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Abstract—We introduce a methodology for adaptive sequential sensing and processing in a classification setting. Our objective for

sensor optimization is the back-end performancemetric—in this case, misclassification rate. Our methodology, which we dub Integrated

Sensing andProcessingDecision Trees (ISPDT), optimizes adaptive sequential sensing for scenarios in which sensor and/or throughput

constraints dictate that only a small subset of all measurable attributes can be measured at any one time. Our decision trees optimize

misclassification rate by invoking a local dimensionality reduction-based partitioning metric in the early stages, focusing on classification

only in the leaves of the tree. We present the ISPDT methodology and illustrative theoretical, simulation, and experimental results.

Index Terms—Classification, clustering, adaptive sensing, sequential sensing, local dimensionality reduction.
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1 INTRODUCTION

STATISTICAL pattern recognition techniques often play a key
role in extraction and exploitation of useful information

from the inherently high-dimensional data collected bymany
of today’s sensing systems. Dealing effectively with this data
can impose stringent challenges for the designer of statistical
pattern recognition algorithms when issues of throughput
and statistical reliability of the overall sensor/exploitation
systemare a concern. This paper examinesmethodologies for
addressing the challenges of exploiting high-dimensional
data in sensor systems and are particularly suited to those
(increasingly common) systems incorporating controllable
sensor front ends whose particular measurement functions
can be tuned.

For an illustration of the type of high-dimensional data
exploitation, we are concerned with considering a land-use
classification application based on measurements from a
hyperspectral camera, such as that described in [16]. Such a
sensor may provide the equivalent of hundreds of mega-
pixel images of a scene, each image corresponding to the
appearance of that scene in light from a narrow band of
wavelengths. Taken together, these images present a finely
resolved spectrum for each pixel in the scene and may
provide information on the material composition at the
spatial positions within the field of regard. All told, spatial
and spectral information are presented in a data volume
totaling on the order of a billion voxels per scene. Of course,
for real scenes, these billions of degrees of freedom exhibit
correlations; nevertheless, the raw data presented to the
statistical pattern recognition algorithms comprise points in

an overwhelmingly high-dimensional space and typically
presents a challenge in the subsequent operations involved
in moving, storing, and computing with this data.

In this example, and many others, we face a challenging
requirement for effective and affordable exploitation of high-

dimensional sensor data through the application of pattern

classification techniques. In fact, the curse of dimensionality

(see, for example, [2], [19], [17], [11]) implies that it can be
counterproductive to attempt to perform statistical pattern

recognition in the high-dimensional space of every measure-

ment that can bemade.Certainly onemust be concernedwith

the possible effects of the curse of dimensionality in
evaluating the performance and reliability of statistical

pattern recognition tasks applied to the hyperspectral data

example discussed above.
A potentially significant development is the proliferation

of modern sensor systems that can be controlled to take

measurements in a specified low-dimensional projection of

the full space of the sensor’s possible measurable degrees of
freedom. In some situations, this is indeed motivated in part

by one or more of the issues we have sketched: It may not

be possible to effectively and affordably sense, process,

transmit, or reliably exploit all of the dimensions that could
be simultaneously sensed in principle. A straightforward

example of this strategy is seen in various types of

functional Magnetic Resonance Imaging (MRI). In standard

Magnetic Resonance Imaging, images of an object are built
after acquiring a sequence of many measurements, each one

obtaining the values of the object’s spatial Fourier transform

along a particular line in Fourier space ([12], [9]). Each line

takes a certain amount of time to acquire, and significant

imaging time may be required as many lines must be
obtained to build a high-resolution image. In various forms

of functional imaging (involving some motion of the object),

one often needs to restrict to a subset of all Fourier space

measurements, generally corresponding to a low spatial
resolution projection of the highest possible resolution

image. Although higher resolution would be useful in

many cases, acquisition of the full resolution data would
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result in blurred images, as the object may have moved
significantly over the time required to take all the required
lines. In this case, the agility of the sensor is employed to
make a simple trade of spatial resolution for temporal
resolution. More sophisticated approaches have been
proposed which apply a priori knowledge to reduce the
dimension of the acquired data in different ways.

This type of control is currently being considered in a
variety of sensor systems and applications in hopes of
obtaining a better trade off between performance require-
ments and cost constraints. For instance, the hyperspectral
sensor mentioned previously provides very finely resolved
spectral information that seems very useful in some
applications. However, this performance is obtained at a
cost. Spectral resolution results in high-dimensional raw
data sets presenting significant computational and commu-
nication challenges, particularly for time-critical applica-
tions. Furthermore, the narrow spectral range of the
hyperspectral bands means that one must collect light for
some time before obtaining enough photons in each given
band to produce an image with reasonable signal-to-noise
ratio. A further and very important difficulty in high-
dimension spectral sensing is the potential for poor
reliability of pattern classification algorithms applied to that
data. Certainly, one must be concerned with the possible
effects of the curse of dimensionality in statistical pattern
recognition tasks applied to the full hyperspectral data
discussed above.

