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We demonstrate the applicability of integrated sensing and processing decision trees (ISPDTs) method-
ology to a set of digital mirror array (DMA) hyperspectral imagery. In particular, we demonstrate that
ISPDTs can be used to detect and localize targets by using just a few DMA Hadamard frames, so that an
entire hyperspectral data cube need not be collected to successfully perform the given task. This suggests
that such an integrated sensing–processing suite may be appropriate for extremely time-sensitive
pattern-recognition applications. © 2006 Optical Society of America
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1. Introduction

Modern sensors are designed to collect vast amounts
of information, often more than can easily be trans-
mitted or processed in time-critical applications.
These sensors are often adaptive in the sense that
they have adjustable parameters that determine the
information that will be collected (for example, the
spectral bands in a hyperspectral sensor). Several
factors mandate that the sensor be tuned to produce
only the information necessary for the task at hand:
processing constraints, bandwidth constraints, and
the curse of dimensionality. Ideally, the sensor sys-
tem should adapt its collection based on previous
observations. These observations can provide infor-
mation about the current environment and the ob-
jects within the scene. By tailoring the collection to
better disambiguate the specific hypothesized objects
within the observed environment, the system can im-
prove its performance on the observed scene. This
allows for approximately optimal solutions on the

observed data without the need for globally optimal
solutions.

One method considered for this problem is the use
of integrated sensing and processing decision trees
(ISPDTs).1 As an illustration of the ISPDT approach,
let us assume that a hyperspectral sensor can collect
any k of a total of N possible spectral bands. The
sensor collects an inital set of k bands, which have
been chosen so that a representative set of data clus-
ter into distinct groups in these bands. The idea is
that these groups correspond to different environ-
mental conditions, different scenes, or different noise
distributions, depending on the physics of the specific
problem. The k-dimensional observation is assigned
to the nearest cluster. This cluster now determines
the next k-dimensional observation to collect: either
the best k spectra for detecting the target under the
conditions defining the cluster, or the best spectra to
allow for further refinement of the estimate of the
environment.

This process is also known as iterative denoising,2
because each successive clustering removes from con-
sideration either noise observations (in the training)
or invalid models (in detection or classification). As
the sensor iterates the collect–cluster–collect proce-
dure, it refines its model and ultimately selects
the appropriate bands for the classification task. Note
that these bands depend on the path through the
tree, as does the classifier. Different leaves of the tree
will not only (most likely) select different bands but
will also use different training data in the design of
the classifier.

Figure 1 illustrates the ISPDT. At the top left, two
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bands are collected, illustrated here as a two-
dimensional plane. The training data are clustered
within this space, resulting in a partitioning of the
space into three sets: �C1, C2, C3�. Any observation
falling in C2 results in the collection of two new bands
and a linear classifier, as illustrated in the upper
right-hand corner. An observation falling in C3 re-
sults in the collection of three new bands and a qua-
dratic classifier, as indicated in the middle right box.
An observation falling in C1 requires further process-
ing. First, two new bands are collected, and the train-
ing has indicated that these should be partitioned
into �C1,1, C1,2�, as indicated in the middle left figure.
Then a further two bands are collected, resulting in
either a linear classifier or a more complex classifier,
as indicated in the bottom two figures. With each
collection, a decision is made either to classify the
observation or to partition the space and collect fur-
ther information, as indicated by the partition in
which the current observation falls. Thus observa-
tions s1�Z� and s4�Z� require three collections for a
total of six bands, s2�Z� requires two collections for a

total of four bands, and s3�Z� requires two collections
for a total of five bands.

In this paper we demonstrate the applicability of
the ISPDT iterative denoising methodology to a set of
digital mirror array (DMA) imagery.3

2. Sensor and Data

A. Sensor

The sensor under consideration is a prototype system
developed by PlainSight Systems, which incorporates
a DMA device to realize a Hadamard multiplexed
imaging system.

The known signal-to-noise-ratio (SNR) advantage
in Hadamard spectroscopy4 extended to imaging sys-
tems5,6 allows for the collection of a hyperspectral
cube of data with more efficient light collection than
that of standard push-broom hyperspectral imagers.

