performance).

While specific details of the model fitting employed herein may be beneficially altered for
particular applications, the general approach of (1) semiparametric estimation of subject-
specific class-conditional marginal densities for a set of training volumes, (2) nearest neigh-
bor matching of the test data to the training models providing for automated class-conditional
mixture complexities, (3) parameter fitting of the selected training model to the test data,
and (4) plug-in Bayes classification of unlabelled voxels, provides an advance in the state-
of-the-art for automated MR brain image segmentation.
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It is instructive to know which voxels are misclassified. In fact, forAKM the misclassified
voxels are likely to be near class boundaries. This knowledge should be exploited to improve
performance. However, such improvements may need to take into account that the “lead-
standard” against which we test is based on expert hand-segmentation, and must not be
considered a perfect “gold-standard.”

A useful generalization of our methodology involves “combining classifiers”; that is,
rather than considering just the closest training model, one can perform the classification as
above for each training model and then combine the results by weighting the classification
obtained via thejth training model inversely proportional to maxf∈Fj

L(�, f ). For our
cingulate gyrus investigation this alteration improves the performance for seven of the
10 subjects. Note, however, that computational requirements increase proportional to the
number of models used in the combination.

One aspect of our methodology for which further investigation is particularly warranted
is our ad hoc accounting for spatial dependence (our�̂). It will be beneficial to develop and
use a more sophisticated spatially varying model to replace this crude covariogram estimate
of the “effective number of independent observations” used herein.

The application of our methodology is not limited to just the cingulate gyrus. Experi-
ments have been performed on medial prefrontal gyrus and occipital gyrus data sets; results
indicate, again, the potential advantage of AKM. Indeed, MR brain image segmentation via
AKM is a general tool for automated cortical analysis.
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