In contrast to the hyperspectral camera, the multispectral
sensor is similar in concept but resolves the light into fewer
spectral bands. It offers coarser spectral resolution but could
wind up providing better time resolution in video mode,
lower dimensional data, and less overall data burden than a
hyperspectral sensor. In light of this trade off, several
research groups are currently developing “tunable” multi-
spectral sensors which can resolve light into bands with
adjustable bandwidth and other parameters. These tunable
bands provide data with may be modeled as (adjustable)
projections of the full hyperspectral information. The ability
to obtain such projections on demand could potentially offer
some of the benefits of both hyperspectral and multispectral
sensors in one system, potentially offering some of the
capability of hyperspectral imagery while still meeting
constraints on data size.

To take advantage of this in applications involving
statistical pattern recognition,weconsider theuse the tunable
multispectral sensor for the direct measurement of informa-
tive features in what amounts to a reduced dimensionality
subspace of the full hyperspectral measurement space. In
order to realize the potential of a sensing/pattern recognition
systemof this type,wearemotivated to consider thedesignof
control strategies explicitly devised for enhanced perfor-
mance in the statistical pattern classification. Such a metho-
dologyeffectively integrates adaptive sensor technologywith
thepattern recognition task forwhich the sensor is employed,
enabling users to take full advantage of sensor agility to
enhance system-level performance. A simple special case of
this notion has been introduced in [16] and illustrated for the
tunablemultispectral sensor example. Thiswork represents a
step in the larger context of a program of end-to-end
cooptimization of sensor, processor, and exploitation sub-
systems, embodied in DARPA’s “Integrated Sensing and
Processing” (ISP) initiative.

Of course, the tunable multispectral system we have
considered represents only one of many existing and
planned sensor systems that could be used to take reduced
dimensionality measurements in an agile and controllable
way. As a next step toward addressing ISP, we present
here an extensive generalization of the previous work of
Priebe et al. [16], resulting in widely applicable methodol-
ogies for the effective control of such sensors in a variety
of applications in which the exploitation subsystem is
concerned with supervised statistical pattern recognition
(classification).

Let us begin with a high-level description of some of the
considerations for useful exploitation of such tunable sensor
systems. Effective application of a flexible reduced dimen-
sionality sensor systems starts with identification of a
particular realizable projection of the overall measurable
space that contains information useful for the pattern
recognition task at hand. This step could be realized in a
fairly standard way using training data and also may be
informed by prior knowledge of phenomenology and
application details. At this point, one may then set up and
deploy the sensor, thus obtaining information about the
world in the form of observations in thismeasurement space.
When the sensor observes a particular situation or scene of
interest, we obtain a point in the measurement space whose
location provides the information used by the classifier or
other pattern recognition algorithms. It is certainly consistent
with common experience that the resulting information may
be insufficient for unambiguous classification. For example, a
particular observation may lie in a region of feature space
known to be more liable to misclassification than other
regions. In this case, it is possible that the particular
disposition of the observation in the initial measurement
space may suggest a new projection of the measurable space
whose acquisition by the sensor would likely provide new
information contributing to an improvement in the pattern
recognition performance over that obtainable from the first
measurement alone.

This line of inquiry is pushed beyond the realm of thought
experiment by taking advantage of the recent engineering
advances in adaptive sensor technology. As mentioned
before, these are beginning to provide highly agile sensor
systems that can be rapidly reconfigured on demand to
provide various different looks at a single scene. These we
consider to bemodeled as low-dimensional projections of the
full space of all possible measurement degrees of freedom. In
this setting,we seekmathematicalmethodology for adaptive,
sequential selection of the measurement projections to be
acquired, based on task-specific metrics and in the context of
previousmeasurements. In a sense,wewould like the sensing
system to play a good game of “20 questions.”

Our approach leads to a new type of decision tree for
guiding an agile sensor through the process of acquiring
various “looks” at a scene (that is, measurements in various
low-dimensional spaces) on the way toward classification of
the scene. Some intuition for this conceptmay be found in the
following heuristic: If it is hard to classify the data measured
with particular sensor features, the problem may be broken
down into smaller pieces by clustering (irrespective of class).
Each cluster corresponds to a set of additional sensor
measurements providing additional information for classify-
ing data points in that cluster with respect to a particular
classifier.
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The decision tree is constructed (trained) so that its nodes
orverticesdefine sensor “looks,” or control settings, s�,which
we identify with particular maps from the field of regard of
the sensor into associated low-dimensional feature or
measurement spaces S�. At the root of the tree, the initial
sensor setting s1 is trained for the purpose of getting an
informative first look at the scene. We do not necessarily
require classification on the basis of this single look, so s1 is
not chosen solely to optimize classification. Instead, this first
look is intended to provide information that can guide
subsequent looks at the scene inorder to improve theultimate
classification. In practice, s1 is chosen to produce features
which allow good partitioning (under some predefined
metric) of its associated initial sensor measurement space,
S1 into the disjoint union [C1;j. See Figs. 1 and 2.