The PlainSight sensor is a spatial light modulator-
based multiplexing hyperspectral imaging camera,
operable in the near-infrared spectral range of
�900–1700 nm. The system uses a DMA commer-
cially available from Texas Instruments for projector
display applications. The DMA contains 848 columns
and 600 rows of mirrors and measures 10.2 mm
� 13.6 mm. When the scene is illuminated on the
DMA device, a standard raster scan could be imple-
mented by turning the first column of mirrors ON,
sending this column to a diffraction grating, which
causes a spectral representation of the first spatial
column of the scene to be illuminated on the detector
array.

If one opens multiple slits in the DMA, the detector
array will be presented with the superposition of
many columns of spectra. This system would have the
advantage of optimal SNR when the pattern of the
open slits forms a Hadamard pattern.4 Each individ-
ual frame at the detector array has less physical
meaning than in the push-broom method, but when
all the patterns of the Hadamard sequence have been
recorded, the full hyperspectral data cube is recover-
able.

The PlainSight sensor implements the process
wherein the detector array is a standard Indigo Phoe-
nix large-area InGaAs camera operating in near-
infrared wavelengths. During standard operation of
the system, the sensor collects 512 frames. Each
frame is 522 � 256 pixels and represents spectra
versus spatial row. The 512 frames that are collected
are based upon 256 Walsh (0’s and 1’s) patterns.
Since the theory of optimal SNR is based upon Had-
amard (1’s and �1’s) patterns, one needs to collect
two Walsh patterns to generate a single Hadamard
pattern. Thus the 512 collected frames represent the
Walsh patterns required to form a full set of 256
Hadamard patterns. Since each column in the DMA
array will hit the diffraction grating at a different
location, the spectra will hit the detector array at a
different location per column. We describe this as a
skewness in the spectra, which results in the 522
pixels in the spectral dimension needed to represent
the 266 actual spectral bins. Of course, this spatial–

Fig. 1. Illustration of a simple ISPDT consisting of two clustering
nodes and four leaf nodes. The nodes are two dimensional except
for the three-dimensional leaf node in the middle right image.
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spectral mixing and skewness is invertible once all
256 Hadamard patterns have been collected. The re-
sultant hyperspectral scene has dimensions of 256
� 256 with 266 spectral bands from 900 to 1700 nm.

The sensor has the capability of utilizing adaptive
Hadamard frame-collection schemes as follows. The
sensor is dynamically programmable in that it can be
tasked to render any Walsh pattern at any scale and
at any location on the DMA. For example, standard
operation of the sensor renders 512 Walsh patterns
from the lowest spatial frequency to the highest, at a
resolution of 256 mirrors. In adaptive operation of the
sensor, any one of these patterns can be rendered on
the DMA; an image frame can be captured; some data
processing can occur, leading to a decision regarding
the next frame; and then any of the other patterns
can be rendered. This sensor capability allows one to
task the DMA to render patterns that have been
algorithmically calculated to be optimal given the
data that were previously observed. (This adaptive

sensor operation implies that the actual hyperspec-
tral cube may no longer be recoverable from the
frames collected, as one requires that the full 256
Hadamard patterns be collected to invert the spatial–
spectral mixing caused by the multiplexing. If the
desired processing does not require that the inverse
operation be available, then it is more efficient not to
collect all the data. We collect only what the algo-
rithm needs to perform its function.) Thus the dy-
namic programmability of the sensor allows one the
flexibility to sense only that data required for the
image-processing task at hand.

Our task for integrating sensing and processing is
to develop a scheme to collect these Hadamard
frames one at a time and to make inferences about
the current hyperspectral scene—and about the next
Hadamard frame to be collected—as the frames are
being sensed. Application may involve target detec-
tion, localization, and classification as well as object
tracking.

Fig. 2. Hadamard frame 110 (full 256 � 256 im-
age) for I2.

Fig. 3. (Color online) Hadamard frame 110 (64 �
210 swath) for I2 with the target box used for
training.
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B. Data

Data were collected at Lockheed Martin in Orlando,
Florida, in April 2005. From a collection tower, a full
set of 256 Hadamard frames was collected for a back-
ground scene �I0� as well as for a target (a vehicle)
moving from right to left at four time steps �It,
t � 1, 2, 3, 4�. Figure 2 depicts one Hadamard frame
at time t � 2. This collection of five hyperspectral
scenes is used to demonstrate the detection and lo-
calization capabilities of an integrated sensing–
processing suite consisting of a dynamically
programmable DMA sensor and ISPDT processing.