The next level of the tree is populated by daughter nodes,

one for each disjoint region C1;j of the partition of initial

sensor space. Each daughter node defines a particular

sensor setting for a subsequent look s1;j, to be obtained by

applying the sensor tuned to that setting. The choice of a

particular daughter node and its associated second look is

determined by the outcome of the initial look: Sensor setting

s1;j is used for the second look when the first look landed in

the partition cell C1;j.
The particular sensor settings s1;j (that is, the local

dimensionality identification) and corresponding classifiers
(or further partitionings) of their associated feature spaces
are determined by invoking a criterion that insures they are

most appropriate for initial observations that wind up in

partition cell C1;j. In the case of either partitioning or

classification, a (potentially) different set of second look
features is associated with each initial partition cell.

Wepursue this idea inorder tobuildupan ISPDecisionTree

(ISPDT): a decision tree inwhich the leaves are classifiers and
the nonleaf nodes are partitionings (clusterings). Modeling

entities or scenes to be sensed as �-valued random variables

X : � ! �, each node of the tree determines the (potentially
unique) surjective sensor setting map s� : � ! S�, onto its

associated sensor space S� :¼ s�ð�Þ.
The identification of these sensor settings, their associated

feature spaces, and partition/classifier selections for those
spaces are all based on a training data set D :¼ fðX1; Y1Þ; � � �
; ðXn; YnÞg, where the Xi are �-valued and the class labels Yi

are (say) f0; 1g-valued. For the partitioning stages, the class
labels are ignored—the local dimensionality identification is
to be addressed for the general, unlabeled case. Say, for
instance, thatS1 is partitionedas[k1

j¼1C1;j and that the s1;j have
been identified. Then, in S1;j the training data set is given by
D1;j :¼ fðs1;jðXiÞ; YiÞ : s1ðXiÞ 2 C1;jg. The setD1;j is thenused
to determine whether S1;j is appropriate for classification.
That is, can a classifier g1;j be constructed so that, for
unlabeled �-valued observation Z with unobserved class
labelYZ ,P ½g1;jðs1ðZÞ; s1;jðZÞÞ 6¼ YZ js1ðZÞ 2 C1;j� is acceptably
small. If such a classifier cannot be constructed, then S1;j is
further partitioned and the ISPDT grows. The general ISPDT
methodology is illustrated in Figs. 1 and 2. This recipe is quite
general, leaving the choice of partitioning (clustering) and
classification algorithms to the practitioner.

This approach has some similarity to the hierarchical
discriminant analysis of Swets and Weng [18]. A key
difference is that the first step, defining the clusters
or partition cells in which local dimensionality is to take
place, may require substantially different features than the
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Fig. 1. Adaptive sequential sensing and processing via the ISP Decision
Tree: On the top, we have the initial sensor space S1 ¼ s1ð�Þ partitioned
into S1 ¼ [k1¼4

j¼1 C1;j. For observation Z (to be classified), we see that
s1ðZÞ 2 C1;3. In themiddle left, we have the subsequent sensor space S1;3

andwe see that a linear classifier is utilized in this space to classify s1;3ðZÞ.
In the middle right, we have a partitioning of S1;2 ¼ [k1¼2

j¼1 C1;2;j and we see
that a nonlinear classifier is utilized in S1;2;1 (bottom). Shading in leaves
indicates classification decision regions. (Spaces S1;1, S1;4, and S1;2;2 are
not shown.)

Fig. 2. Adaptive sequential sensing and processing via the ISP Decision
Tree: Identify sensor settings and associated sensor space. If the
performance of a classifier is adequate, stop; otherwise, partition the
sensor space and repeat. At each stage, a (potentially) new set of
features is chosen for the task at hand.



subsequent classification. Other relatedwork in the scientific
and engineering literature includes [1], [8], [10], [13], [14].

In the next three sections of this paper, we illustrate the
ISPDT concept and demonstrate its efficacy with theoretical,
simulation, and experimental results. In particular, our final
results clearly indicate the significant potential advantages of
using ISPDT to control the operation of a proposed adaptive
multichannel olfactory sensor. This result is based on real
data collected with an existing version of this sensor and
provides a nice example of the exercise of ISPDT in control of
an adaptive sensor in order to obtain excellent exploitation
performance.