3. Methodology

We apply the ISPDT iterative denoising meth-
odology to the hyperspectral vehicle imagery, It,
t � 0, 1, 2, 3, 4, described above. We use the hyper-
spectral data cube collected at time t � 2, I2 as our
training data; Fig. 2 depicts Hadamard frame 110 at
time t � 2. We focus on 64 � 210 image swaths so as
to obviate issues of sensor skewness and edge effects;
Fig. 3 depicts the swath for Hadamard frame 110 of
the training data I2, with the region delineated by the
small box representing the training information re-
garding the target of interest. (No additional infor-
mation regarding vehicle–nonvehicle pixels within
the target box is utilized.) Training proceeds as fol-
lows (see Fig. 4).

A. Step 1

No single Hadamard frame provides adequate per-
formance in segregating target from nontarget pixels,

and so Hadamard frame 110 is selected for use at the
root by virtue of its performance in providing the best
clustering clarity—a new Hadamard frame at each
node is determined based on the best separation be-
tween the target box and the nontarget pixels by
using the adjusted Rand index criterion.7,8 Model-
based clustering9 is employed in which a Bayesian
information criterion (BIC) is used to determine the
complexity and type of a Gaussian mixture fit to
the data. The clusters are then defined in terms of the
posterior likelihoods of the individual components.
The Hadamard frame 110 pixels (gray-scale inten-
sity) cluster into three clusters; the spatial locations
of the pixels for these three clusters are represented
by blue (middle), green (left), and yellow (right) in the
root node of the tree depicted in Fig. 4 (color online).

B. Step 2

In building an ISPDT, after clustering at a node, each
cluster is processed in a branch of the tree. This sub-
sequent processing proceeds in an analogous fashion
to that of the root: if the pattern-recognition task at
hand can be adequately addressed (for the data fall-
ing to that branch), then tree growth (along that
branch) is halted. It is necessary, of course, to per-
form the search for the best Hadamard frame once
again in each branch, conditionally upon the results
of all previous clusterings.

In this application the leftmost (green) and right-
most (yellow) clusters at the root of the ISPDT de-
picted in Fig. 4 yield essentially pure nontarget
branches, and no further tree growth is necessary in

Fig. 4. (Color online) ISPDT constructed on I2 (training). The leftmost node at level three of the tree is the target leaf.
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Fig. 5. (Color online) ISPDT detection–localization results for I0 (testing). No vehicle is present at time t � 0, and no pixels falling into
the target leaf implies no detection, as desired.

Fig. 6. (Color online). ISPDT detection–localization results for I1 (testing). There is a vehicle present at time t � 1, and the existence of
pixels falling into the target leaf implies detection, as desired. The spatial location of these pixels indicates that the detection is indeed on
target.
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Fig. 7. (Color online) ISPDT detection–localization results for I3 (testing). There is a vehicle present at time t � 3, and the existence of
pixels falling into the target leaf implies detection, as desired. The spatial location of these pixels indicates that the detection is indeed on
target.

Fig. 8. (Color online) ISPDT detection–localization results for I4 (testing). There is a vehicle present at time t � 4, and the existence of pixels
falling into the target leaf implies detection, as desired. The spatial location of these pixels indicates that the detection is indeed on target.
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these branches, while the middle (blue) root cluster
contains many of the target pixels as well as a sig-
nificant number of the nontarget pixels. This middle
cluster must be processed further. In this middle
cluster we find that Hadamard frame 151 provides
clustering into two clusters; furthermore, one of
these clusters (the leftmost node at level three of the
ISPDT depicted in Fig. 4) contains a significant num-
ber of target pixels and no nontarget pixels. Ergo, this
leaf is labeled as the “target leaf.”

Notice that, as was mentioned above, no informa-
tion regarding vehicle–nonvehicle pixels within the
target box is utilized. Nevertheless, the target leaf
(the leftmost node at level three of the ISPDT de-
picted in Fig. 4) successfully—and unsupervisedly,
with respect to the pixels within the target box—
makes this distinction. The clustering at each level of
the ISPDT can be used to produce a partition of the
input space. Thus the ISPDT described above and
depicted in Fig. 4 can be presented as

g�x� � I�x � C1,2 � x � C2,1�, (1)

where Ci, j represents the jth partition cell at level i of
the tree and g is a classifier for pixel x.