2 ILLUSTRATIVE THEOREM

Here,wepresent an existenceproof—the existenceof amodel
for which ISPDT yields zero classification error while any
canonical d-dimensional Bayes classifier performs arbitrarily
poorly—indicating that the ISPDT is indeed a useful addition
to the statistical pattern recognition practitioner’s toolbox.
While the theorem is stated abstractly, the proof (by
construction) is illustrative of the ISPDT “partition, then
classify” recipe.

This theorem is in response to the following thought
experiment. Consider a sensor which can sense an entity Z
one feature at a time and assume that there are resources
enough to sense exactly two features; at which point a
decisionmust bemade as to the value of the unobserved class
labelYZ associatedwithZ. For simplicity,we identifyZwitha
random vector whose components are the measurable
features (canonical features). We observe one feature Zi,
and then wemay subsequently choose a second feature Zj to
observe. We wish to develop a classifier g for which LðgÞ ¼
P ½gðZi; ZjÞ 6¼ YZ � is as small as possible.

For K � 2, let PK represent the collection of all K-class

classification models. That is, P 2 PK consists of K class-
conditional distributions together with prior probabilities of
classmembership. LetL�

P ðdÞ be the Bayes optimal probability
ofmisclassificationunderP minimizedover all d-dimensional

canonical marginals—that is, minimized over all subsets of
size d of the components of the observation vector Z. Let
LP ðgispdtÞ denote the probability of misclassification under P
for ISPDT (with appropriate choices of clusters and classi-
fiers). The following theorem shows that there are situations
in which the ISPDT methodology is beneficial. This is
accomplished by identifying class-conditional distributions
such that the Bayes classifier using any collection of d

canonical features results in nonzero classification error
while the ISPDT classifier, with the choice of second feature
depending on the first observation, yields zero error.

Theorem 2.1. For any d 2 ZZþ, supP2PK
L�
P ðdÞ � LP ðgispdtÞ ¼

ðK � 1Þ=K.

Proof. Since L�
P ðdÞ � ðK � 1Þ=K for any K-class model and

any d, it suffices to demonstrate that, for any � > 0 and
any d 2 ZZþ, there is a model P ¼ P ðd; �Þ such that
L�
P ðdÞ � LP ðgispdtÞ > ðK � 1Þ=K � �.
We proceed by construction, for K ¼ 2. The case of

generalK proceeds analogously. Given � > 0 and d 2 ZZþ,
we specify a two-class model P for which LP ðgispdtÞ ¼ 0
and L�

P ðdÞ > 1=2� �.

Let the class label Y be a f0; 1g-valued random variable

and let the feature vector X ¼ ½X0; X1; X2; � � � ; Xq�0 be

f1; 2; � � � ; 2qg � f0; 1gq-valued. Consider class 0 observa-

tionsXjY¼0 � F0 with F0 defined as follows: LetX0jY¼0 �
DiscreteUniform f1; 2; � � � ; 2qgð Þ. For each i ¼ 1; � � � ; q, let
XijX0¼j;Y¼0 � Bernoullið0Þ for j ¼ 2i� 1, XijX0¼j;Y¼0 �
Bernoullið1Þ for j ¼ 2i, and XijX0¼j;Y¼0 � Bernoullið1=2Þ
otherwise. Finally, consider ðZ; YZÞ with (unobserved)

class label YZ � Bernoulli 1
2

� �
andZjYZ¼0 � F0,ZjYZ¼1 � F1.

As constructed, L� :¼ P ½gBayesðZÞ 6¼ YZ � ¼ 0.
For ISPDT, let the first feature observed beZ0. Then, the

second feature observed, ZZ0
, depends on the value of Z0.

As constructed, LðgispdtÞ ¼ P ½gZ0
ðZ0; ZZ0

Þ 6¼ YZ � ¼ 0. No-
tice that the appropriate clustering is trivial here; since the
random variables are all integer valued, we consider each
integer to constitute a cluster. Notice also that, as
constructed, ISPDT requires only a linear classifier—but
that classifier, gZ0

, depends on the first feature observed.
For I 	 f1; � � � ; qg, L�

I (the Bayes optimal probability of
misclassification using the associated jI j-dimensional
canonical marginal) is 1=2. For I ¼ f0g [ I0 with I0 	
f1; � � � ; qg, jI 0j ¼ q0 � q, we have L�

I ¼ 1=2� q0=ð2qÞ. The
desired result follows,with d ¼ q0 þ 1 and choosing q such
that q0=ð2qÞ < �. tu
Notice that the supremum is not achieved. That is, if

L�
P ðdÞ ¼ ðK � 1Þ=K for d � 2, then LP ðgispdtÞ ¼ ðK � 1Þ=K

as well.
This proof illustrates the basic idea of the ISPDT

approach. First, one selects a subspace in which a useful
partition of the data can be obtained—in our construction,
the value observed for Z0 indicates the best choice for the
second feature. Then, a subsequent subspace is defined for
each partition cell wherein classification can be performed
with adequate precision—in our construction, a linear
classifier depending on the value of Z0 can perfectly classify
the two-dimensional observation ðZ0; ZZ0

Þ. The features
used for the partitioning and those used in each of the
various subsequent classifiers may differ. This is the key to
the ISPDT adaptive sequential sensing and processing.