Note that while the entire hyperspectral data cube
was required for the training data, Eq. (1) allows
processing for detection, localization, and classifica-
tion with the collection of just two Hadamard frames,
110 and 151, as opposed to all 256.

The ISPDT depicted in Fig. 4 is quite simple. In
general, for more complex applications, there may
be more elaborate conditionality: for instance, de-
pending on what is sensed in the first few frames,
different choices may be required for subsequent
sensing. Such a tree results in multiple target
leaves and requires dynamic programmability of
the sensor.

4. Results

We present successful detection–localization results
on the vehicle imagery test data It, t � 0, 1, 3, 4, de-
scribed above, by using the ISPDT trained on I2 and
depicted in Fig. 4 and Eq. (1). There is no vehicle
present at time t � 0, and (see Fig. 5) no pixels fall

Fig. 9. (Color online) Illustration of a more elaborate ISPDT, requiring nontrivial conditioning and adaptation for I3.
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Fig. 10. (Color online) Scatterplot for the illustrative ISPDT depicted in Fig. 9. See text for description.
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into the target leaf. This implies no detection, as
desired. For t � 1, 3, 4, there is a vehicle present, and
(see Figs. 6–8) in each case the existence of pixels
falling into the target leaf implies detection, as de-
sired. Furthermore, the spatial location of these pix-
els indicates that the detection is indeed on target.

Note: the fact that not all target pixels fall to the
target leaf is inconsequential; the goal is detection
and localization, and in each test case pixels on target
are identified �t � 1, 3, 4� or no pixels are identified
�t � 0� as desired.

Figure 9 (color online) depicts a more elaborate
ISPDT, requiring nontrivial conditioning and adap-
tation, generated for I3. In this tree, as before, Had-
amard frame 110 is used at the root, and in the
middle cluster at level two, Hadamard frame 151
provides clustering into two clusters. While the tar-
get leaf—the leftmost node at level three—provides
target detection, there is a significant number of tar-
get pixels that fall to the rightmost node at level
three, a nontarget node.

When training on I2, tree building stops at this
point. If training on I3 (presented in Fig. 9), it is
preferable to continue the tree building by using Had-
amard frame 145 for additional accuracy. Thus the
leftmost node at level four is an additional target leaf
for this illustration, and the two target leaves to-
gether allow more target pixels to be identified (while
still yielding no false detections). This tree would be
realized by dynamically programming the sensor to
collect Hadamard frame 145 only for cases in which
frames 110 and 151 leave detection unresolved.

The scatterplot tree for the illustrative ISPDT de-
picted in Fig. 9 is given in Fig. 10 (color online). Note
that the scatterplots have a horizontal location on the
x axis versus a pixel value on the y axis. Thus sepa-
rability of the red (target box) pixels and black pixels
is envisioned by projecting onto the y axis. For exam-
ple, initial clustering of Hadamard frame 110 (the
root node) produces the three nodes depicted in row
two of the figure. These nodes are still depicting
frame 110, as at the root. Notice that the target pixels
in the middle cluster do not separate from nontarget
pixels. However, Hadamard frame 151 (the next node
in the tree) for these same pixels does provide signif-
icant separability.

5. Conclusions and Discussion

We have successfully applied ISPDT to DMA hyper-
spectral imagery for detection and localization,
demonstrating the potential of an integrated
sensing–processing suite consisting of a dynamically
programmable DMA sensor and ISPDT processing.

This example demonstrates detection and localiza-
tion. When multiple target types are possible, a sub-
sequent classification step—possibly involving
additional Hadamard frames–is employed. If, as is
likely in practice, detection is not so perfect and some
few off-target pixels are identified as falling into the
target leaf (but still many on-target pixels are so
identified), then postprocessing under some spatial
dependence scheme, such as maximum a posteriori
spatial filtering, can be used to perform the ultimate
detection and localization.

Finally, while it may seem (and is indeed the case)
that processing more elaborate than our individual
pixel-based approach (such as the use of an edge
detector) would make the detection–localization task
trivial, the extremely time-sensitive nature of the
pattern-recognition applications envisioned here pre-
clude the use of elaborate processing schemes.

This research is supported in part by the Applied
and Computational Mathematics Program of the De-
fense Advanced Research Projects Agency.
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