In the sequel, we illustrate this idea with a simulation

example and an experimental example.

3 SIMULATION EXAMPLE

In this section, we illustrate the ISPDT via a simulation

example. The sensor space is six-dimensional, but the

sensor is restricted to measuring only two (canonical)

variables at a time. This may be due to limitations of the

sensor and/or throughput constraints. An ISPDT produces

optimal performance.

We specify the joint distribution for this simulation

example. We consider a two-class problem with equal

priors, so that the class label Y � Bernoulli 1
2

� �
. The feature

space for this example is six-dimensional. For x 2 <2 and

r 2 <, we let Bðx; rÞ denote the (Euclidean) ball of radius r

centered at x and UðBðx; rÞÞ denote the uniform distribution

on Bðx; rÞ. For x 2 <2 and positive definite real matrix �,

we let Nðx;�Þ denote the (bivariate) normal (Gaussian)

distribution. Let
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�1 ¼
1 3

4
3
4 1

� �
and

�2 ¼
1 � 3

4
� 3

4 1

� �
:

The first set of two features, X1; X2½ �0, are distributed

according to a mixture of two uniforms, independent of the

class label Y :

X1; X2½ �0� 1

2
U Bð½0; 0�0; 1Þ
� �

þ 1

2
U Bð½1:5; 1:5�0; 1Þ
� �

:

The distribution of the second set of two features,

X3; X4½ �0, depends on the mixture component into which

the first two features fall and on the class label Y :

X3; X4½ �0j½X1;X2�02Bð½0;0�0;1Þ;Y¼0 � Nð½0; 2�0;�1Þ
X3; X4½ �0j½X1;X2�02Bð½0;0�0;1Þ;Y¼1 � Nð½0; 0�0;�1Þ

X3; X4½ �0j½X1;X2�02Bð½1:5;1:5�0;1Þ �
1

2
U Bð½0; 0�0; 1Þ
� �

þ 1

2
U Bð½

ffiffiffiffiffiffiffi
2:5

p
;

ffiffiffiffiffiffiffi
2:5

p
�0; 1Þ

� �
:

The third set of two features, X5; X6½ �0, is normally

distributed with mean vector and covariance matrix

depending on X1; X2; X3; X4, and on Y :

X5; X6½ �0j½X1;X2�02Bð½0;0�0;1Þ � U Bð½0; 0�0; 4Þ
� �

X5; X6½ �0j
X1; X2½ �02 Bð½1:5; 1:5�0; 1Þ
X3; X4½ �02 Bð½0; 0�0; 1Þ

;Y¼0

� Nð½0; 0�0;�2Þ

X5; X6½ �0j
X1; X2½ �02 Bð½1:5; 1:5�0; 1Þ
X3; X4½ �02 Bð½0; 0�0; 1Þ

;Y¼1

� Nð½0; 2�0;�2Þ

X5; X6½ �0j
X1; X2½ �02 Bð½1:5; 1:5�0; 1Þ

X3; X4½ �02 Bð½
ffiffiffiffiffiffiffi
2:5

p
;

ffiffiffiffiffiffiffi
2:5

p
�0; 1Þ

;Y¼0

� Nð½0; 2�0;�2Þ

X5; X6½ �0j
X1; X2½ �02 Bð½1:5; 1:5�0; 1Þ

X3; X4½ �02 Bð½
ffiffiffiffiffiffiffi
2:5

p
;

ffiffiffiffiffiffiffi
2:5

p
�0; 1Þ

;Y¼1

� Nð½0; 0�0;�2Þ:

Example data (1,000 observations from each class) are

depicted in Fig. 3. The pairs plot (scatterplotmatrix) is shown

in the lower left triangle. The two clusters in ½X1; X2�0 give rise
to two different distributions in ½X3; X4�0. In one case, the

classes separate well, while in the other a further clustering

gives rise to two different distributions in ½X5; X6�0.
The ISPdecision tree for this example isdepictedacross the

top of Fig. 3 and again in Fig. 4. The tree is constructed as

follows: For each pair of canonical variables ði; jÞ, letX i;j and
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Fig. 3. Scatterplot matrices representing the data for the Simulation Example. (The ISP decision tree is depicted across the top; see also Fig. 4.)

In none of the two-dimensional projections of the scatterplot matrix does the data separate well by class, although it does cluster in ½X1; X2�0. The
data in ½X3; X4�0 associated with each of the two clusters in ½X1; X2�0 is depicted in the top middle. Note that, conditional on ½X1; X2�0 2 Bð½0; 0�0; 1Þ,
linear classification is optimal in ½X3; X4�0; however, an additional clustering step is necessary when ½X1; X2�0 2 Bð½1:5; 1:5�0; 1Þ. The data in

½X5; X6�0 associated with each of the two clusters in ½X3; X4�0j½X1;X2 �02Bð½1:5;1:5�0 ;1Þ is depicted in the top right. Again, for these data linear classification

is optimal. Note that without performing the additional clustering in ½X3; X4�0 the classes would be completely overlapped.



Yi;j represent the 2-means clustering of the data. Let �i;j :¼
minx2X i;j;y2Yi;j

dðx; yÞ be the minimum Euclidean distance

between points in separate clusters and let bLLi;j represent the

resubstitution estimate of the probability of misclassification

for the linearclassifierbasedonthe twoclusters.Ateachstage,

we check mini;j bLLi;j against a threshold (here, we use 0.1). If

there is a classifier which performs satisfactorily ( bLLi;j < 0:1),

we stop and the construction of the tree is complete;

otherwise, we choose the pair of canonical variables ði�; j�Þ :
¼ argmini;j �i;j which provides the most distinct clustering,

split the data according to these clusters, and repeat the

process for each newly generated branch of the tree.
AMonteCarlo experiment consisting of 100 replications is

reported. For each replication, 1,000 training observations are

drawn from each class. The ISPDT results in using 2-means

clustering on the first two dimensions and then again on the

appropriate subset of the third and fourth variates. Normals

are then fit to the appropriate subsets so that a linear classifier

results in the leaves. This asymptotically optimal (by con-

struction) ISPDTprocedureyieldsP ½gðZÞ 6¼ YZ � 
 0:0654; the

resultant tree is depicted, via arrows, across the top of Fig. 3.

For comparison: A nearest neighbor classifier in the full six-

dimensional space yields P ½gðZÞ 6¼ YZ � 
 0:1290, the best

(canonical) twodimensionalnearestneighborclassifieryields

P ½gðZÞ 6¼ YZ � 
 0:3687, the CART methodology ([3]) yields

P ½gðZÞ 6¼ YZ � 
 0:1588, a supportvectormachine (SVM)([20])

with radial kernels yields P ½gðZÞ 6¼ YZ � 
 0:1143, a random

forests approach ([4]) yields P ½gðZÞ 6¼ YZ � 
 0:0918, and

Bayes optimal performance for this example is L� 
 0:0653.

Standard errors are small relative to the differences in means

reported here, see Fig. 5.
This simulation example illustrates the power of the basic

idea of the ISPDT; by selecting local regions in which to

perform different processing, the ISPDT can improve

dramatically over global methods. Note that the decisions

in the tree are not made on the optimal (for classification)

splits. This allows for a smaller, more flexible tree. Smaller

trees mean a smaller number of sensor settings and, hence,

more efficient sensors.

4 EXPERIMENTAL EXAMPLE

The Tufts “artificial nose” is a chemical sensor designed to be

nonspecific and cross-reactive. That is, its response to a

mixture of odorants is not a linear combination of the

responses to the individual odorants nor is its response a

simple function of chemical composition or concentration.

There is currently no theorydescribing the response expected

from the sensor under any particular scenario. This makes it

an interesting sensor from a pattern recognition standpoint

since it requires the construction of nonparametric classifiers.
The Tufts sensor consists of a bundle of 19 optical fibers.

Each fiber is chemicallydopedwitha solvatochromicdye (see

[21]). This doping results in a sensor for which a change in

fluorescence intensity is in response to interactions of the dye

in each fiber with the chemical environment ([5]). An

observation is obtained by passing an analyte (a single

compoundoramixture) over the fiberbundle ina four second

pulse or “sniff.” The information of interest is the change over

time in emission fluorescence intensity of the dye molecules

for each of the 19 fiber-optic sensors (see Fig. 6).
The task at hand is the identification of an odorant

observation. Specifically, we consider the detection of

trichloroethylene (TCE) in complex backgrounds. (TCE, a
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Fig. 4. The ISPDT decision tree for the Simulation Example. (This tree is
also depicted across the top of Fig. 3.) For each node, the two features
used are indicated numerically. The classifier is linear, the clusterer is
2-means. The features that produce “best clustering,” for this tree, are
the features which yield the largest distance between clusters (the
minimum Euclidean distance between points in separate clusters).
Classifier error (“err”) is resubstitution error using the linear classifier.

Fig. 5. Boxplots depicting probability of misclassification results for the
Simulation Example. The dashed horizontal line is Bayes optimal. The
ISPDT procedure yields (asymptotic) Bayes optimality.

Fig. 6. The Tufts artificial nose consists of optical fibers (shown here
spread apart) doped with a solvatochromic dye. Reaction of the polymer
matrix with an analyte produces photons that are sampled at two
wavelengths to produce a response for each fiber. These photons are
captured by a CCD device, resulting in a time series of light intensity
above (or below) the background intensity. The responses of two fibers,
sampled at a single wavelength, are illustrated as curves in the figure.



carcinogenic industrial solvent, is of interest as the target

due to its environmental importance as a ground water

contaminant.)
TheTufts artificial nose, aswith all real sensors, has a finite

lifetime, driven mainly by the number of sniffs on a given

fiber. Thus, onewould like to reduce the number of times any

given fiber is used. Instead of using all 19 fibers, an ideal

sensor would only use a subset of the fibers at any one time,

choosing a different subset depending on the current

environment or the problem at hand. The ISPDT provides a

methodology to do this, as will now be illustrated.
The data set we will consider here (see [15]) consists of

recordings sensor responses to various analytes at various

concentrations. Each observation is a measurement of the

fluorescence intensity response at each of two wavelengths

(620nmand680nm) for each sensor in the 19-fiberbundle as a

function of time. While the process is naturally described as

functional with time ranging over a 20 second interval, the

data as collected are discrete with the 20 seconds recorded at

60 equally spaced time steps for each response. Thus, each

observation consists of 2,280 values: 19 fibers at 2 wave-

lengths sampled 60 times. The sensor responses are inher-

ently aligned due to the “sniff” signifying the beginning of

each observation. The response for each sensor for each

observation is normalized by subtracting the background

sensor fluorescence (the intensity prior to exposure to the

analyte) from each response to obtain the change in

fluorescence intensity for each fiber at each wavelength.
Construction of the database involves taking replicate

observations for various analytes in various concentrations.

In addition to TCE in air, eight diluting odorants are

considered: BTEX (a mixture of benzene, toluene, ethylben-

zene, and xylene), benzene, carbon tetrachloride, chloroben-

zene, chloroform, kerosene, octane, and Coleman fuel.

Dilution concentrations of 1:10, 1:7, 1:2, 1:1, and saturated

vapor are considered. In addition, there are 40 observations of

TCE alone, with no confusers. The database contains 352 ob-

servations from class 0, the TCE-absent class. These consist of

32 observations of pure air and 40 observations of each of the

eight diluting odorants at various concentrations in air. There

are likewise 760 class 1 (TCE-present) observations; 40 ob-

servations of pure TCE, 80 observations of TCE diluted to

various concentrations in air, and 80 observations of TCE

diluted to various concentrations in each of the eight diluting

odorants in air are available. Thus, there are 1,112 observa-

tions in the training database. This database is well designed

to allow for investigation of the ability of the sensor array to

identify the presence of one target analyte (TCE) when its

presence is obscured by a complex background; this is

referred to as the “needle in the haystack” problem.
The time series for each (fiber, wavelength) pair on each

observation is smoothed using smoothing splines with the

smoothing parameter chosen using crossvalidation ([6]).

This smoothing has been shown to improve the perfor-

mance of classifiers in previous work ([15]).
The data set was randomly split into a training set and a

test set of equal size (556 observations in each). The problem

is to design a classifier (using the training set) that will

detect the presence of TCE. The performance of the

classifier is then evaluated using the test set.
For this experiment, we employ the nearest-neighbor

classifier (as contrasted with the linear classifier used in the

Simulation Example). This is for illustration purposes only.

However, as will be seen, the performance of the ISP

decision tree is quite good even with this simple classifier.
The partitioning algorithm we employ is standard

agglomerative complete linkage hierarchical clustering

([7]) (as contrasted with the 2-means clusterer used in the

Simulation Example). This produces a dendogram, such as

is shown in Fig. 7.
Since we are using the nearest-neighbor classifier for this

experiment, we must replace the resubstitution estimate of

the probability of misclassification from the Simulation

Example with the deleted (crossvalidated) estimate, em-

ployed in a greedy manner for up to five fibers. In addition,

the ISPDT approach requires a method for selecting “good”

clustering, including choosing the fibers on which to cluster.

For this experiment, we use an approach based on the
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Fig. 7. Dendograms of the clustering of the training data for the nose, using (a) fibers 1 and 2 and (b) fibers 15 and 20.



dendograms. An inspection of Fig. 7 suggests that fibers 15

and20producemorewell-definedclusters than fibers 1and2;

the cluster splits occur at (relatively) larger values of “height”

for the second fiber pair than the first. Specifically, we choose

the pair of fibers for which the clustering maximizes

1

ðn� 1Þmax fhig
Xn�1

i¼1

hi;

where hi is the height of dendogram for the ith split—the

distance between clusters at which the split occurs. This

corresponds to clusters that are more well-defined. We

choose the fibers based on this criterion, without considera-

tion of the class labels for the data.

The experiment is as follows: First, we select a “good”

clustering using two fibers (in this case, fibers 15 and 20 result
in the best clustering). Then, for each cluster we select

between one and five fibers, using a sequential search, which

provide the best classification under a nearest-neighbor

classifier. That is, we select the best single fiber, then the best
pair of fibers conditional ononebeing thebest single fiber, etc.

We stop this procedure when adding the next fiber produces

no improvement, or when we have selected five fibers. For

this step, classifier performance is determined by cross-
validation on the training observations in the cluster.

The number of clusters is chosen by inspection of the
dendogram (Fig. 7b). For this experiment, we chose to use
six clusters. (Robustness to this model selection choice is
discussed briefly at the end of this section.) The cluster
statistics are found in Table 1. For each cluster, the number
of training observations is shown, along with the number of
observations from each class, the number of fibers chosen
by the above algorithm, and the fibers chosen. In this
experiment, the clustering methodology, the number of
fibers to use in the clustering, the number of clusters, and
the maximum number of fibers per cluster were all chosen
arbitrarily—with no attempt to choose optimally—for
purposes of illustration. It is clear that improvements can
be obtained by careful choice of these parameters.

Because we chose to cluster the tree into six clusters
initially, the ISPDT tree is only of depth two (see Fig. 8).

This is equivalent to a binary tree where each clustering

node uses the same fibers (15 and 20). Experiments show

that adding the flexibility of choosing different fibers at the
clustering nodes does not improve the classification and, so,

the shallower tree is preferred.
Results for this experiment are presented in Table 2. The

ISP decision tree method is compared with several versions

of nearest neighbor, each on a different set of fibers, and

with CART, SVM, and random forests on the full data. The

errors presented are those computed on the withheld
testing set. First, the nearest neighbor result for the entire

38 fiber set is shown, followed by the result on the two

fibers selected for the initial clustering, the best two fibers

for nearest neighbor classification (chosen via cross-valida-
tion on the training set), the k-nearest neighbor classifier

using all the fibers optimized over k (k� ¼ 3Þ and, finally,
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TABLE 1
Cluster Statistics for the Clusters Chosen for the Training

Data Using the Dendogram in Fig. 7b

Fig. 8. The ISPDT for the nose data. The top figure represents the binary
tree while the bottom represents the collapsed tree. The node labels
indicate the fibers used for clustering or classification. The diamond
shaped nodes indicates clustering, ovals indicate classification. The
number of training observations from each class are indicated below the
node in the bottom tree.

TABLE 2
Results of Several Classifiers on the Test Data

for the Tufts Artificial Nose



the ISP decision tree method. As can be seen, the ISP
decision tree yields a significant improvement over these
competitors.

One might argue that the results in Table 2 are unfair.
After all, the ISP decision tree is really using more than two
fibers; in fact, it is using a total of 13 distinct fibers, although
it never uses more than seven (the initial two plus at most
five) for classifying any single observation. Thus, we should
consider the performance of the nearest neighbor using the
best 13 fibers for comparison. Since 38

13

� �
is large, we

implemented a greedy algorithm similar to that used within
each cluster to find the best j fibers for nearest-neighbor
classification, j ¼ 1; . . . ; 38, on the full training data set. This
greedy-selected optimal fiber combination produces a
nearest-neighbor misclassification rate of 0.129 (more than
twice the ISPDT misclassification rate).

To explore the question of robustness to selection of the
clusters, we investigate the error for different choices of the
number of clusters. We varied the number of clusters in the
procedure from 2 to 12, using the dendogram of Fig. 7b. Our
choice of six clusters turned out to be optimal and all
selections produced superior classification results to the full
data performance (0:169). These results are (in order from
k ¼ 2; . . . ; 12): 0:162, 0:090, 0:097, 0:090, 0:061, 0:061, 0:094,
0:094, 0:094, 0:092, 0:092.

5 DISCUSSION

This paper describes a mathematical methodology to imple-
ment an adaptive sequential sensing and processing system
for classification applications. By selecting different regions
for different sensing/processing, ISPDT implements both a
local dimensionality identification and local classification
similar to standard decision trees. Unlike standard trees,
however, the partitioning steps in ISPDT allow branching
decisions tobemadebasedoncriteriaother thanclassification
performance. In some situations, such as that described in the
simulation example, a decision tree cannot make the “right”
choice forbranchesonasinglevariablebasedonclassification
alone. Either combinations of variablesmust be consideredor
a methodology such as ISPDTmust be implemented.

The ISPDT has been shown, via theoretical, simulation,
and experimental examples, to be a powerful tool for
statistical pattern recognition. It should be stressed that the
ISPDT is not an algorithm, but rather a methodology. The
issue of partition/classifier selection must be addressed in
any real application. The improvement in performance
demonstrated in the simulation and the experiment is
substantial. It is hoped that further investigation of these
ideas will lead to new and powerful classification systems
for the next generation of adaptive sensors.
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